
Constructing a Parser for Latin

C.H.A. Koster

Computing Science Institute,
University of Nijmegen,

The Netherlands
kees@cs.kun.nl

Abstract. We describe the construction of a grammar and lexicon for
Latin in the AGFL formalism, in particular the generation of the lexicon
by means of transduction and the description of the syntax using the
Free Word Order operator. From these two components, an efficient Top-
Down chart parser is generated automatically. We measure the lexical
and syntactical coverage of the parser and describe how to increase it.

The morphological generation technique described here is applicable
to many highly-inflected languages. Since the Free Word Order operator
described can cope with the extremely free word order in Latin, it may
well be used for the description of free-word-order phenomena in modern
languages.

1 Introduction

Why would anybody in his right mind construct a formal grammar of Latin?
Although there exist some active speakers of the language and according to
some its best poetry was produced in the nineteenth century, the language is
as dead as a doornail. A large corpus of latin texts is extant, but there is no
expectation of any important additions. Most texts have been translated into
many other languages in which they can be enjoyed without the drudge of learn-
ing Latin. Commercial application of an Information Retrieval system for Latin
is inconceivable. Furthermore there already exists an overwhelming number of
learned grammars and dictionaries for it, to which any formal grammar would
add nothing new.

It was for the Latin language, and earlier for Greek, that the science of lin-
guistics as we know it was developed. Everyday concepts and terminology of
Latin still pervade western linguistic thinking. The understanding of the struc-
ture of Latin provides a framework in which not only its linguistic relatives, but
also utterly unrelated languages could be analysed, modeled and described. The
Latin language has a number of properties (detailed and rich morphology, very
free word order) which together with its quite regular structure make it an inter-
esting object for formal description. Practically, it is the mother of the Romance
languages and the aunt of many other languages (including English) which do
have practical and even commercial value. Lastly, describing it with the aid of
modern grammar and parsing technology may be of therapeutic value for one
who has been forcefed on it for a number of years in high school.

A. Gelbukh (Ed.): CICLing 2005, LNCS 3406, pp. 48–59, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Constructing a Parser for Latin 49

1.1 About Grammars

Two utterly differents kind of grammars can be distinguished:

1. Grammar1: to real linguists, a grammar is a thick book, in which every
aspect of the structure of a certain language is described in an informal but
highly rigorous fashion.

2. Grammar2: to computer scientists and computer linguists a grammar is
a description of the morphosyntax of a language in a formalism such that
(given also a lexicon) a parser can be constructed from it by automatic
means.

Of course there are incredibly many variations on these concepts, but the basic
fact is that any linguists happily working with the one kind of grammar has very
little patience for the other kind.

In this paper we try to reconciliate the two, deriving a practically functioning
grammar2 (a formal grammar) from the knowledge contained in a grammar1.
We base ourselves on [Redde Rationem] and [Latijnse Leergang].

1.2 About Latin

The Latin language presents a challenge to its description in current syntactic
formalisms and automatic parsing methods, due to the fact that it is definitely
not a Context-Free language:

– it has a rich morphology and agreement rules, governed by (classical) features
like Number, Person, Gender, Case, Time, Voice and Tense.

– it displays a close approximation to Free Word Order, in that nearly all
constituents of a phrase can be permuted without affecting the meaning of
the phrase.

In fact, the family of two-level grammars was conceived for the formal description
of such rich morphological and agreement rules (although mostly motivated by
the description of programming languages with their typing and identification
rules, rather than natural languages).

In this note, we shall make use of AGFL [Koster, 1991], which is a member
of the family of two-level grammars.

1.3 About AGFL

Affix Grammars over a Finite Lattice (AGFL) are a form of two-level grammars
in which the features take on as values any subset of a given finite set. The typical
examples of such features are completely classical: an affix NUMBER distinguishing
between singular and plural, and another affix PERSON distinguishing between
the first, second and third person may be defined in AGFL by the affix rules

NUMBER :: sing | plur.
PERSON :: first | secnd | third.

50 C.H.A. Koster

An affix may take on a set-value (any non-empty subset of its domain) rather
than a specific single value, indicating partial knowledge, e.g. PERSON = {first
| third} indicates the knowledge that the Person-feature does not have the
value second.

Affixes are used as parameters to the nonterminal-rules of the grammar to
indicate agreement, e.g.

sentence:
subject(NUMBER,PERSON), verb(NUMBER,PERSON), object.

where the consistent substitution rule ensures that different occurrences of the
same affix must have the same value (enforcing agreement in Person and Number
between subject and verb). The notation of AGFL should be similar enough to
prolog with dcg’s (which is indeed a related formalism) to allow a computer
linguist to comprehend the following examples without further explanation.

An AGFL grammar describes the constituency structure of a language, with
the commas in a syntax rule indicating sequential order and the semicolons indi-
cating alteration. However, there is also a proviso for Free Word Order (FWO):
members separated by ampersands my occur in any order. The development of
a grammar for Latin provided a nice opportunity to exercise (and debug) this
facility, which is intended for the compact description of FWO languages.

AGFL also allows a rule to describe a (compositional) transduction: every
alternative may indicate how its translation is to be composed out of the trans-
lation of its members (where a terminal symbol is translated to itself). We’ll use
this transduction instead of parse trees to show the results of parsing, but also
use it to construct our lexicon.

2 Constructing a Latin Lexicon

Although some lists of Latin words are freely available on the internet, there
is no machine-readable lexicon to be found, and we had to develop one from
scratch.

In principle, the word(forms) of a language together with their parts of speech
(POS) may simply be enumerated in the grammar by rules like

LEXV(ind,prm,sg,perfct,act): "amavi".

but there would be very many of such rules, and the efficiency of recognizing the
enumerated wordforms would be terrible. A more principled approach would be
to enumerate a list of stems and lists of infixes and suffixes according to their
conjugation, combining them by rules like

VERB(ind,prm,sg,perfct,act):
V_STEM(CONJ,act),
V_INFIX(CONJ,perfct),
V_SUFFIX(perfct,prm,sg,act).

Constructing a Parser for Latin 51

It is quite possible to enumerate the stems and fixes in the lexicon, so that they
do not clotter up the grammar and are recognized by means of lexicon lookup
rather than by exhaustive trial. Lexicon entries (in the notation of AGFL) look
like

"ama-" V_STEM(a_conj,act)
"-v-" V_INFIX(a_conj,perfct)
"-i" V_SUFFIX(perfct,prm,sg,act)

While this approach is feasible, it takes a lot of effort describing the morphology
of Latin in great detail (copying all this wisdom from a grammar1). Especially
the irregular or partly regular words will lead to many fine distinctions. It there-
fore makes sense to generate those irregular forms once-and-for-all and put the
complete wordforms into the lexicon:

"sum" TOBE(ind,prm,sg,praes,act)
"es" TOBE(ind,sec,sg,praes,act)
"est" TOBE(ind,trt,sg,praes,act)
"sumus" TOBE(ind,prm,pl,praes,act)
"estis" TOBE(ind,sec,pl,praes,act)
"sunt" TOBE(ind,trt,pl,praes,act)

However this idea points to another approach which is more uniform and simple:
to generate also all regular wordforms once-and-for-all and put them into the
lexicon. Rather than recognizing a wordform from its parts the parser will then
recognize a wordform as a whole, by means of whole-word lexicon lookup. A
generative solution, rather than an analytic one.

An objection to this approach may be seen in its efficiency – since very many
wordforms may come form one stem, we would have a very large lexicon. Indeed a
simple verb like contestare will generate 168 wordforms, including the declinated
forms of participles and even some adverbs. The lexicon system of AGFL (using
compacted trie structures) is however highly efficient, both in time (faster than
parsing the parts) and space (the lexicon takes about the same space as the list
of all words contained in it), so that the efficiency is actually better than in the
previous solution.

Another objection might be the severe overgeneration expected from putting
all forms in the lexicon, without verifying whether they are attested in any text.
However, the same objection applies to the corresponding analytical approach
which would recognise precisely the same wordforms. Word forms which do not
“exist” will not be used, it is as simple as that. But it should be noted that, in
order to reach sufficient coverage of the lexicon in spite of limited effort, certain
rules will have to be included in the grammar in order to “guess” the POS
of out-of-vocabulary words; thus the overgeneration can be seen as a positive
contribution to robustness! Anyway, the overgeneration can if needed be avoided
by “filtering” the lexicon through a wordlist obtained from a large corpus.

This then is the approach we have taken: to generate the lexicon for the large
open classes (noun, verb, adjective and adverb) from a very classical resource:

52 C.H.A. Koster

word lists and stem times, as contained in any standard grammar1C, with a
separate treatment for irregular words (that can be generated in the same way,
correcting the irregularities by hand).

2.1 Metarules for the Lexicon

The metarules defining the affixes used in the lexicon with their domains are the
following:

CASUS:: nom | voc | gen | dat | acc | abl | loc.

The six cases of Latin.

NUM:: sg | pl.
GENUS:: fem | masc | ntr.
PERS:: prm | sec | trt.

Now come the affixes detailing the POS of verbs:

MODUS:: ind | con | imp | inf | part | pperf | gerund.
TEMPUS:: praes | imprf | futur | perfct | pqperf | futex.
VGENUS:: act | pas.

The following affix pertains to adjectives and adverbs, which are also generated
from verbs:

GRADUS:: pos | comp | super.

2.2 Nouns

The noun entries are generated from a list of entries, one per line, for different
declinations, like:

a poeta masc
a plaga fem
b poculum
b populus
c portio portionis fem
c plebs plebis masc
e facies masc
i aer aeris masc
ie hostis hostis masc

From these list entries, lexicon entries are generated of type

LEXS(NUM,GENUS,CASUS)

by means of a grammar describing the transduction from a list entry to all
corresponding lexicon entries. The following rule for the a-declination is typical:

Constructing a Parser for Latin 53

declinatio prima:
"a", radix, "a", ",genus." /
"\"",radix,"a\"\tLEXS(sg,",genus,",nom|voc|abl)\n",
"\"",radix,"ae\"\tLEXS(sg,",genus,",gen|dat)\n",
"\"",radix,"am\"\tLEXS(sg,",genus,",acc)\n",
"\"",radix,"ae\"\tLEXS(pl,",genus,",nom|voc)\n",
"\"",radix,"arum\"\tLEXS(pl,",genus,",gen)\n",
"\"",radix,"is\"\tLEXS(pl,",genus,",dat|abl)\n",
"\"",radix,"as\"\tLEXS(pl,",genus,",acc)\n".

genus: "masc"; "fem"; "ntr".

radix:$MATCH(".*-").

Notice that the root of the word is matched by a Regular Expression. For the
word puella (feminine) the transducer generates

"puella" LEXS(sg,fem,nom|voc|abl)
"puellae" LEXS(sg,fem,gen|dat)
"puellam" LEXS(sg,fem,acc)
"puellae" LEXS(pl,fem,nom|voc)
"puellarum" LEXS(pl,fem,gen)
"puellis" LEXS(pl,fem,dat|abl)
"puellas" LEXS(pl,fem,acc)

The list of regular nouns is 1429 entries long, generating 36798 lexicon entries,
which are extended with 28 irregular forms.

2.3 Other Categories

Verbs also come in different conjugations; as in traditional grammars, a verb is
specified by giving its infinitive, perfectum and participium perfectum or futu-
rum, of which the latter two may be missing (dash):

a obscurare obscuravi obscuratus
c abhorrere abhorrui -
e abstinere abstinui abstentus
io abicere abieci abiectus
i adoriri - adoriturus

Note that deponentia are indicated by a passive infinitive. The output of the
transduction process is a list of lexicon entries of the following types:

LEXV(MODUS,PERS,NUM,TEMPUS,VGENUS)
LEXV(inf,TEMPUS,VGENUS)
LEXV(MODUS,NUM,GENUS,CASUS)
LEXA(GRADUS,NUM,GENUS,CASUS),
LEXX(GRADUS)

54 C.H.A. Koster

(V stands for verb, A for adjective and X for adverb). Some examples of each
(for the verb amare):

"amo" LEXV(ind,prm,sg,praes,act)
"amabatis" LEXV(ind,sec,pl,imprf,act)
"amasti" LEXV(ind,sec,sg,perfct,act)
"amare" LEXV(inf,praes,act)
"amari" LEXV(inf,praes,pas)
"amando" LEXV(gerund,sg,masc|ntr,dat|abl)
"amantes" LEXV(part,pl,masc|fem,nom|voc|acc)
"amaturi" LEXA(pos,pl,masc,nom|voc)
"amabilis" LEXA(pos,sg,GENUS,nom|gen|voc)
"amabiliter" LEXX(pos)
"amatius" LEXX(comp)

Verbs are much more productive than nouns, and there are about as many verbs
as nouns, so that it is no wonder that they generate most of the lexicon entries:
The 1242 entries in the verb list generate 179404 lexicon entries, to which 4339
irregular verb forms are added.

Finally, there is a list of adjectives of three different declinations: The 624
different adjective entries generate a total of 71718 lexicon entries, to which 122
irregular forms have been added by hand.

The remaining (closed) lexical categories include numerals, adverbia and vas-
rious kinds of pronomina. Of these lexical types there are a total of 1606 lexicon
entries.

2.4 Achieving Coverage

The first word lists were created from the lists and examples given in the two
textbooks. Then a grammar sweep.gra was developed for analysing the coverage
of the lexicon. It transduces every word of the input text to a copy marked with
a rough lexical category, according to the schema:

sententia:
known word / marker, known word;
looks like name / !
any word / "?:", any word.

using the following markers for known words:

V: verb form, form of esse
N: noun form
A: adjective
Q: quantity
X: adverbium
P: pre- or postposition
D: determiner, demonstrative or pronoun

Constructing a Parser for Latin 55

Unknown words are marked by ?:, potential names (unknown words starting
with a capital letter) are skipped.

A text corpus (St. Augustine’s Confessiones) was cut into words and swept.
A frequency list was built from the marked words, using standard UNIX utilities

cat corpus| tr -cs "[:alpha:]" "[\n*]"| sweep -tP1| grep ’:’ >words
sort +1 words | uniq -c | sort -nr > freq

Then some days were spent analysing the unrecognized wordforms, from the
highest frequency downwards, then extending the word lists and bootstrapping,
until I got bored. At that point the lexical coverage (number of known words in
the corpus divided by the total number of words) was 92%. Applying the same
lexicon to the Vulgate translation of the Psalms gave a coverage of 87%.

It is striking to see the low level of lexical ambiguity of Latin compared to
English, once a few cases of systematic overlap (e.g. participia and adjectiva)
are resolved. The general strategy is to remove all nouns and adjectives from the
word lists that can be generated from a verb.

3 Constructing the Grammar

We shall describe the grammar of Latin in a Bottom-Up manner, which was also
roughly the order in which it was constructed and tested.

The lexical interface on which it rests has already been described in the
previous section. The basic approach is

– describe the noun phrase as a noun generalized by projection, and similarly
the adjective phrase as a generalized adjective and the verb phrase as a
generalized verb form (which is optional, implying TOBE) together with its
complements

– for every composed phrase enumerate the possible orders of its constituents
– then describe the way in which sentences can be glued together into longer

sentences.

This is a general strategy which works reasonably well for many languages; but
of course it encounters many problems and complications.

3.1 The NP

We describe the derivation of the Noun Phrase syntax in some detail. The noun
phrase has as its kernel an N (standing for nomen), which may have several
realizations, among which a lexical noun is preferred. An adjective phrase (AP)
or a quantity is also accepted.

N(NUM,GENUS,CASUS):
LEXS(NUM,GENUS,CASUS);
$PENALTY,robust nomen(NUM,GENUS,CASUS);
$PENALTY,AP(pos,NUM,GENUS,CASUS);
$PENALTY(2),LEXQ(NUM,GENUS,CASUS).

56 C.H.A. Koster

In order to achieve some lexical robustness, there are rules for guessing the type
of out-of-vocabulary words. These are only invoked for words which have no
lexicon entry.

Nbar(CASUS),Nbar(NUM,GENUS,CASUS):
N(NUM,GENUS,CASUS);
$PENALTY, PRDET(NUM,GENUS,CASUS);
PRPER(PERS,NUM,CASUS);
$PENALTY, PRDEM(NUM,GENUS,CASUS);
AP(pos,NUM,GENUS,CASUS), Nbar(NUM,GENUS,CASUS);
PRPOS(NUM,GENUS,CASUS), Nbar(NUM,GENUS,CASUS);
N(NUM,GENUS,CASUS), AP(pos,NUM,GENUS,CASUS);
N(NUM,GENUS,CASUS), PRPOS(NUM,GENUS,CASUS).

Besides an N also certain pronouns are accepted, and an AP or possessive pro-
noun is admitted as a modifier. Note that these modifiers may precede or follow
the N. The description in the last four lines is not as symmetric and general as
we would like, it would be better to have

Nbar(NUM,GENUS,CASUS), AP(pos,NUM,GENUS,CASUS);
Nbar(NUM,GENUS,CASUS), PRPOS(NUM,GENUS,CASUS).

but the AGFL system presently does not allow left-recursion.
At this level also the clitics -que and -ve are introduced:

NBAR(pl,GENUS,CASUS):
N(NUM,GENUS,CASUS), N(NUM1,GENUS,CASUS),clitic.

One level higher, the numerals are introduced, as well as the relative sentence,
the genitive adject and explicative interjections:

Nbarbar(CASUS), Nbarbar(NUM,GENUS,CASUS):
numerus(NUM,GENUS,CASUS),Nbar(NUM,GENUS,CASUS);
Nbar(NUM,GENUS,CASUS),explicatio(CASUS);
Nbar(NUM,GENUS,CASUS),[Nbar(gen)];
Nbar(NUM,GENUS,CASUS),[comma],relsent(NUM,GENUS,CASUS).

The latter two are both exemplified in the sentence laudare te vult homo, aliqua
portio creaturae tuae.

explicatio(CASUS):
$PENALTY,[comma],NP(CASUS),[comma].

The numerals are either spelled as words from the lexicon or they are in the
form of roman numerals in capital letters:

numerus(NUM,GENUS,CASUS):
LEXQ(NUM,GENUS,CASUS);
$SKIP("[MDCLXVI][MDCLXVI]*").

Constructing a Parser for Latin 57

Finally, the NP may be composed of one or more Nbarbars. The formulation
given here is defective, because NUM and GENUS should be influenced by the
number and gender of elements.

NP(CASUS), NP(NUM,GENUS,CASUS):
Nbarbar(NUM,GENUS,CASUS);
Nbarbar(NUM,GENUS,CASUS),conj(co),NP(NUM,GENUS,CASUS).

The adjective phrase, again, is a generalized adjective. A participium or deter-
minative pronoun may also serve as an adjective.

An adverb may precede as well as follow an adjective, but the former is
preferred, to prevent spurious ambiguity of an adverb between two adjectives,
and also because that feels intuitively right.

3.2 Verb Phrases

The verbal part of a sentence is very simple, since latin has no separate auxiliary
verbs.

V(MODUS,PERS,NUM,VGENUS):
LEXV(MODUS,PERS,NUM,TEMPUS,VGENUS);
X,V(MODUS,PERS,NUM,VGENUS).

Some other verbal constructions:

tobe(MODUS,PERS,NUM,TEMPUS,VGENUS):
[adject], TOBE(MODUS,PERS,NUM,TEMPUS,VGENUS).

infinitivus(VGENUS):
LEXV(inf,TEMPUS,VGENUS), [object],[adject],
(conj(co),LEXV(inf,TEMPUS,VGENUS);
LEXV(inf,TEMPUS,VGENUS), clitic;).

participium(NUM,GENUS,CASUS):
[X],LEXV(part|pperf|gerund,NUM,GENUS,CASUS), [object].

Notice that no subcategorization information is available for the verbs, which
causes needless overgeneration.

3.3 Sentence Structure

We adopt a very simple discourse structure: a sentence is composed of simple
sentences glued together by certain separators. Three kinds of simple sentences
are distinguished, statements, questions and commands, of which the latter are
still poorly developed.

We distinguish between statements with an explicit main verb, and those
with an (explicit or implicit) form of esse and a predicate.

58 C.H.A. Koster

statement:
SVOC phrase;
SxP phrase.

By an SVOC phrase we mean a phrase maximally containing Subject, Verb,
Object and Complements in some order, the main verb being obligatory. This
can be expressed in AGFL using the FWO operator as

[subject(PERS,NUM)] & V(MODUS,PERS,NUM,act) & [object] & [adject]

From this, topicalized versions (e.g. preposing an adjective from the subject or
object) can be constructed.

The predicative sentences have many optional elements, including a predicate,
but a form of esse must be present:

[subject(PERS,NUM,GENUS)]&TOBE(MODUS,PERS,NUM,TEMPUS,act)&
[predicate(PERS,NUM,GENUS,nom)]&[adject]

The analysis of the discourse structure has to be refined on the basis of corpus
study. The grammar is still incomplete, the wordlist contain errors and lacunae.
It is hoped that some latin scholars will nevertheless find a use for the parser,
and will extend and improve this work.

4 Preliminary Results

The parser generated from the grammar and lexicon described in the previous
sections was applied to two corpora

– the Confessiones of St. Augustine (downloaded from
[Augustinus Confessiones]), beautiful and well-polished latin

– Julius Caesar’s accounts of the Gallic, Hispanic, African and Alexandrian
wars, which consist of more rough-hewn political/military prose.

The lexicon was derived from the first corpus alone.

4.1 Coverage

In order to measure the coverage of the parser (number of words covered by the
preferred analysis, divided by the total number of words in the text) we put
at the root of the grammar a simple transduction, accepting either a sentence,
which was then enclosed between square brackets, or an NP, which was enclosed
between round brackets. Any word not covered by these was looked up in the
lexicon. If it occurred in the lexicon with any category it was marked as SKIPped,
and otherwise as UNKNown.

In the following table, we indicate the number of words in the text covered by
the preferred analysis, the words from the lexicon not covered by the analysis,
and the words not occurring in the lexicon.

corpus number of words covered skipped unknown
Augustinus 78784 65264 (82.8%) 8763 (11.1%) 4757 (6.0%)
Caesar 49961 37634 (75.3%) 7990 (16.0%) 4337 (8.7%)

Constructing a Parser for Latin 59

4.2 Speed

We also measured the CPU time needed to obtain the preferred analysis for each
segment on a 700Mhz INTEL PC on the two corpora.

corpus total time words parsed / second
Augustinus 3 min 51 sec 341
Caesar 2 min 1 sec 413

Since processors four times as fast are easy to find, this may also well be the
fastest Latin parser ever constructed! Most of the time is actually spent in lexi-
calization (lexicon lookup, robust recognition of proper names).

5 Conclusions

The Latin grammar and lexicon were developed by one person in a few lost
weeks between Christmas and the Spring term. This was of course only possible
by the availability of good tools - the AGFL formalism, a specialized parser
generator for Natural Language parsing, UNIX tools for text transformations -
and a good schooling in classical latin. Of course quite a lot of improvement and
error correction is still needed.

However, the generative technique employed to produce the lexicon is suitable
for any language with a complicated morphosyntactic structure. The trie-based
lexicon system of AGFL has no problems with millions of wordforms, so that
even highly inflected languages lend themselves to generative lexicon production
and maintenance. The AGFL formalism, which was developed for describing
English turned out to be very suitable for the compact description of Latin,
including its free-word-order aspects.

The parser, latin grammar and lexicon described here are freely available
from the [AGFL website].

References

[Koster, 1991] Cornelis H.A. Koster, Affix Grammars for Natural Languages. In: H. Al-
blas and B. Melichar (Eds.), Attribute Grammars, applications and systems. SLNCS
545, Heidelberg, 1991, pag. 469-484.

[linguistics textbook] http://www.u-grenoble3.fr/lebarbe/Linguistic Lexicon/
[Redde Rationem] A.G. de Man et al (1979), redde rationem - recapulationes, Wolters

- Noordhoff.
[Latijnse Leergang] S.F.G. Rotteveel Mansfeld en R. Waleson (1970), /em Latijnse

leergang, tweede druk, Wolters - Noordhoff.
[Augustinus Confessiones] http://www.thelatinlibrary.com/august.html
[another latin parser] http://www.levity.com/alchemy/latin/latintrans.html
[AGFL website] http:www.cs.kun.nl/agfl

	Introduction
	About Grammars
	About Latin
	About AGFL

	Constructing a Latin Lexicon
	Metarules for the Lexicon
	Nouns
	Other Categories
	Achieving Coverage

	Constructing the Grammar
	The NP
	Verb Phrases
	Sentence Structure

	Preliminary Results
	Coverage
	Speed

	Conclusions

