
Customisable Semantic Analysis of Texts

Vivi Nastase and Stan Szpakowicz

School of Information Technology and Engineering,
University of Ottawa, Ottawa, Ontario, Canada

{vnastase, szpak}@site.uottawa.ca

Abstract. Our customisable semantic analysis system implements a
form of knowledge acquisition. It automatically extracts syntactic units
from a text and semi-automatically assigns semantic information to pairs
of units. The user can select the type of units of interest and the list of
semantic relations to be assigned. The system examines parse trees to
decide if there is interaction between concepts that underlie syntactic
units. Memory-based learning proposes the most likely semantic relation
for each new pair of syntactic units that may be semantically linked. We
experiment with several configurations, varying the syntactic analyzer
and the list of semantic relations.

1 Introduction

Deep processing of natural language data often requires suitably annotated data.
Recognition of semantic relations is such a task that benefits from the availabil-
ity of annotated texts from which we can learn to analyze new data. Manual
semantic annotation is a time-consuming activity, and it is seldom possible to
capitalize on the annotation effort of other researchers. This is because they
work with a different set of semantic phenomena, for example a different list
of relations, or because they consider different types of texts or different do-
mains. We present a customizable, domain-independent tool for certain style of
semantic analysis. It relies on syntactic information usually supplied by parsing.
When the tool achieves its full functionality, its user will be able to impose her
own list of semantic relations, select the type of relations she is interested in
(between eventsm between an event and an entity, and so on), and plug in her
own parser.

Knowledge acquisition from texts spans the range between fully automatic
and fully user-driven systems. Automation relies on manually built resources
and on statistical or machine-learning methods that extract classifiers from an-
notated data. The shortcomings of such methods include high cost of annota-
tion and low accuracy of such classifiers on new data. User-driven systems, with
friendly interfaces that domain experts use to identify knowledge in texts, allow
much higher accuracy (insofar as humans agree on semantic relations). On the
other hand, they require time to train people with minimal AI or NLP back-
ground, and to encode knowledge.

A. Gelbukh (Ed.): CICLing 2005, LNCS 3406, pp. 312–323, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Customisable Semantic Analysis of Texts 313

Our approach falls between these extremes. We rely on parsers for the gram-
matical structure of sentences, in which we identify concepts and pair up those
that may interact. The user will associate the types of concepts of interest with
syntactic units that the parser’s grammar recognizes. For example, if entities are
sought, the user will choose nouns and noun-phrases.

Our system extracts pairs of syntactic units from the text, which express
concepts that according to syntactic indicators are semantically linked. Each
pair is assigned a semantic relation that describes their interaction in the context
in which they appear. While there is a default list of 47 semantic relations, the
actual list may be user-defined, to acknowledge the fact that no set of semantic
relations is appropriate for all NLP tasks. Semantic relations are assigned to
pairs semi-automatically. The user can accept a unique suggestion made by the
system, choose from a (usually short) list, enter the correct answer manually or
reject the pair.

Barker et al. [1] presented and tested a similar idea. One of our innovations
is to treat the input text uniformly, without separating syntactic levels (noun
phrase, simple clause, compound clause, paragraph and so on). This emphasizes
the fact that the same concept can surface in different syntactic forms. We let
the user decide what structures are interesting, and focus on the concepts behind
these structures. We use syntactic clues to decide which structures interact and
to label the interaction. The user may specify the list of semantic relations that
best fit the domain and the application.

This paper is organized as follows. Section 2 presents related work in se-
mantic analysis and knowledge acquisition, Section 3 describes the semantic
analysis process used by our system, the experiments performed are presented
in Section 4, and their results are discussed in Section 5; Section 6 assesses the
system’s customisability, and the conclusions are presented in Section 7.

2 Related Work

One style of semantic analysis for knowledge acquisition uses predefined tem-
plates, filled with information from processed texts [2]. In other systems lexical
resources are specifically tailored to meet the requirements of the domain [3] or
of the system [4]. Such systems extract information from some types of syntactic
units: clauses [5], [6], [7] and noun-phrases [7], [8]. Lists of semantic relations are
designed to capture salient information from the domain.

An interesting approach has been tested in the Rapid Knowledge Formation
project. The goal was to develop a system for domain experts to build complex
knowledge bases by combining components: events, entities and modifiers [9]. The
system’s interface facilitates the expert’s task of creating and manipulating struc-
tures representing domain concepts. Descriptions of relations between components
come from a relation dictionary; it includes interaction between two events (e.g.,
causality), an event and the entities involved (e.g., agent), an entity and an event
(e.g., capability), two entities (e.g., part), or an event or entity and their properties
(e.g., duration or size) [10]. The relations cover three syntactic levels [11].

314 V. Nastase and S. Szpakowicz

In purely statistical approaches that traverse corpora to establish connec-
tions between concepts based on word collocations, the incidence of errors is not
negligible [12], [13], [14].

In our system, user feedback helps produce accurate results, and we will
extract knowledge tailored to the user’s interests. The knowledge acquisition
systems that we have considered suggest that in some domains relations be-
tween entities are considered more important, e.g., in medicine [3]. In others it is
important to see how entities are related to an event, e.g., in legal texts [2]. We
are building a customisable system that will focus on the structures of interest
to a particular domain. We also experiment with two different lists of relations,
to test the flexibility of the semantic analysis module. The goal is to allow the
user to plug in a list of relations that describes the input text best.

3 Semantic Analysis

To get the grammatical structure of the input sentence we need a parser, prefer-
ably one that has good coverage and produces detailed syntactic information.
The parse trees give us syntactic units, from which we choose those of interest
to the user, based on the information he provides (explained in detail in Sec-
tion 3.1). To pair units up we use simple structural information: if a unit is
directly embedded in another unit, we assume a subordinate relation between
the two; if the two units are coordinate, we assume a coordinate relation. These
assumptions are safe if the parse is correct: a modifier is subordinate to its head
noun, an argument to its head verb, and a clause perhaps to the main clause in
the sentence. If we conclude that two units should interact, we seek an appro-
priate semantic relation to describe this interaction.

3.1 Extracting Syntactic Units

The user can specify a list of syntactic structures of interest among those rec-
ognized by the parser’s grammar. It will contain the relevant non-terminals. For
example, if the user is interested in entities and their attributes, the list will con-
tain non-terminals that describe nouns, noun phrases and their modifiers. If the
user is interested in events and the way they interact, the list will contain non-
terminals that describe clauses in the grammar. To simplify the interaction, we
let the user choose the corresponding syntactic level (noun phrase, intra-clause
or clause level). To allow finer-grained distinctions we will construct a tool that
helps the user make a detailed unit selection.

Each syntactic unit will be represented by the uninflected form of its head
word. For each unit we also extract the head word’s part of speech, the syn-
tactic role it plays in the sentence (subject, object, noun modifier, etc.), the
indicator of the structure if one exists (the preposition for a prepositional com-
plement, the subordinator for a subordinate clause, etc.), and additional infor-
mation if available (tense, number, etc.).

Customisable Semantic Analysis of Texts 315

3.2 Pairing Syntactic Units

After finding all syntactic structures of interest, we traverse each structure to
extract pairs that are connected by a syntactic relation (modifier, argument,
subordinate clause). This means testing whether one structure is embedded in
another, or whether they are at the same level, linked by a connective.

3.3 Semi- utomatic Assignment of Semantic Relations to Pairs of
Syntactic Units

Automatically Finding Suggestions for Semantic Relations. Our system
starts with a minimum of manually encoded knowledge, and accumulates infor-
mation as it processes texts. This design principle was adopted from TANKA
[1]. The manually precoded knowledge consists of a dictionary of markers (sub-
ordinators, coordinators, prepositions). These markers are closed-class words, so
not much effort is required to build such a resource. The system has the option
to run without these resources, in which case it will take longer to begin making
good predictions.

We apply memory-based learning, so that in every semantic relation assign-
ment the system uses every previously processed example. This allows us to find
the best match [15].

Every stored example is a tuple with the structure:

(wordx1, attrx1, wordx2, attrx2, relation)

where wordxi is the head-word in structure xi, and attrxi is a vector containing
the structure’s attributes listed in Section 3.1:

attrx = (POSwordx, SyntRolex, Indicx, OtherInfo)

Figure 1 presents the distance metric between two examples, represented as
tuples.

The first option in our metric applies when a pair containing the same words
as the current pair has already been tagged. The same two words may be con-
nected by different semantic relations, if their attributes differ.
(1) When you look at a cloud in the sky ...
(2) Look at the sky above you.

In sentence (1) you is the subject, while in sentence (2) it is the prepositional
complement. The two (look,you) pairs should be assigned different relations
(Agent in (1) and Direction in (2)).

If we constrain the system to match only pairs of structures with the same
attributes, generalization to pairs from different syntactic levels will not occur.
The pairs (protest,student) from the sentences:
(3) The students protested against tuition fee increase.
(4) student protest against tuition fee increase
should both be assigned the Agent relation, even though their attributes are
obviously different.

a

316 V. Nastase and S. Szpakowicz

Pi = [wi1, ai1, wi2, ai2, Rel]

dist(P1, P2) =

{
0 : w11 = w21, w12 = w22
0 :min(d(net(w11), net(w21))) = 0

d(P1, P2): otherwise

net(w) = {[w1, w2]|[w1, w2] extracted from sentence S, w ∈ {w1, w2}}
d(net(w1), net(w2)) =

∑
k

d(P1k, P2k); Pik ∈ net(wi)
d([w11, a11, w12, a12, Rel], [w21, a21, w22, a22, Rel]) =

∑
k

d(a12k, a22k);
(aik is an element in vector attri associated withwi)

d(ax, ay) =
{

0:ax = ay;
1:ax �= ay

Fig. 1. Distance metric used for memory-based learning

The first option in the metric shows that we choose to allow the system to
match tuples that do not have the same attributes, in order to let it generalize.
The downside is that occasionally the metric will give inaccurate predictions.

When the words in two tuples P1 and P2 differ, we consider the distance
between P1 and P2 to be 0 if the networks centered on the heads of P1 and P2
match. This idea was adopted from Delisle et al. [16] who applied it to verbs.
We extend it to nouns.

A network centered on w consists of:

– a central vertex which represents w. It also contains syntactic and morpho-
logical information about w,

– a set of vertices connected with the central one, which represent the syntac-
tic units from a sentence S and their syntactic attributes, with which w is
connected through syntactic relation. w may be either the main element in
relation with these units, or the modifier. For the sentence
(5) Weathermen watch the clouds day and night.
the system builds the following network centered on the verb:

[watch, v, svo,
[weatherman,(sent,nil),(subj,nil),_],
[cloud,(sent, nil),(compl, nil),_],
[day_and_night,(sent,nil),(compl,nil),_]]

The underscore replaces the semantic relation on that particular edge, which
has not been yet assigned.

d(net(w1), net(w2)) shows how we compute the distance between two net-
works. It is the sum of distances between pairs of edges. Two edges match if the
attributes of the word in vertices have the same syntactic role, and the same
indicators. When we match edges, the actual words in the corresponding ver-
tices do not matter, only their attributes. The best match will give the minimum
distance. We only attempt to match networks centered on words with the same
part of speech.

Customisable Semantic Analysis of Texts 317

After processing each example, we will store the networks of tuples centered
on both words in the example.

To show how the networks are matched, let us consider sentence (5) from
above, and the network centered on the verb watch. The system will extract,
from previously stored networks, those centered around verbs1. If sentence (6):
(6) Air pilots know that clouds can bring rain, hail, sleet and snow.
were processed before sentence (5), the system would find the following matching
pattern:

[know, v, svo,
[pilot,(sent,nil),(subj,nil),AGENT],
[bring,(sent,nil),(compl,nil),OBJECT]]

The two networks match, because the centers of the networks match - the
words have the same part of speech, and the same subcategorization pattern,
and the edges match because the attributes of the words in the vertices match.

Because the edges with vertices (watch,weatherman) and (know,pilot)
match, the Agent relation for the pair (know,pilot) is proposed as a possible
relation for (watch,weatherman).

In the case where no matching network is found, the distance between two
examples is computed as the distance between the modifiers. The key infor-
mation is in particular the syntactic role and the indicator (if it exists). Our
system works with a dictionary of indicators (prepositions, subordinators, co-
ordinators), which are semantic relation markers. One indicator usually sig-
nals more than one relation (e.g. since may indicate a causal or a temporal
relation).

After processing each sentence, the networks of pairs around head words are
compiled and stored in memory for use with new examples.

4 Experiments

We need to compare our system with other knowledge acquisition systems avail-
able. There are no measures of time or precision that show how an automatic or
user-based system performs.

The system that is most similar to ours is the one that we have started
from, TANKA [11]. In order to compare the systems we will use the same in-
put data – a text on meteorological phenomena [17] – the same syntactic anal-
yser and the same evaluation measures. An exact comparison is not possible,
since the two systems have different working paradigms. We will discuss this in
Section 5.

After running the system in a set-up that allows us to compare it with
TANKA, we run three more experiments, designed to evaluate its performance
with a different list of semantic relations, and with a different parser.

1 If more detailed information is available, the system will choose only networks asso-
ciated with verbs that have the same subcategorisation structure (svo,svoc, etc.).

318 V. Nastase and S. Szpakowicz

4.1 Parsers

We compare the performance of the system when it uses different syntactic
analysers. We first use DIPETT [18], a comprehensive English parser. After
using the results obtained to compare the system with TANKA, we plug in
different parsers.

We have looked at the Link Grammar Parser [19] and the Xerox Incremental
Parser (XIP) [20]. While the Link Grammar Parser is quite robust – it produces
a parse tree for every input – its parse trees are too coarse-grained for the type
of analysis that our system does. For example, for the sentence:
(7) These tiny clouds are real clouds
LINK produces the following output:
[S But [NP these tiny clouds NP] [VP are [NP real clouds NP] VP] . S]

We cannot extract modifier-noun relations from this parse tree.
XIP on the other hand produces relatively detailed parse trees. As a bonus

for us, it also has the option to extract dependencies, which reduces our task of
processing the parse tree looking for pairs. For the sentence
(8) Clouds tell the story.
the parser extracts the following information (apart from the parse tree):
DETD(story,the)
VDOMAIN(tell,tell)
VDOMAIN(cloud,cloud)
OBJ POST(tell,story)
MAIN(cloud)
HEAD(story,the story)

Since XIP gives as a result pairs of syntactic units, we adjust the system to
work with this output, without processing the parse tree.

The original TANKA system analysed three syntactic levels: clause, intra-
clause and noun-phrase. For a better comparison with the new system, the list
of syntactic units will have to contain structures from all these levels. The new
system does not distinguish syntactic levels, but treats all structures the user
wants uniformly. Table 1 shows the list of syntactic units that we ask the system
to extract. These non-terminals come from DIPETT’s code.

In Table 2 we show the list of non-terminals that describe the possible roles
that each of the structures plays in a sentence.

XIP uses a much simpler grammar than DIPETT. We use the dependencies
it detects to extract the data. The dependencies of interest are presented in
Table 3.

The dependency relations also give us information about the syntactic roles
that the words play in a sentence. They are shown in Table 4.

2 The asterisk can be the empty string, or a string containing other dependency infor-
mation, for example PRE or POST (it refers to the position of the modifier relative
to the head), PROGRESS (progressive verb), etc.

Customisable Semantic Analysis of Texts 319

Table 1. List of syntactic units
from DIPETT

adj adjectives
n, proper noun nouns (common,

proper)
advs, adv clause,
simple adv clause,
pp adv

adverbial modifiers
(simple adverbs,
adverbial clauses,
adverbial phrases)

entity covers anything
that can be con-
ceived of as an
entity

predicate head of a verb
phrase

statement clause
simple sentence,
complex sentence

sentence (simple or
compound)

subord clauses,
head main clause,
next main clause

types of clauses
(subordinate, main
or coordinate)

Table 2. Possible syntactic roles
in DIPETT

subj subject
complement complement
attrs attributes
adverbial adverbial
np postmodifiers
pre modif
post modif

modifiers of the
noun phrase

s qualifier sentence qualifier
rel clause
single main clause
head main clause
next main clause

type of clause

initial final
medial

type of subordi-
nate clause

ing clause
genitive ing clause
to infinitive clause

type of relative
clause

Table 3. List of dependency relations
from XIP

MAIN main element in the sentence
HEAD head of a phrase
VDOMAIN*2 head verb in a clause

Table 4. List of dependency rela-
tions that indicate syntactic roles
from XIP

NMOD* noun modifier
SUBJ* subject
OBJ* object
COMPL complement
VMOD* verb argument

4.2 Semantic Relations

The list of 47 semantic relations that we use combines three separate lists used
in [1], one for each syntactic level that TANKA analysed. The semantic relations
included are general, domain-independent. They are presented in [21].

Since the system is meant to be customisable, we experiment with plugging in
a different list. This list contains 6 relations causal, temporal, spatial, conjunctive,
participant, quality.

5 Results

The input text consisted of 513 sentences.
When DIPETT was plugged in, the experiment was performed by two judges

(to make the assignment of semantic relations more objective) in 5 sessions of
approximately 3 hours each. The overall time spent on semantic relation assign-
ment was 6 hours, 42 minutes and 52 seconds. We have used the results collected
from this run to automate the system when we changed the list of semantic re-
lations, and when we changed the parser to XIP. Because the alternative list of

320 V. Nastase and S. Szpakowicz

semantic relations we used is a generalised version of the original list, a simple
mapping allowed us to change the results collected and the marker dictionary file.

Neither DIPETT nor XIP produced a correct parse for every sentence. When
a complete parse (correct or incorrect) was not possible, DIPETT produced frag-
mentary parses. The semantic analyser extracted units even from tree fragments,
although sometimes the fragments were too small to let us find pairs. XIP pro-
duces a parse tree for each input sentence, although not always a correct one.

Since XIP and DIPETT did not always parse correctly the same sentences,
the pairs of concepts extracted by XIP were cross-referenced with the pairs
tagged semi-automatically when DIPETT was plugged in, and then manually
checked. Pairs obtained from XIP which were correctly identified were kept, even
if the parse was erroneous (wrong part of speech, wrong phrase, etc.).

In the experiment with DIPETT, the semantic analyser extracted a total of
2020 pairs, 555 of which were discarded by the user in the dialogue step. An
example of an erroneous pair comes from the sentence in example (9).
(9) Tiny clouds drift across like feathers on parade.
The semantic analyser produces the pair (drift,parade), because of an erroneous
parse tree, in which parade is parsed as a complement of drift, instead of a
post-modifier for feathers. The correct pairing (feather,parade) will be missing,
because it cannot be inferred from the parse tree.

XIP produced fewer correct parses than DIPETT. Its errors come mostly
from mistagging words with part-of-speech information. For example, clouds is
tagged mostly as a verb, even in structurally simple sentences. From the output
produced, we extracted 1153 pairs, 445 of which were discarded.

Table 5 shows a summary of the results obtained, for the two parsers and
the two lists of semantic relations (with 47 and 6 relations respectively), and
the statistics of user actions (accept, choose, supply) during the semi-automatic
memory-based semantic analysis step.

Table 5. Summary of results

Parser nr. of rels correct pairs accept choose supply
DIPETT 47 1465 30.7% (450) 27.3% (401) 41.9% (614)
DIPETT 6 1465 49%% (718) 24.6% (360) 26.5% (388)
XIP 47 708 27.5% (195) 20.3% (144) 52.1% (369)
XIP 6 708 37% (262) 21.1% (150) 41.8% (296)

The results in Table 5 and the plots in Figures 2(1) and 2(2) show how
the system behaves in 4 configurations: with two parsers (DIPETT and XIP),
and two lists of relations (47 and 6 respectively). When the system works with
the short list of relations it performs better for both parsers. Both lists make
the system perform better with DIPETT than with XIP. This may be due to
the amount of information that DIPETT provides, compared with XIP. Also,
the system runs faster with DIPETT, when information about verb subcatego-
rization allows it to filter out many networks before trying to match them. In

Customisable Semantic Analysis of Texts 321

1. User action results for
DIPETT, with 47 and 6 re-
lations

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 200 400 600 800 1000 1200 1400 1600

DIPETT / 47 : accept+choose
DIPETT / 47 : supply

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400 1600

DIPETT / 6 : accept+choose
DIPETT / 6 : supply

2. User action results for
XIP, with 47 and 6 rela-
tions

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 200 400 600 800 1000 1200 1400 1600

XIP / 47 : accept+choose
XIP / 47 : supply

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 200 400 600 800 1000 1200

XIP / 6 : accept+choose
XIP / 6 : supply

3. Comparison be-
tween case assignment
in TANKA and our system

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350 400 450

T
ot

al
 A

ct
io

ns

Clauses

a+c
supply

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600 700 800 900 1000

DIPETT / 47 / ic level : accept+choose
DIPETT / 47 / ic level : supply

Fig. 2. Comparison of results with two parsers, and with TANKA

each figure the x axis shows the number of examples analysed, and the y axis
shows the cummulative number of user actions (accept or choose versus supply).
The plots show that as more examples are analysed, the system makes better
suggestions.

For comparison of TANKA and our system, we present Figure 2(3). The first
graph shows the user action results for the intra-clause level over the course of the
experiment for the original TANKA system. Our system does not differentiate
between syntactic levels, but based on the structures corresponding to each pair
we can decide to which syntactic level it belongs. We have separated the results
obtained for pairs from the intra-clause level, and present them for comparison
in the second graph in Figure 2(3). The difference in the number of examples
tagged comes from the fact that TANKA analyses the entire argument structure
around the verb in one step, while our system tags each (argument,verb) pair
separately.

We observe from these results that the new system starts learning much
earlier. The original TANKA system processed half the input examples before
the combined results of the accept and choose user actions surpassed supply; the
new system obtains good results almost right away.

6 Evaluating the System’s Customisability

The system’s (Prolog) code is grouped in two modules: a module for extracting
syntactic units and producing pairs, and a module for semantic analysis.

322 V. Nastase and S. Szpakowicz

In order to allow the user to choose syntactic structures once a parser is
plugged in, no modifications are necessary. During processing, the system au-
tomatically assigns a level label to the pair (np for noun-modifier pairs, ic for
verb-arguments pairs, cl for pairs of clauses). The user can just set a parameter
to np, ic or cl to choose the level she is interested in. For a more fine-grained
selection, the user can access a detailed list of non-terminals used by the parser.
When we do not have access to the parser’s grammar, a list of nonterminals can
be extracted from the parse trees produced. A tool that performs this task is
part of future work.

Plugging in a new syntactic parser has various degrees of difficulty. If the
structure of the output it produces matches the one obtained with DIPETT, no
change is required in the code. Otherwise, the system must be provided with a
description of the grammar for the new parser. In the case of XIP, the parser itself
produces a list of dependencies, so the system was adjusted to bypass the tree
processing stage, and its rules for finding syntactic roles and extract indicators
were modified.

Plugging in a different list of semantic relations requires modifying one rule in
the semantic analysis module (the rule simply lists the possible semantic relations
to be assigned) and, optionally, modifying the dictionary containing 325 markers.
While the system will function without this dictionary, its performance will drop
since it needs either indicators or previously tagged examples to find semantic
relations. In our experiments, we have used a list of 6 relations that generalize
the original list of 47, so the dictionary change was automatic; we manually built
a hash table to indicate the mapping between the two lists.

7 Conclusions

Having a human judge supervise the task of semantic analysis produces accurate
results, but the time needed to spend on the task may be prohibitively long. Also,
the type of knowledge that one wants to extract from a text, and the semantic
relations to assign to it may vary. We propose a semi-automatic semantic analysis
system, customisable to the task at hand. It can use different syntactic analysers,
it will extract the syntactic units that the user is interested in, and will tag them
with the semantic labels that are relevant to the domain of the input text.

We have compared our system with a similar endeavour. The results show
that having a unified approach to analysing text leads to better results, in the
form of faster learning. The learning that the system performs is memory-based,
in which all examples previously analysed are used when processing a new one.

Part of future work is to deploy the system on the Web, so that it can be
used for semantic analysis with various configurations. We also aim to refine
and improve our system’s learning part by using machine learning tools and
lexical resources. We experimented with using other methods other than memory
based learning, and lexical resources such as WordNet and Roget’s Thesaurus.
The experiments performed with base noun-phrases were promising [21], and we
plan to incorporate these resources in our system.

Customisable Semantic Analysis of Texts 323

References

1. Barker, K., Delisle, S., Szpakowicz, S.: Test-driving TANKA: Evaluating a semi-
automatic system of text analysis for knowledge acquisition. In: Canadian AI,
Vancouver, BC, Canada (1997) 60–71

2. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In:
COLING-ACL, Montreal, Canada (1998) 86–90

3. Rosario, B., Hearst, M.: Classifying the semantic relations in noun-compounds via
a domain specific hierarchy. In: EMNLP, Pittsburg, PA, USA (2001) 82–90

4. Gomez, F.: A representation of complex events and processes for the acquisition
of knowledge from text. Kowledge-Based Systems 10 (1998) 237–251

5. Fillmore, C., Atkins, B.T.: FrameNet and lexicographic relevance. In: LREC,
Granada, Spain (1998)

6. Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Computational
Linguistics 28 (2002) 245–288

7. Hull, R.D., Gomez, F.: Semantic interpretation of nominalizations. In: 13th Na-
tional Conference on Artificial Intelligence, Portland, Oregon, USA (1996) 1062–
1068

8. Rosario, B., Hearst, M., Fillmore, C.: The descent of hierarchy and selection in
relational semantics. In: ACL, Philadelphia, PA, USA (2002)

9. Clark, P., Porter, B.: Building concept reprezentations from reusable components.
In: AAAI, Providence, Rhode Island (1997) 367–376

10. Fan, J., Barker, K., Porter, B., Clark, P.: Representing roles and purpose. In:
KCAP. (2001) 38–43

11. Barker, K.: Semi-Automatic Recognition of Semantic Relationships in English
Technical Texts. PhD thesis, University of Ottawa, Department of Computer Sci-
ence (1998) http://www.cs.utexas.edu/users/kbarker/thesis.

12. Kilgarriff, A., Tugwell, D.: WORD SKETCH: Extraction and display of signifi-
cant collocations for lexicography. In: Workshop on Collocation: Computational
Extraction, Analysis and Exploitation, 39th ACL & 10th EACL, Toulouse, France
(2001) 32–38

13. Lin, D., Pantel, P.: Concept discovery from text. In: COLING, Taipei, Taiwan
(2002) 577–583

14. Pantel, P., Lin, D.: Discovering word senses from text. In: SIGKDD, Edmonton,
Canada (2002) 613–619

15. Daelemans, W., van den Bosch, A., Zavrel, J.: Forgetting exceptions is harmful in
language learning. Machine Learning 34 (1999) 11–34

16. Delisle, S., Copeck, T., Szpakowicz, S., Barker, K.: Pattern matching for case
analysis: A computational definition of closeness. In: ICCI, Sudbury, ON, Canada
(1993) 310–315

17. Larrick, N.: Junior Science Book of Rain, Hail, Sleet and Snow. Garrard Publishing
Company, Champaign, Illinois (1961)

18. Delisle, S., Szpakowicz, S.: Realistic parsing: Practical solutions of difficult prob-
lems. In: PACLING, Brisbane, Queensland, Australia (1995)

19. Temperley, D., Sleator, D., Lafferty, J.: The LINK parser (1998)
http://www.link.cs.cmu.edu/link.

20. Chanod, J.P., Ait-Mokhtar, S., Roux, C.: Xerox Incremental Parser, ongoing re-
search (2004) Xerox Research Centre Europe.

21. Nastase, V., Szpakowicz, S.: Exploring noun-modifier semantic relations. In: In-
ternational Workshop on Computational Semantics, Tillburg, Netherlans (2003)

	Introduction
	Related Work
	Semantic Analysis
	Extracting Syntactic Units
	Pairing Syntactic Units
	Semi-Automatic Assignment of Semantic Relations to Pairs of Syntactic Units

	Experiments
	Parsers
	Semantic Relations

	Results
	Evaluating the System's Customisability
	Conclusions

