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Abstract. Chinese shallow parsing is a difficult, important and widely-studied 
sequence modeling problem. CRFs are new discriminative sequential models 
which may incorporate many rich features. This paper shows how conditional 
random fields (CRFs) can be efficiently applied to Chinese shallow parsing. We 
employ using CRFs and HMMs on a same data set. Our results confirm that 
CRFs improve the performance upon HMMs. Our approach yields the F1 score 
of 90.38% in Chinese shallow parsing with the UPenn Chinese Treebank. CRFs 
have shown to perform well for Chinese shallow parsing due to their ability to 
capture arbitrary, overlapping features of the input in a Markov model. 

1  Introduction 

Chinese shallow parsing is an important component of most text analysis systems in 
applications such as information extraction and summary generation. This problem 
has been widely studied and approached from different aspects. There are two main 
types of approaches to shallow parsing. One is base on rule-based methods; the other 
based on statistical methods. There is now a growing interest in applying 
machine-learning techniques to chunking, as they can avoid tedious manual work and 
are helpful in improving performance.  

Much work has been done by researchers in this area. Li et al. used Maximum 
Entropy (ME) model to conduct Chinese chunk parsing [1], Zhang and Zhou used the 
inner structure and lexical information of base phrases to disambiguate border and 
phrase type [2]. Zhou et al. introduced the Chinese chunk parsing scheme and 
separated constituent recognition from full syntactic parsing, by using words 
boundary and constituent group information [3]. Zhao and Huang systematically 
defined Chinese base noun phrase from the linguistic point of view and presented a 
model for recognizing Chinese base noun phrases [4]. The model integrated Chinese 
base noun phrase structure templates and context features. These studies achieved 
promising results. However, comparing Chinese shallow parsing performance is 
difficult because those papers use different chunk definition and different data sets. 

In this paper, we explore the practical issues in Chinese shallow parsing and 
present results on Chinese shallow parsing using Conditional Random Fields (CRFs). 
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CRFs [5] are models proposed recently that have the ability to combine rich 
domain knowledge, with finite-state decoding, sophisticated statistical methods, and 
discriminative, supervised training. In their most general form, they are arbitrary 
undirected graphical models trained to maximize the conditional probability of the 
desired outputs given the corresponding inputs. This method has been successfully 
applied in many NLP fields, such as POS tagging [5], noun phrase segmentation [6], 
Chinese word segmentation [7], named entity extraction [8] and Information 
Extraction [9][10]. 

In what follows, first, we briefly describe the general framework of Chinese 
shallow parsing and explore the practical issue in Chinese shallow parsing. Then, we 
describe CRFs, including how to conduct parameter estimation. Finally, we present 
experimental results and draw conclusions with possible future directions. 

2  Chinese Shallow Parsing 

Shallow parsing is the process of identifying syntactical phrases in natural language 
sentences. Several types of chunks – phrases that are derived from parse trees of 
Chinese sentences by flattening down the structure of the parse trees - provide an 
intermediate step to natural language understanding. 

The pioneer work of Ramashaw and Marcus [11] has been proved to be an 
important inspiration source for shallow parsing. They formulate the task of 
NP-chunking as a tagging task where a large number of machine learning techniques 
are available to solve the problem. Therefore shallow parsing can be regarded as of as 
a sequence segmentation problem in which each word is a token in a sequence to be 
assigned a label. Without loss of generality, let Χ  be a set of word sequences and Υ  
be a set of syntactic labels. The training set is then a sequence of pairs of the form  
(X 1, Y 1), (X 2, Y 2) … (X n，Y n), where X i ∈ Χ , Y i ∈ Υ . On the basis of such a 
training set, a shallow parser could be trained, and then it can make predictions on 
future, unlabelled examples. 

2.1  Chinese Chunk Definition 

Chunks were first introduced by Abney [12], who used them for syntactic parsing. 
According to his definition, a chunk is the nonrecursive core of an intra-clausal 
constituent, extending from the beginning of constituent to its head, but not including 
post-head dependents. 

Like the definition of English chunk given by Abney, we define Chinese chunk as 
a single semantic and non-recursive core of an intra-clausal constituent, with the 
restriction that no chunks are included in another chunk. 

To be able to represent the whole hierarchical phrase structure, 10 types of Chinese 
chunks are defined. The phrase categories are listed below, each followed by a simple 
explanation and an example. 
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Table 1. The Chinese chunk categories 

No Category Explanation Example 
1 VP  verb phrase [ADVP 先后/ad] [VP 颁布/vv 实行/vv 了/as] 
2 DP  determiner phrase [DP 这些/dt] [NP 经济/nn 活动/nn] 
3 ADJP  adjective phrase [ADJP 对内/jj 和/cc 对外/jj] [NP 政策/nn]  
4 QP  quantifier phrase [VP 增长/vv] [QP 一成/cd 至/cc 两成/cd] 
5 FRAG  fragment phrase [FRAG（/pu 完/vv ）/pu] 
6 NP  noun phrase [NP 德国/nr 政府/nn 发言人/nn] [NP 福格尔/nr] 
7 PP  preposition phrase [PP 在/p ２月/nt ２６日/nt] [VP 举行/vv] 
8 LCP  phrase formed by “LC” [VP 是/vc] [LCP 近年/nt 来/lc] 
9 ADVP  adverbial phrase [ADVP 已经/ad 或/cc 正在/ad] [VP 研究/vv] 

10 CLP  classifier phrase [QP 二十五/cd] [CLP 米/m] [NP 口径/nn] 

To represent Chinese chunks clearly, we use 3 types of chunk border tags in this 
paper. 

1. B-XP XP ∈  {VP, DP, ADJP, QP, FRAG, NP, PP, LCP, ADVP, CLP} 
denotes that the current word is the first word of chunk XP. 

2. I-XP XP ∈  {VP, DP, ADJP, QP, FRAG, NP, PP, LCP, ADVP, CLP} 
denotes that the current word is inside of chunk XP. 

3. O denotes that the current word is outside any chunk. 

Using these chunk border tags, we can consider the Chinese shallow parsing as a 
tagging task. 

2.2  Independency Assumption 

HMMs learn a generative model over input sequence and labeled sequence pairs. 
While enjoying wide historical success, standard HMMs have difficulties in modeling 
multiple non-independent features of the observation sequence. They are generative, 
in the sense which that they represent a joint probability distribution Ρ(X，Y). 

Because this includes a distribution Ρ(X) over the input features, it is difficult to use 
arbitrary, overlapping features while maintaining tractability. 

2.3  Label Bias 

Classical probabilistic automata [13], discriminative Markov models [14], maximum 
entropy taggers [15], and MEMMs, as well as non-probabilistic sequence tagging and 
segmentation models with independently trained next-state classifiers [16] are all 
potential victims of the label bias problem [5]. This is because the per-state 
normalization requirement of next-state classifiers – the probability transitions leaving 
any given state must sum to one. Each transition distribution defines the conditional 
probabilities of possible next states given the current state and next observation 
element. Therefore, the per-state normalization requirement means that observations 
are only able to affect which successor state is selected, and not the probability mass 
passed onto that state which results in a bias towards states with low entropy 
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transition and, in the case of states with a single outgoing transition, causes the 
observation to be effectively ignored [17]. In Chinese parsing, this problem is 
extremely severe. 

 

Fig. 1. Label bias problem 

For example, Figure 1 represents a simple finite-state model designed to shallow 
parsing. The optimal path 0-1-4-5-6-7-8 is indicated by bold font. But the path 
0-1-2-3-8 will have a higher probability and then be selected in decoding, because P 
(0, 1, 4, 5, 6, 7, 8|X) = 1.0*0.6*1.0*0.6*1.0*1.0 = 0.36, P(0, 1, 2, 3, 
8|X)=1.0*0.4*1.0*1.0=0.4, P (0, 1, 4, 5, 3, 8|X) = 1.0*0.6*1.0*0.4*1.0 = 0.24,  P (0, 
1, 4, 5, 6, 7, 8|X) < P (1, 2, 3, 8|X) and P (0, 1, 4, 5, 3, 8|X) < P (1, 2, 3, 8|X). This is 
case that the states with a single outgoing transition effectively ignore their 
observations. More generally, states with low-entropy next state distributions will 
take little notice of observations. 

3 Conditional Random Fields (CRFs) 

CRFs are a recently introduced [5] from of conditional model that allow the strong 
independence assumptions of HMMs to be relaxed, as well as overcoming the 
label-bias problem exhibited by MEMMs [18]. This allows the specification of a 
single joint probability distribution over the entire label sequence given the 
observation sequence, rather than defining per-state distributions over the next states 
given the current state. The conditional nature of the distribution over label sequences 
allows CRFs to model real-world data in which the conditional probability of a label 
sequence can depend on non-independent, interacting features of the observation 
sequence. In addition to this, the exponential nature of the distribution chosen by 
Lafferty et al. enables features of different states to be traded off against each other, 
weighting some states in a sequence as being more important than others. 

CRFs are defined as follows. Let TxxxX ...21=  denote some observed input data 

sequences, such as a sequence of words in training data. Let TyyyY ...21=  be a set 

of finite state machine (FSM) states, each of which is associated with a label. By the 
Hammersley-Clifford theorem, CRFs define the conditional probability of a state 
sequence given an input sequence X  
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XYp λ          (1) 

where XZ  is a normalization factor over all candidate paths. In other words, it is the 

sum of the “scores” of all possible state sequence.  
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),,,( 1 tXyyf iik −  is a feature function. The feature functions can measure any 
aspect of a state transition tt yy →−1 , and the observation sequence X , centered at 
the current time step t . 

kλ  is a learned weight associated with feature kf . Large positive values for kλ  
indicate a preference for such an event, while large negative values make the event 
unlikely. 

Given such a model as defined in Equ.1, the most probable labeling sequence for 

an input X  is *Y  which maximizes a posterior probability. 
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It can be found with dynamic programming using the Viterbi algorithm.  
In the case of the commonly used graph structure for modeling sequential data, the 

general form of Equ. 1 can be expanded to  
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Where each ),,( 1 Xyyf iik −  is a feature of the entire observation sequence and 

the labels at position i and 1−i  in the corresponding label sequence, each 

),( Xyg ik  is a feature of the label at position i  and the observation sequence, and 

kλ  and kµ  are feature weights. 

In this situation, the parameters kλ  and kµ  corresponding to these features are 
equivalent to the algorithm of HMMs transition and emission probabilities. Although 
it encompasses HMM-like models, the class of CRFs is much more expressive, 
because it allows arbitrary dependencies on the observation sequence [5].  

3.1  Parameter Estimation 

Given the parametric from of a CRF in Equ.3, fitting empirical distribution involves 
identifying the values of parameters kλ  and kµ  which can be estimated by 
maximum likelihood, i.e. maximizing the loglikelihood ΛL  – maximizing the 
conditional probability of a set of label sequences, each given their corresponding 
input sequence.  
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To maximize ΛL , we have to maximize the difference between the correct path and 

those of all other candidates. CRFs are thus trained to discriminate the correct path 
from all other candidates, which reduces the inference of label bias. 
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Lafferty et al. introduced an iterative scaling algorithm for Equ. 4 ΛL  and reported 
that it was exceedingly slow. Several researchers have implemented gradient 
ascendant methods, but naïve implementations are also very slow, because the various 
λ  and µ  parameters interact with each other increasing one parameter may require 
compensating changes in others. McCallum 2003 employs the BFGS algorithm, 
which is an approximate second-order method that deals with these parameter 
interactions. 

4 Experiments 

We conducted experiments comparing CRFs to HMMs on Chinese shallow parsing. 
Also, we compared the performance of the model trained using CRFs from different 
training data size. 

4.1  Experimental Setting 

We use the Penn Wall Street Journal Chinese Treebank (LDC-2001T11) as 
experimental data. It consists of about 100K words, 325 Xinhua newswire articles on 
a variety of subjects. We consider each sentence to be a training instance, with single 
words as tokens. Sections 1-300 were used as training set, sections 301-325 was used 
as the test set. Table 2 summarizes the information on the dataset. Table 3 shows the 
detail information of training set and test set. In this experiment we only use the pos 

tag of the current word it  and the current word iw as features. 

Table 2. The simple statistics on dataset 

Information Value 
# articles 325 
# sentences 4185 
# words 100k 
# chunk types 10 
# chunks 62633 

Table 3. The number of each chunk type in dataset 

Type Data set Training set Test set 
 VP 13619 13211 408 
 DP 1322 1275 47 
ADJP 3132 3082 50 
 QP 4008 3735 273 
FRAG 593 564 29 
 NP 26807 25782 1025 
 PP 3754 3618 136 
 LCP 1358 1305 53 
 ADVP 4893 4747 146 
 CLP 3147 2922 225 
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4.2  Evaluation Metrics 

We measure the performance in terms of tagging accuracy, precision, recall and 
F-score, which are standard measures for the chunk recognition. 
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4.3  Experimental Results 

We first report the overall results by comparing CRFs with HMMs. Table 4 shows the 
results on the dataset described before with the best results in bold. Compared with 
the result of the HMMs the result based on CRFs leads to an improved performance 
on most types of Chinese chunks, except ADVP, DP, LCP and PP chunks. The 
precision of ADJP is 1.42% lower than that of HMMs, but the FB1 is 0.18% higher 
than that of the HMMs and the recall of QP is 0.73% lower than that of HMMs, but 
the FB1 is higher than that of the HMMs, which shows that CRFs significantly 
outperforms HMMs.  

Table 4. The results based on CRFs and based on HMMs 

 CRFs HMMs-bigram 
 accuracy: 91.90 accuracy: 90.17 
 precision recall FB1 precision recall FB1 
ADJP 87.04 94.00 90.38 88.46 92.00 90.20 
ADVP 100.00 99.32 99.66 100.00 99.32 99.66 
CLP 98.25 100.00 99.12 96.98 100.00 98.47 
DP 97.92 100.00 98.95 97.92 100.00 98.95 
FRAG 96.55 96.55 96.55 72.97 93.10 81.82 
LCP 100.00 100.00 100.00 100.00 100.00 100.00 
NP 83.79 80.53 82.13 78.35 77.66 78.00 
PP 100.00 100.00 100.00 100.00 100.00 100.00 
QP 84.46 91.58 87.87 82.08 92.31 86.90 
VP 94.03 96.57 95.28 93.64 93.87 93.76 
ALL 89.74 89.89 89.82 86.65 88.21 87.42 

In the following experiment, we use 25 files as test set, but the training set range 
from 25 files to 300 files. Figure 2 shows the performance curve on the same test set 
in terms of the FB1, P and R measure with respect to the size of training data. We can 
see that precision, recall, and FB1 improve rapidly when the size of training set has 
not reached 75 folders. After that, the improvement slows down significantly. From 
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this figure, we can see that more training data can help improve Chinese shallow 
parsing performance. 
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Fig. 2. The results based on CRFs vs. training set size 

5 Discussion 

From the experimental results we observed that the performance for Chinese shallow 
parsing do not look as good as those for English. One of the reasons might be that 
Chinese syntactic structure is more flexible and more ambiguous.  

Looking through the errors in the results, we see that BAP, NP and QP internal 
structure is more flexible than another Chinese chunk type. The ambiguities of these 
syntactic structures lead to their poor experimental results. E.g. “[NP 支撑/nn 和/cc 
推动/nn 作用/nn]” is likely to be selected compared to multiple tokens “[NP 支撑/nn 
和/cc 推动/nn] [NP 作用/nn]” while the multiple tokens “[NP 美国/nr 网球/nn] [NP 
公开赛/nn]” is likely to be selected compared to “[NP 美国/nr 网球/nn 公开赛/nn]”. 
“[ADJP 老/jj] 、/ pu [ADJP 少/jj] 、/pu [ADJP 边/ jj] 、/pu [ADJP 穷/jj]” or “[QP ４
/cd] ：/pu [QP ３/cd]” is likely to be selected compared to “[ADJP 老/jj 、/ pu 少/jj 、
/pu 边/ jj 、/pu 穷/jj]” or “[QP ４/cd ：/pu ３/cd]”. 

Another question is that CRFs have many promising properties, but their main 
limitation is the slow convergence of the training algorithm relative HMMs, for which 
training on fully observed data is efficient. 

6 Conclusion and Future Work 

As far as we know the presented work is the first to apply CRFs to Chinese shallow 
parsing. In this paper, we present how conditional random fields can be applied to 
Chinese shallow parsing in which Chinese chunk boundary ambiguity exists. By virtue 
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of CRFs, a number of correlated features can be incorporated and label bias can be 
minimized. We compare results between CRFs and HMMs in Upenn Chinese Treebank, 
and CRFs outperform the other approaches. Although we discuss Chinese shallow 
parsing, the proposed approach can be applicable to other language such as Thai. 

From the experimental results we observed that more linguistic knowledge 
incorporated into the models may further improve the performance as well. Thus, our 
future work is to incorporate more contextual information into the models, including 
the boundary information of the phrases, semantic, collocation and co-occurrence 
information, aiming at further improvement of chunking in terms of the precision, 
recall and F score. 

Another attractive aspect of CRFs is that one can implement efficient feature 
selection and feature induction algorithm for them. In the future we can start from 
features generating rules and evaluate the benefit of generated features automatically 
on data instead of specifying in advance which features of (X，Y) to use. 
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