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Abstract. This paper proposes a Mutual Information Independence Model 
(MIIM) to segment and label sequential data. MIIM overcomes the strong 
context independent assumption in traditional generative HMMs by assuming 
a novel pairwise mutual information independence. As a result, MIIM 
separately models the long state dependence in its state transition model in a 
generative way and the observation dependence in its output model in a 
discriminative way. In addition, a variable-length pairwise mutual 
information-based modeling approach and a kNN algorithm using kernel 
density estimation are proposed to capture the long state dependence and the 
observation dependence respectively. The evaluation on shallow parsing 
shows that MIIM can effectively capture the long context dependence to 
segment and label sequential data. It is interesting to note that using kernel 
density estimation leads to increased performance over using a classifier-
based approach. 

1  Introduction 

A Hidden Markov Model (HMM) is a model where a sequence of observations is 
generated in addition to the Markov state sequence. It is a latent variable model in the 
sense that only the observation sequence is known while the state sequence remains 
“hidden”. In recent years, HMMs have enjoyed great success in many tagging 
applications, most notably part-of-speech (POS) tagging [1,2,3] and named entity 
recognition [4,5]. Moreover, there have been also efforts to extend the use of HMMs 
to word sense disambiguation [6] and shallow/full parsing [7,8,9]. 

Given an observation sequence n
n oooO !211 = , the goal of a HMM is to find a 

stochastic optimal state sequence n
n sssS !211 =  that maximizes ),( 11
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Traditionally, HMM segments and labels sequential data in a generative way by 
making a context independent assumption that successive observations are 
independent given the corresponding individual state [10]: 
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By applying the assumption (2) and using the chain rule, equation (1) can be 
rewritten as: 
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More formally, a generative (first-order) HMM  is given by a finite set of states S  
including an designated initial state and an designated final state, a set of possible 
observation O , two conditional probability distributions: a state transition model 

)|( 'ssP  from 's  to s  for Sss ∈,' and an output model )|( soP  for SsOo ∈∈ , . A 

sequence of observations is generated by starting from the designated initial state, 

transmiting to a new state according to )|( 'ssP , emitting an observation selected by 

that new state according to )|( soP , transmiting to another new state and so on until 

the designated final state is generated.  
There are several problems with this generative approach. First, many tasks would 

benefit from a richer representation of observations—in particular a representation 
that describes observations in terms of many overlapping features, such as 
capitalization, word endings, part-of-speech in addition to the traditional word 
identity. Note that these features always depends on each other. Furthermore, to 
define a joint probability over the observation and state sequences, the generative 
approach needs to enumerate all the possible observation sequences. However, in 
some tasks, the set of all the possible observation sequences is not reasonably 
enumerable. Second, the generative approach fails to effectively model the 
dependence in the observation sequence. Third, the generative approach normally 
estimates the parameters to maximize the likelihood of the observation sequence. 
However, in many NLP tasks, the goal is to predict the state sequence given the 
observation sequence. In other words, the generative approach inappropriately applies 
a generative joint probability model for a conditional probability problem. In 
summary, the main reasons behind these problems of the generative approach are the 
strong context independent assumption and the generative nature in modeling 
sequential data. While the dependence between successive states can be directly 
modeled by its state transition model, the generative approach fails to directly capture 
the observation dependence in the output model.  

To resolve the inherent problems in generative HMMs, some researches (please 
see related works in Section 6 for details) have been done to move from  generative 
HMMs to discriminative Markov models (DMMs). DMMs do not expend modeling 
effort on the observation sequnce, which are fixed at test time. Instead, DMMs model 
the state sequence depending on arbitrary, non-independent features of the 
observation sequence, normally without forcing the model to account for the 
distribution of those dependencies.  
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This paper proposes a Mutual Information Independence Model (MIIM), which 
separates the dependence of a state on the previous states and the observation 
sequence. Compared with generative HMMs, MIIM explicitly models the long state 
dependence in a generative way and the observation dependence in a discriminative 
way. In addition, a variable-length pairwise mutual information based modeling is 
proposed to capture the long state dependence of a state on the previous states while a 
kNN algorithm using kernel density estimation is proposed to capture the observation 
dependence of a state on the observation sequence.  

The layout of this paper is as follows. Section 2 proposes the Mutual Information 
Independence Model (MIIM) and presents the variable-length pair-wise mutual 
information-based modeling approach to capture the long state dependence. Section 3 
presents the kNN algorithm using kernel density estimation to capture the observation 
dependence. Section 4 introduces the shallow parsing task while Section 5 gives 
experimental results. Section 6 describes some of the related works in discriminative 
Markov modeling. Finally, some conclusion will be drawn in Section 7. 

2  Mutual Information Independence Model 

In principle, given an observation sequence n
n oooo !211 = , the goal of a conditional 

probability model is to find a stochastic optimal state sequence n
n ssss !211 =  that 

maximizes )|(log 11
nn osP   
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Obviously, the second term  
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information (PMI) between the state sequence ns1  and the observation sequence no1 . 
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efficiently, we propose a novel pairwise mutual information independence 
assumption: 
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That is, we assume a state is only dependent on the observation sequence no1  and 

independent on other states in the state sequence ns1 . This assumption is reasonable 

because the dependence among the states in the state sequence ns1  has been directly 

captured by the first term )(log 1
nsP in equation (4). 
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By applying the assumption (5) into the equation (4), we have: 
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The above model consists of two models: the state transition model 

∑
=

−
n

i

i
i ssPMI

2

1
1 ),(  which measures the state dependence of a state given the previous 

states in a generative way, and the output model ∑
=

n

i

n
i osP

1
1 )|(log which measures the 

observation dependence of a state given the observation sequence in a discriminative 
way. This is done by assuming a novel pair-wise mutual information independence 
model. Therefore, we call the above model as in equation (6) a Mutual Information 
Independence Model (MIIM). The main difference between a generative HMM and a 
MIIM lies in their output models in that the output model of a MIIM directly captures 
the context dependence between successive observations in determining the “hidden” 
states while the output model of the generative HMM fails to do so. That is, the 
output model of a MIIM overcomes the strong context independent assumption in the 
generative HMM and becomes observation context dependent. Alternatively, we can 
have equation (7) by rewriting equation (3) using the Bayes’s rule: 
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Compared with MIIM as equation (6) and the generative HMM rewritten as 
equation (7), we can see that MIIM extends the notion of an observation and estimates 
the output model based on the observation sequence rather than the corresponding 
individual observation.  

Computation of a MIIM consists of two parts. The first is to compute the state 

transition model:∑
=

−
n

i

i
i ssPMI

2

1
1 ),( . Traditionally, ngram modeling(e.g. bigram for the 

first-order HMM and trigram for the second-order HMM) is used to estimate the state 
transition model. However, such approach fails to capture the long state dependence 
since it is not reasonably practical for ngram modeling to be beyond trigram. In this 
paper, a variable-length pairwise mutual information-based modeling approach is 
proposed as follow: For each )2( nii ≤≤ , we first find a minimal )0( ikk ≺≤  where 

the frequency of  i
ks  is not smaller than a threshold (e.g. 3) and then estimate 

),( 1
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ssPMI . In this way, the long state 

dependence can be captured in a dynamical way. Here, the frequencies of variable-
length state sequences are smoothed using the simple Good-Turing approach [11]. 

The second is to estimate the output model:∑
=

n

i

n
i osP

1
1 )|(log . Ideally, we would 

have sufficient training data for every event whose conditional probability we wish to 
calculate. Unfortunately, there is rarely enough training data to compute accurate 
probabilities when decoding on new data. Traditionally, there are two existing 
approaches to resolve this problem: linear interpolation [12] and back-off [13]. 
However, these two approaches only work well when the number of different 
information sources is limited. When a long context is considered, the number of 
different information sources is exponential and not reasonably enumerable. The 
current trend is to recast it as a classification problem and use the output of a 
classifier, e.g. the maximum entropy classifier (ME) [14] to estimate the state 
probability distribution given the observation sequence. In the next section, we will 
propose a more effective kNN algorithm using kernel density estimation to resolve 
this problem. 

3  kNN Using Kernel Density Estimation 

The main challenge for the above MIIM is how to reliably estimate )|( 1
n

i osP  in its 

output model. For efficiency, we can always assume ≈)|( 1
n

i osP )|( ii EsP , where the 

pattern entry NiiNii oooE +−= !! . That is, we only consider the observation 

dependence in a window of 2N+1 observations (e.g. we only consider the current 
observation, the previous observation and the next observation when N=1). For 
convenience, we denote )|( iEP •  as the conditional state probability distribution of 

the states given iE  and )|( ii EsP  as the conditional state probability of is  given iE .  
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The kNN algorithm calculates )|( iEP •  by first finding the K nearest neighbors 

of frequently occurring pattern entries },...,2,1|{)( KkEEkNN k
ii == and then 

aggregating them to make a proper estimation of )|( iEP • using kernel density 

estimation. Here, the conditional state probability distribution is estimated instead of 
the classification in a traditional kNN classifier. 

3.1  Finding K Nearest Neighbors 

To do so, all the frequently occurring pattern entries are extracted exhaustively from 
the training corpus and stored in a dictionary arytryDictionFrequentEn . Here, the 

dictionary arytryDictionFrequentEn is indexed using the tree-based indexing scheme 

as in TiMBL1 [15]. In order to limit the dictionary size and keep efficiency, we 
constrain a valid set of pattern entry forms FormValidEntry  to consider only the most 

informative information sources. Obviously, FormValidEntry defines the possible 

feature conjunctions. Generally, FormValidEntry  can be determined manually or 

automatically according to the applications. In Section 5, we will give an example. 

Given a pattern entry iE  and the indexed dictionary arytryDictionFrequentEn , 

the K nearest neighbors of the pattern entry iE  is found as follows:  

– Extract all the compatible entries with iE  from the indexed dictionary 

– Compute the similarity between iE  and each of the compatible entries using a 

kernel function 
– Sort out the K nearest neighbors according to their similarities 

Here, the kernel function ),( i
k
i EEk  between iE  and k

iE  is determined by their 

shared feature conjunctions: 

∑
∈∈
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with the parameter vector w. Here, jw  is the weight for the j-th possible feature 

conjunction FormValidEntryf j ∈ . Here, the parameter vector w is determined as 

follows: For each entry in arytryDictionFrequentEn , we first find the 2*K nearest 

neighbors from the indexed dictionary using the above same algorithm (Here, all the 
jw  in w is initialized to 1 divided by | FormValidEntry |, the number of possible 

feature conjunctions). For each possible feature conjunction, we calculate its weight 
(averaged over all the entries in arytryDictionFrequentEn ) as its non-occurrence 

frequency in the second K nearest neighbors divided its occurrence frequency in the 
first K neighbors. The intuition is that, if a feature conjunction occurs more in the first 
K nearest neighbors, and less in the second K nearest neighbors, such feature 

                                                           
1 http://ilk.kub.nl/ 
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conjunction contributes more. Finally, w is normalized ( 1=∑
∈ FormValidEntryfall

j

j

w ). The 

above training algorithm is repeated until w becomes stable (e.g.  the change in | w| is 
less than 1%). 

3.2  Kernel Density Estimation 

After the K nearest neighbors have been found, the conditional state probability 
distribution )|( iEP •  of the pattern entry iE  is calculated using kernel density 

estimation. That is, )|( iEP •  is estimated by the weighted average of its K nearest 

neighbors:  
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where the kernel function ),( i
k
i EEk measures the similarity between the pattern entry 

iE  and its nearest neighbor k
iE  and  )( k

iEF  is the occurring frequency of k
iE . 

4  Shallow Parsing 

In order to evaluate the MIIM, we have applied it in the application of shallow 
parsing. 

For shallow parsing, we have iiwpo =1 , where n
n wwww !211 =  is the word 

sequence and n
n pppp !211 =  is the part-of-speech (POS) sequence, while the states 

are represented as structural tags to bracket and differentiate various categories of 
phrases. The basic idea of using the structural tags to represent the states is similar to 
Skut et al [8] and Zhou et al [9].  Here, a structural tag consists of three parts: 

– Boundary Category (BOUNDARY): it is a set of four values: “O”/“B”/“M”/“E”, 
where “O” means that current word is a whOle phrase and “B”/“M”/“E” means 
that current word is at the Beginning/in the Middle/at the End of a phrase. 

– Phrase Category (PHRASE): it is used to denote the category of the phrase. 
– Part-of-Speech (POS): Because of the limited number of boundary and phrase 

categories, the POS is added into the structural tag to represent more accurate 
state transition model. 

For example, given the following POS tagged sentence as the observation 
sequence: 

He/PRP  reckons/VBZ  the/DT  current/JJ  account/NN  deficit/NN  will/MD  
narrow/VB  to/TO  only/RB $/$  1.8/CD  billion/CD  in/IN  September/NNP  ./. 
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We can have a corresponding sequence of structural tags as the state sequence: 

O_NP_PRP(He/PRP)  O_VP _VBZ (reckons/VBZ)  B_NP _DT (the/DT)  M_NP 
_JJ (current/JJ)  M_NP _NN (account/NN)  E_NP _NN (deficit/NN)  B_VP _MD 
(will/MD)  E_VP _VB (narrow/VB)  O_PP _TO (to/TO)  B_QP _RB (only/RB)  
M_QP _$ ($/$)  M_QP _CD (1.8/CD)  E_QP _CD (billion/CD)  O_PP _IN (in/IN)  
O_NP _NNP(September/NNP)  O_O _. (./.) 

and an equivalent phrase chunked sentence as the shallow parsing result: 

[NP He/PRP] [VP reckons/VBZ] [ NP the/DT current/JJ account/NN deficit/NN] 
[VP will/MD narrow/VB] [PP to/TO] [QP only/RB $/$ 1.8/CD billion/CD] [PP 
in/IN] [NP September/NNP] [O ./.] 

5  Experimental Results 

We have used the CoNLL’2000 standard chunking corpus in our experimentation. 
This corpus was first used in the CoNLL-2000 shared chunking task [16], which aims 
to annotate 10 base phrase classes (NP, VP, PP, ADJP, etc). This corpus consists of 
four sections (15-18) of the WSJ part of the Penn TreeBank [17] for the training data 
(211727 tokens) and one section (20) for the test data (47377 tokens)2. 

All the evaluations are measured using the F-measure. Here, the F-measure is the 

weighted harmonic mean of the precision (P) and the recall (R): 
PR

RP
F

+
+=

2

2 )1(

β
β

 

with 2β =1 [18], where the precision (P) is the percentage of predicted phrase chunks 

that are actually correct and the recall (R) is the percentage of correct phrase chunks 
that are actually found.  

In this paper, the valid set of pattern entry forms FormValidEntry  is defined to 

include those pattern entry forms within a window of 7 observations(including 

current, left 3 and right 3 observations) where for jw  to be included in a pattern 

entry, all or one of the overlapping features in each of )(...,, 1 ijppp ijj ≤+  or 

)(...,, 1 jippp jii ≤+  should be included in the same pattern entry while for jp  to be 

included in a pattern entry, all or one of the overlapping features in each of  
)(...,, 21 ijppp ijj ≺++  or )(...,, 11 jippp jii ≺−+  should be included in the same 

pattern entry. For example of a window of 3: 
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Table 1 shows the effect of different number of nearest neighbors in the kNN 
algorithm and considered previous states in the variable-length pair-wise mutual 
information modeling approach of the MIIM on the CoNLL’2000 chunking corpus. It 

                                                           
2 http://cnts.uia.ac.be/conll2000/chunking/ 
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shows that finding 3 nearest neighbors in the kNN algorithm using kernel density 
estimation performs best. It also shows that further increasing the number of nearest 
neighbors does not increase or even decrease the performance. This may be due to 
introduction of noisy neighbors when the number of nearest neighbors increases. 
Moreover, Table 1 shows that the MIIM performs best when six previous states is 
considered in the variable-length pair-wise mutual information-based modeling 
approach and further considering more previous states does not increase the 
performance. This suggests that the state dependence exists well beyond traditional 
ngram modeling (e.g. bigram and trigram) to six previous states and the variable-
length pair-wise mutual information-based modeling approach can capture the long 
state dependence. In the following experimentation, we will use the MIIM with 3 
nearest neighbors used in the kNN algorithm and 6 previous states considered in the 
variable-length pair-wise mutual information modeling approach. 

Table 1. Effect of different numbers of nearest neighbors in the kNN algorithm and previous 
states considered in the variable-length pair-wise mutual information modeling approach of the 
MIIM 

Number of nearest neighbors Shallow  
Parsing 1 2 3 4 5 

1 92.06 92.51 92.83 92.82 92.83 
2 92.55 93.02 93.35 93.36 93.30 
4 92.82 93.34 93.72 93.67 93.61 
6 93.01 93.63 93.96 93.91 93.88 

Number 
of 

considered 
previous 

states 8 93.14 93.68 93.92 93.85 93.83 

Table 2. Comparison of the MIIM with generative HMMs and the kNN algorithm using kernel 
density estimation with a classifier-based approach 

Model CoNLL’2000 chunking 
First order 91.84 HMM 
Second order 92.01 
kNN 93.96 
MaxEnt 93.59 

MIIM 

SNoW 93.74 

Table 2 compares the MIIM with generative HMMs. It also compares the kNN 
algorithm using kernel density estimation with a classifier-based approach, such as 
SNoW [19,20] and MaxEnt [14] in estimating the output model of the MIIM. Here, 
all the classifiers (SNoW and MaxEnt) use the same observation history as the kNN 
algorithm in the MIIM with a windows of 7 observations including current, left 3 and 
right 3 observations, and use the same feature conjunctions as defined in 

FormValidEntry . It shows that the MIIM significantly outperforms generative 

HMMs due to the modeling of the observation dependence and allowing for non-
independent, difficult to enumerate observation features. It also shows that the kNN 
algorithm using kernel density estimation outperforms these classifier-based 
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approaches. This may be because kernel density estimation can output better 
probability distribution than a classifier-based approach. This suggests that the kNN 
algorithm using kernel density estimation captures the dependence between the 
features of the observation sequence more effectively by forcing the model to account 
for the distribution of those dependencies.  

Table 3. Comparison of the MIIM with the best-reported systems on shallow parsing 

Model CoNLL’2000 chunking 
Zhang et al [23](ensemble) 94.13 
LSD-DMM(individual) 93.96 
Kudoh et al [21] (ensemble) 93.91 
Zhou et al [9](individual) 92.12 

Table 3 compares the MIIM with the best-reported systems on shallow parsing, 
where one best individual system (using a single classifier) and two ensemble systems 
(using an ensemble of classifiers) are included. It shows that our system based on an 
individual MIIM significantly outperforms other best-reported individual systems and 
gains comparable performance with the best-reported ensemble systems.  

6  Related Work 

To resolve the inherent problems in generative HMMs, some researches have been 
done to move from  generative HMMs to discriminative Markov models (DMMs). 
Punyakanok and Roth [22] proposed a projection-based DMM (PDMM) which 
represents the probability of a state transition given not only the current observation 
but also past and future observations and used the SNoW classifier [19,20] to estimate 
it. McCallum et al [24] proposed the extact same model and used maximum  entropy 
to estimate it in the application of information extraction. Lafferty et al [25] extanded 
ME-PDMM using conditional random fields by incorporating the factored state 
representation of the same model (that is, representing the probability of a state given 
the observation sequence and the previous state) to alleviate the label bias problem in 
PDMMs, which can be biased towards states with few successor states. Similar work 
can also be found in Bouttou [26]. McCallum et al [27] further extended Lafferty et al 
[25] using dynamic conditional random fields. Punyakanok and Roth [22] also 
proposed a non-projection-based DMM which separates the dependence of a state on 
the previous state and the observation sequence, by rewriting the generative HMM in 
a discriminative way and heuristically extending the notation of an observation to the 
observation sequence. Zhou et al [9] systematically derived the exact same model as 
in Punyakanok and Roth [22] and used back-off modeling with error driven learning 
to esimate the probability of a state given the observation sequence.  

Compared with the above DMMs, the MIIM explicitly models the long state 
dependence using a variable length pair-wise mutual information-based modeling 
approach and the non-projection nature of the MIIM alleviates the label bias problem 
inherent in projection-based DMMs. Another difference is the use of the kernel 
density estimation in estimating the output model of the MIIM. It is interesting to 
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show that the kernel density estimation leads to increased performance over a 
classifier-based approach. 

7  Conclusion 

Hidden Markov Models (HMM) are a powerful probabilistic tool for modeling 
sequential data and have been applied with success to many text-related tasks, such as 
shallow parsing. In these cases, the observations are usually modified as multinomial 
distributions over a discrete dictionary and the HMM parameters are set to maximize 
the likelihood of the observations. This paper presents a Mutual Information 
Independence Model (MIIM) that allows observations to be represented as arbitrary 
overlapping features and defines the conditional probability of the state sequence 
given the observation sequence. It does so by assuming a novel pair-wise mutual 
information independence to separate the dependence of a state given the observation 
sequence and the previous states. Finally, the long state dependence and the 
observation dependence can be effectively captured by a variable-length pair-wise 
mutual information model and a kNN algorithm using kernel density estimation 
respectively. It is also interesting to note that kernel density estimation leads to 
increased performance over a classifier-based approach in estimating the output 
model of the MIIM. 

In future work, we will explore the effect of an ensemble in MIIM and its 
application in other tasks, such as named entity recognition and full parsing. 
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