
Unsupervised Evaluation of Parser Robustness

Johnny Bigert1, Jonas Sjöbergh1, Ola Knutsson1, and Magnus Sahlgren2

1 KTH Nada, 100 44 Stockholm, Sweden
{johnny, jsh, knutsson}@nada.kth.se

2 SICS, Box 1263, 164 29 Kista, Sweden
mange@sics.se

Abstract. This article describes an automatic evaluation procedure for NLP sys-
tem robustness under the strain of noisy and ill-formed input. The procedure
requires no manual work or annotated resources. It is language and annotation
scheme independent and produces reliable estimates on the robustness of NLP
systems. The only requirement is an estimate on the NLP system accuracy. The
procedure was applied to five parsers and one part-of-speech tagger on Swedish
text. To establish the reliability of the procedure, a comparative evaluation involv-
ing annotated resources was carried out on the tagger and three of the parsers.

1 Introduction

Automatic parsing of text is a popular field of research. Many of the applications where
parsing is used, such as parsing human input to a computer system, handle text that
is not proofread. Depending on the application, the text can be relatively error free
(e.g. parsing newspaper articles from the internet) or contain large amounts of errors
(e.g. using a parser as a tool for second language learners when writing essays). If the
intended use of a parser is domains with many errors, it must be robust enough to produce
useful output despite noisy input. It is not sufficient to achieve a good performance on
error-free text. Usually, the accuracy of a parser on error-free text is known, but the
accuracy on texts containing errors is often unknown.

Carroll and others give a comprehensive overview of different parser evaluation
methods and discuss some shortcomings [1]. Evaluation of parsers is usually carried out
by comparing the parser output to a manually annotated or manually corrected version
of a test text. Manual work is expensive, and not necessarily error free. If the NLP
system is under development, the evaluation has to be carried out repeatedly. Thus, very
large amounts of annotated resources may be required to avoid data exhaustion. Many
languages have no large manually annotated resources at all, and those existing often
contain only error-free texts.

Manual annotation is not only expensive, but often hard to reuse when evaluating
a new parser. Generally, it is non-trivial to map the output of one parser to the output
of another [2]. Thus, the effort of manually annotating text with one type of parse
information is not generally reusable for other parsers.

To carry out the evaluation of NLP system robustness while avoiding the above-
mentioned drawbacks, we propose a procedure that requires no manual work or annotated

A. Gelbukh (Ed.): CICLing 2005, LNCS 3406, pp. 142–154, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Unsupervised Evaluation of Parser Robustness 143

resources. There are, as pointed out by Menzel [3], many types of robustness. Robustness
in this context is defined as the system’s reluctance to change its output when the input
becomes increasingly noisy and ill-formed. The only requirements of the evaluation
method are a (relatively error-free) text and an estimate of the accuracy of the parser (on
error-free text, which is usually known). Despite the modest requirements, the evaluation
procedure provides accurate estimates of the robustness of an NLP system.

The method is an extension of a supervised approach to parser robustness evaluation
[4]. It is unsupervised and based on introduction of artificial spelling errors in error-free
text. We have chosen to use spelling errors to simulate noisy input for several reasons.
First, performance (keyboard) spelling errors are language independent. Hence, anyone
can use the framework and apply it to their parser in their language without modification.
Second, performance spelling errors are easily described and widely understood and
thus, does not obscure the important parts of the evaluation procedure. Also, to keep the
description of the error model as straightforward as possible, we have refrained from
applying an automatic spelling corrector. Please keep in mind that the evaluation method
is not restricted to spelling errors, but applicable to any error type, such as incomplete
sentences in the sense of e.g. [5].

Another approach to evaluation of parser robustness is provided by Foster [6]. There,
parser robustness is evaluated by running a parser on ungrammatical text and comparing
the output to the output when run on the same text after it has been manually corrected.
Also, Li [7] proposes a method based on an annotated corpus of low quality language
use, in this case transcribed phone calls.

We assessed the reliability of the evaluation method by using five different parsers
and one part-of-speech tagger. All five parsers process written Swedish text, even though
the evaluation method is language independent. The tagger and three of the parsers had
resources annotated with the correct tagger/parser output, allowing us to verify the results
of the unsupervised evaluation.

2 Proposed Method

We are given an NLP system processing and outputting row-based data, that is, reading
one input (e.g. a word) per row and producing one output (e.g. a parse string) per row.
We want to assess the robustness of the system. To this end, we need to evaluate the
performance of the system when applied to input with increasing amounts of noise. The
proposed method is applicable to most NLP system, but parsers will be used here for
the clarity of exposition.

Naturally, the performance of an NLP system can be better assessed with an annotated
resource. To begin with, the discussion here will include such a resource. The aim is to
establish how much information can be gained concerning the performance of the NLP
system without the annotated resource.

We require a text to be used in the evaluation. The text will be processed by the
NLP system (i.e. a parser). Even though the text can be chosen arbitrarily, we simplify
the exposition of the method by using the text from a treebank; but keep in mind that
the method does not require an annotated resource. We introduce spelling errors in the
text to determine the performance of the NLP system under the influence of noisy and

144 J. Bigert et al.

ill-formed input. To this end, we use a freeware program called Missplel [8], producing
human-like spelling errors. We introduce spelling errors simulating keyboard mistypes.
To avoid alternate interpretations of a sentence, the spelling errors result only in words
not present in a dictionary. For more details on the introduction of spelling errors, we
refer to [4].

Three different data sources are involved in the discussion of the evaluation method.
The three files have the same number of rows since they all originate from the same text
(i.e. the text in the treebank). For each row, they contain a data pair: a word (that may
or may not be misspelled) and a parse string for that word. Only the parse part is used
here.

The first file, denoted m, is the manually checked annotated resource (e.g. a tree
bank). The second file, denoted 0 (zero), is the output of the NLP system when applied
to the original treebank text (0% errors). The third file, denoted n, is the output of the
NLP system when applied to the text containing errors (e.g. n = 5% of the words in the
file are misspelled). Clearly, a file containing n% errors is more difficult to parse than
an error-free text and we want to determine how difficult.

2.1 Five Cases

Given one row of the treebank, the 0% file and the n% file, we analyze the different
cases that may occur. Say that the treebank parse (i.e. the correct answer) is a. The 0%
file either contains the correct answer a, or an incorrect answer b. Furthermore, the n%
file may contain the correct answer a, the same incorrect answer as the 0% file b or even
another incorrect answer c. From this, we obtain several different combinations.

We introduce a notation (denotedm0n) consisting of three columns. The first position
is the parse found in the treebank m, the second is the 0% file 0 and the third is the n%
file n. For example, abc means that the parse from the treebank was a, the parse from
the 0% file was b and the parse found in the n% file was c.

Thus, using the new notation, we get five different cases when comparing parses of a
single word: aaa, aab, aba, abb and abc. See Table 1 for an example. The first case
aaa is the most common, where all three files agree on the same parse. Second, aab
is the case where an error nearby in the text corrupted the parsing process of this row.
The third case aba is unusual, but not negligibly so. This may occur when the parser is
uncertain and chooses between two equal alternatives and arbitrarily chooses the correct
one at the n% level due to a nearby error in the text. The fourth case abb is common and
occurs when the parser does not know how to parse a correct grammatical construction.
The last case abc may be caused by an error introduced near a correct grammatical
construction that the parser cannot parse correctly. This case is uncommon.

Let xaaa, xaab, xaba, xabb and xabc correspond to the relative frequencies of the five
cases. For example, if abb occupies 10% of the rows, xabb = 0.10. Clearly,

xaaa + xaab + xaba + xabb + xabc = 1, (1)

since they cover all possible outcomes. Let acrm0 denote the accuracy when comparing
the m file (treebank) to the 0 file (error-free text). We see that

acrm0 = xaaa + xaab (2)

Unsupervised Evaluation of Parser Robustness 145

Table 1. An example of the different cases resulting from parsing a single word. Translation: Vi
(We) kan (can) välja (choose) att (to) säga upp (cancel) avtalet (the agreement)

(treebank) manual (error-free text) parser (n% errors) parser
word annotation word output word output case
Vi NP begin Vi NP begin Vi NP begin aaa
kan VP begin kan VP begin kna VP begin aaa
välja VP end välja VP end välja VP begin aab
att NP(inf) begin att Outside att NP(inf) begin aba
säga VP begin in NP säga VP begin säga VP begin in NP aba
upp VP end in NP upp VP end upö NP begin in NP abc
avtalet NP begin in NP avtalet NP begin avtalet NP begin abb

since only in cases aaa and aab, the two columns m and 0 contain the same output a.
Furthermore, by the same reasoning,

acrmn = xaaa + xaba and (3)

acr0n = xaaa + xabb. (4)

The xabb is included in the last equality since 0 equals n in abb even though they both
differ from m. The fact that they differ from the treebank cannot be established without
the correct answer m.

We say that the performance of the NLP system degrades when the performance
decreases with increasing levels of errors in the text. The degradation degrn is a com-
parison between the performance at the n% error level and the performance at the 0%
error level. Let

degrn = 1 − acrmn

acrm0
. (5)

Clearly, this is calculable only if you have access to acrmn and acrm0.
Normally, some sort of evaluation has been carried out to estimate the accuracy of

the parser on error-free text, denoted acr. High accuracy is obtained when the correct
answer m often corresponds to the output 0. Thus, the accuracy is a very good estimate
for acrm0 and we will use acrm0 = acr. Nevertheless, without the annotated resource,
we do not have access to or estimates for acrmn.

2.2 Upper and Lower Bounds

We want to estimate the degradation degrn without knowing acrmn. Without the an-
notated resource, we only have access to acr0n and acrm0 = acr. We will use these
to establish an upper bound degrupr

n for degrn. We want the value degrupr
n to be an

expression including acr and acr0n that can be proven to be greater than degrn.
We propose

degrupr
n =

1 − acr0n

acr
(6)

as an upper bound. We prove that degrupr
n is always greater than degrn by letting

degrupr
n = degrn + ε. (7)

146 J. Bigert et al.

Equations (1)–(2) and (4)–(6) give us

ε =
2xaba + xabc

acr
. (8)

We see that ε ≥ 0 since all x ≥ 0 and thus, degrupr
n ≥ degrn as required.

The smaller the value of ε, the better. From the discussion, we see that xaba and xabc

are normally quite small, which is promising.
We now turn to a lower bound for degrn. We propose

degrlwr
n =

1
2

degrupr
n =

1 − acr0n

2acr
. (9)

Again, as for the upper bound, the expression must be proven to be less than degrn. To
this end, we let

degrlwr
n + δ = degrn. (10)

From Equations (1)–(2), (4)–(5) and (9), we obtain

δ =
xaab − 3xaba − xabc

2acr
, (11)

which is non-negative when xaab ≥ 3xaba + xabc.
Both cases aab, aba and abc are the result of an introduced spelling error. With no

errors, xaab, xaba and xabc are all zero and with increased levels of introduced errors,
they will all increase. Hence, xaab, xaba and xabc are positively correlated. Furthermore,
it is clear that case aab is much more common than aba and abc since it involves
correctly parsed text at the 0% error level. The accuracy acr determines the amount of
correctly parsed text and thus, with reasonable accuracy, the above inequality holds with
a good margin of error. See Appendix A for details on the conditions under which the
above inequality holds. Section 3 further support that the inequality holds, since in all
experiments the left-hand side is more than twice the right-hand side.

From the above discussion and given the conditions, we have obtained

degrlwr
n ≤ degrn ≤ degrupr

n . (12)

2.3 Estimation of the Degradation

The simple relationship between the upper and lower bounds allows us to deduce some
further information. Given an upper bound degrupr

n and a lower bound degrlwr
n , we

want to estimate the position of the true value degrn. Clearly, degrn is somewhere in
between degrlwr

n and degrupr
n from Equation (12). Let degrest

n be the center of the interval
contained by the lower and upper bound, that is,

degrest
n =

1
2
(degrlwr

n + degrupr
n) (13)

and let γ be the distance from degrn to degrest
n . Then,

degrn + γ = degrest
n . (14)

Equations (7), (10) and (13) yield γ = (ε − δ)/2. Using Equations (8) and (11) results
in the explicit form

Unsupervised Evaluation of Parser Robustness 147

γ =
7xaba + 3xabc − xaab

4acr
. (15)

We see that γ is small if 7xaba + 3xabc ≈ xaab.
As the discussion above about the lower bound illustrated, xaab, xaba and xabc are

correlated. See Appendix A for a discussion on the conditions required to make γ small.
Though the experiments in Section 3 show that γ is quite small, we make no claims
that γ is equally small for all NLP systems. The estimations here are just theoretical
indications where the true value of degrn may reside.

We have indicated that degrest
n is, in theory, close to degrn. By using Equations (6)

and (9), we simplify and obtain an explicit formula for the estimated degradation:

degrest
n =

3
4

degrupr
n =

3(1 − acr0n)
4acr

. (16)

Hence, without having an annotated resource, we can estimate the robustness (degra-
dation) of the system quite accurately.

2.4 Accuracy

Now that the degradation of the performance has been established, we turn to the accu-
racy. The definition of degrn in Equation (5) states that degrn = 1−acrmn/acr. We are
interested in the accuracy of the NLP system on the n% file, that is, acrmn. Rearranging
the above equation yields

acrmn = acr(1 − degrn). (17)

Since degrn is unknown, we use degrupr
n , degrlwr

n and degrest
n to obtain bounds on

the accuracy:

acrlwr
mn = acr(1 − degrupr

n), (18)

acrupr
mn = acr(1 − degrlwr

n), (19)

acrest
mn = acr(1 − degrest

n). (20)

The estimation in Equation (20) is not precise, so we let

acrmn + λ = acrest
mn. (21)

From Equations (14), (17) and (20), we obtain

λ = acr · (−γ). (22)

Thus, if |γ| is small, |λ| is even smaller, and thus, acrest
mn is a good approximation of

the accuracy of the NLP system when applied to a file containing n% errors.

3 Empirical Results

Five different parsers were used to assess the accuracy of the evaluation method.
GTA [9] is a rule-based shallow parser. It relies on hand-crafted rules of which a few

are context-sensitive. The rules are applied to part-of-speech tagged text. GTA identifies
constituents and assigns phrase labels but does not build full trees with a top node.

148 J. Bigert et al.

FDG [10], Functional Dependency Grammar, is a commercial dependency parser.
It builds a connected tree structure, where every word points at a dominating word.
Dependency links are assigned a function label. FDG produces other information too,
such as morphological analysis and lemma of words, which is not used here.

A dependency parser by Nivre [11] uses a manually constructed grammar and assigns
dependency links between words, working from part-of-speech tagged text. We denoted
it the MCD parser (manually constructed dependency).

The Malt parser [12], another dependency parser, is based on the same algorithm as
MCD but uses a memory-based classifier trained on a treebank instead of a manually
constructed grammar. Unlike MCD, the Malt parser not only assigns dependency links
between words but also attaches function labels to these links.

A manually constructed context-free grammar for Swedish was used with an imple-
mentation of Earley’s parsing algorithm, as described in [13]. We denoted it the Earley
parser.

3.1 Parser Robustness Evaluation

In the evaluation, we used 100 000 words from the Stockholm-Umeå Corpus (SUC)
[14]. The SUC is a balanced collection of written Swedish, well proofread. The SUC is
annotated with part-of-speech information. It does not contain any parse annotation.

The 100 000 word text was parsed using each of the parsers. The parse results from
this error-free text (0% errors) constituted the0file, as defined in the first part of Section 2.
Spelling errors (resulting in non-existing words only) were randomly inserted into the
text, using a tool that emulates errors produced by a human, as described in Section 2.
The parse results from the misspelled text (containing e.g. 5% errors) constituted the n
file, also from Section 2. For the GTA, the MCD and the Malt parser, manually annotated
resources were available. The experiments on these are reported in the next section.

To see how the parser behaves with increasing amounts of errors, n = 1%, 2%, 5%,
10% and 20% of all words were randomly misspelled. To reduce the influence of chance,
10 different misspelled files were created for each error level. Using these, we calculated
the mean for the degradation, the accuracy and so forth. The variance between different
files was low. To simplify the evaluation, a freeware program called AutoEval [8] was
used for input and output handling and data processing.

The degradation estimates for a particular file were obtained by calculating acr0n,
that is, by comparing how many of the parses in the 0 file that corresponded to the parses
in the n file. From acr0n we calculated the upper and lower bounds as well as estimates
on the degradation and accuracy, as seen in Section 2.

The results for the five parsers are presented in Tables 2 through 6, which also
present the accuracy acr on error-free text. The first column reports on the amount of
errors in the text. The second is the amount of parse output that differs between the
rows of the 0 file and the n file. This value is 1 − acr0n. The third column presents the
degradation of the parser. The first value is the lower bound degrlwr

n and the second is
the upper bound degrupr

n . The figure in parentheses is the estimated degradation degrest
n .

The fourth column contains the estimations on the accuracy: lower bound acrlwr
mn , upper

bound acrupr
mn and estimated value acrest

mn.

Unsupervised Evaluation of Parser Robustness 149

Table 2. Estimated robustness of the GTA parser on 100 000 words. All figures are given in per
cent. Estimated accuracy on error-free text was 89%

Error level Output differs Estimated degradation Estimated accuracy
1 1.2 0.7 - 1.3 (1.0) 88 - 88 (88)
2 2.4 1.3 - 2.6 (2.0) 87 - 88 (87)
5 5.7 3.2 - 6.4 (4.8) 83 - 86 (85)

10 11 6.2 - 12 (9.4) 78 - 83 (81)
20 21 12 - 24 (18) 68 - 78 (73)

Table 3. Estimated robustness of the MCD parser on 100 000 words. Estimated accuracy on
error-free text was 82%

Error level Output differs Estimated degradation Estimated accuracy
1 0.9 0.5 - 1.1 (0.8) 81 - 82 (82)
2 1.7 1.1 - 2.1 (1.6) 81 - 81 (81)
5 4.3 2.6 - 5.3 (4.0) 78 - 80 (79)

10 8.6 5.2 - 10 (7.8) 74 - 78 (76)
20 17 10 - 20 (15) 66 - 74 (72)

Table 4. Estimated robustness of the Malt parser on 100 000 words. Estimated accuracy on
error-free text was 79%

Error level Output differs Estimated degradation Estimated accuracy
1 1.8 1.2 - 2.4 (1.8) 77 - 78 (77)
2 3.7 2.3 - 4.7 (3.5) 75 - 77 (76)
5 8.9 5.7 - 11 (8.5) 70 - 74 (72)

10 17 11 - 22 (16) 61 - 70 (66)
20 31 20 - 39 (29) 48 - 63 (55)

Table 5. Estimated robustness of the Earley parser on 100 000 words. Estimated accuracy on
error-free text was 90%

Error level Output differs Estimated degradation Estimated accuracy
1 0.8 0.5 - 0.9 (0.7) 89 - 90 (89)
2 1.7 0.9 - 1.8 (1.4) 88 - 89 (89)
5 4.1 2.3 - 4.5 (3.4) 86 - 88 (87)

10 8.2 4.5 - 9.1 (6.8) 82 - 86 (84)
20 16 9.1 - 18 (14) 74 - 82 (78)

The proposed method evaluates the robustness on one row at the time. For example,
if the first column says 5%, we have introduced errors in 5% of the words (with one
word per row). Similarly, if we report 11% in the second column (parse differs), then
11% of the parse output (with one parse per row) is different between the two files.

In the experiments, any deviation from the correct parse was considered an error, even
if it was “almost” correct (though the evaluation method could just as easily use a more
sophisticated analysis). Hence, parsers that provide richer information will generally be

150 J. Bigert et al.

Table 6. Estimated robustness of the FDG parser on 100 000 words. Estimated accuracy on
error-free text was 90%

Error level Output differs Estimated degradation Estimated accuracy
1 2.1 1.2 - 2.3 (1.7) 88 - 89 (88)
2 4.2 2.3 - 4.6 (3.5) 86 - 88 (87)
5 10 5.5 - 11 (8.3) 80 - 85 (83)

10 19 11 - 21 (16) 71 - 81 (76)
20 34 19 - 37 (28) 56 - 73 (65)

Table 7. Estimated robustness of the PoS tagger TnT on 100 000 words. All figures are given in
per cent. Estimated accuracy on error-free text was 96%

Error level Output differs Estimated degradation Estimated accuracy
1 0.7 0.4 - 0.7 (0.6) 95 - 96 (95)
2 1.4 0.7 - 1.5 (1.1) 95 - 95 (95)
5 3.6 1.9 - 3.7 (2.8) 92 - 94 (93)

10 7.2 3.7 - 7.5 (5.6) 89 - 92 (91)
20 14 7.5 - 15 (11) 82 - 89 (85)

less robust than parsers that return less information, since there are more possibilities
for errors.

Parsers base much of their decisions on the part-of-speech information assigned to
a word. Since part-of-speech taggers often guess the correct tag for regularly inflected
unknown words, the part-of-speech tagger is responsible for a large part of the robustness.
In Table 7, the estimated degradation of the part-of-speech (PoS) tagger TnT [15] is
shown. TnT was used for all parsers but FDG, which includes its own tagger.

Comparing the output of FDG on different versions of the same text is non-trivial,
since the tokenization may be altered by a misspelled word. Here, any tokens without
a directly corresponding token in the other text were ignored. All other tokenization
difficulties were interpreted to give FDG as many “correct” parses as possible. The 90%
accuracy for FDG is our estimation. Malt and MCD are similar in their construction but
their results are not really comparable since Malt assigns function labels and MCD does
not. On unlabeled output, Malt is more accurate than MCD.

3.2 Evaluating the Evaluation Method

Text with correctly annotated parse output was available for some of the parsers, though
only in small amounts. By using these, we wanted to assess the accuracy of the proposed
method.

For the GTA parser and the TnT part-of-speech tagger, we had a 14 000 word file of
manually corrected parse and tag data. For the MCD parser, we had a 4 000 word file
and for Malt we had 10 000 words. We used the text from these files and carried out the
same procedure as in the previous subsection, that is, introduced errors and evaluated.
We also had the correct answers from the annotated resource. From this, we calculated
the real degradation and accuracy.

Unsupervised Evaluation of Parser Robustness 151

Table 8. Estimated and actual robustness of the GTA parser on 14 000 words of manually annotated
text. All figures are given in per cent. Estimated parser accuracy on error-free text was 89%

Error level Output differs Estimated degradation Real degr. Estimated accuracy Real accur.
1 1.2 0.7 - 1.4 (1.0) 0.9 88 - 88 (88) 88
2 2.3 1.3 - 2.6 (1.9) 1.8 87 - 88 (87) 87
5 5.1 2.9 - 5.7 (4.3) 4.2 84 - 86 (85) 85

10 9.9 5.5 - 11 (8.3) 8.1 79 - 84 (81) 82
20 19 10 - 21 (16) 16 70 - 80 (75) 75

Table 9. Estimated and actual robustness of the MCD parser on 4 000 words of manually annotated
text. Estimated parser accuracy on error-free text was 82%

Error level Output differs Estimated degradation Real degr. Estimated accuracy Real accur.
1 0.7 0.4 - 0.8 (0.6) 0.6 82 - 82 (82) 82
2 1.7 1.0 - 2.0 (1.5) 1.4 81 - 82 (81) 81
5 4.0 2.5 - 4.9 (3.7) 3.2 78 - 80 (79) 80

10 8.3 5.0 - 10 (7.6) 6.6 74 - 78 (76) 77
20 16 9.6 - 19 (14) 13 67 - 74 (71) 72

Table 10. Estimated and actual robustness of the Malt parser on 10 000 words of manually
annotated text. Estimated parser accuracy on error-free text was 79%

Error level Output differs Estimated degradation Real degr. Estimated accuracy Real accur.
1 1.8 1.1 - 2.3 (1.7) 1.3 77 - 78 (77) 78
2 3.4 2.2 - 4.3 (3.2) 2.4 75 - 77 (76) 77
5 8.7 5.5 - 11 (8.3) 6.1 70 - 74 (72) 74

10 16 11 - 21 (16) 12 62 - 70 (66) 69
20 30 19 - 38 (29) 23 48 - 64 (56) 60

Table 11. Estimated and actual robustness of the TnT part-of-speech tagger on 14 000 words of
manually annotated text. Estimated tagger accuracy on error-free text was 96%

Error level Output differs Estimated degradation Real degr. Estimated accuracy Real accur.
1 1.1 0.6 - 1.1 (0.9) 0.9 95 - 95 (95) 95
2 1.9 1.0 - 2.0 (1.5) 1.6 94 - 95 (94) 94
5 3.9 2.0 - 4.1 (3.1) 3.6 92 - 94 (93) 92

10 7.3 3.8 - 7.6 (5.7) 6.7 88 - 92 (90) 89
20 14 7.4 - 15 (11) 13 82 - 89 (85) 83

The results are provided in Tables 8 through 11. As guaranteed by the proposed
method, the real degradation and accuracy are always between the lower and upper
bound. We see that the estimated degradation and accuracy are close or equal to the real
degradation and accuracy, as indicated in the discussion about γ in Section 2.3 and λ in
Section 2.4. Hence, there is strong reason to believe that the estimations on the 100 000
word files in Section 3.1 are also accurate. Furthermore, by using the results from a small

152 J. Bigert et al.

annotated resource (if available), we obtain a good estimate on the relation γ between
the real and the estimated degradation for the 100 000 file.

We note that rich information is a liability for at least two of the parsers, FDG and
Malt. Thus, comparing the robustness figures between two parsers is not entirely fair.
Nevertheless, if the objective is reluctancy to change the output when facing unrestricted
and noisy text, the figures are accurate.

We also note that the proposed method could easily be adapted to other types of
output besides the row-based used here. This might require a small adjustment of the
estimations in the theory section.

4 Conclusions

We have presented a method to estimate the robustness of an NLP system. The method
provides lower and upper bounds as well as estimates on the actual robustness. The
main strength of the evaluation is that neither manual work nor annotated resources
are required. The only requirements are an arbitrary (unannotated) text and an estimate
of the accuracy of the parser on error-free text. Thus, we have eliminated the need for
expensive and time-consuming manual labor.

The proposed method is applicable to any language and most annotation schemes
and NLP systems. Even though spelling errors have been used here as an example in the
presentation of the method, any error type can be used to simulate noise. Using annotated
resources, we have assessed the reliability of the unsupervised evaluation and found that
the estimates were quite accurate. We conclude that the proposed method is a reliable
and highly timesaving tool for the evaluation of NLP system robustness.

A Conditions

We want to determine the circumstances under which the restriction on δ holds, that is,
when

δ =
xaab − 3xaba − xabc

2acr
≥ 0, (23)

as discussed in Section 2.2. Furthermore, we will establish the requirements for γ to be
small, i.e. when

γ =
7xaba + 3xabc − xaab

4acr
≈ 0. (24)

A few assumptions are required. We know from Equations (1) and (4) that

xaab + xaba + xabc = 1 − acr0n. (25)

We are interested in an approximation of xaab. We will assume that xaab/(1−acr0n) =
acr. That is, we assume that xaab compared to the three cases xaab+xaba+xabc is about
the same as the accuracy acr compared to one (the sum of all cases). The reader should
take a moment to recognize that this is not an unreasonable estimation. We rearrange
the above approximation and obtain

xaab = acr(1 − acr0n). (26)

Unsupervised Evaluation of Parser Robustness 153

From this and Equation (25), we get

xaba + xabc = (1 − acr)(1 − acr0n). (27)

Our second assumption is that

xaba ≤ xabc. (28)

The two cases aba and abc originate from a grammatical construct that could not be
parsed by the system. When an error is introduced, the parser changes its output. The
most probable is that the change results in something erroneous, as in abc.

We use the assumptions with δ in Equation (23):

δ = (xaab − 3xaba − xabc)/2acr ≥
(xaab − 2(xaba + xabc))/2acr ≥ 0

⇐⇒ acr − 2(1 − acr) ≥ 0.

Hence, the inequality in Equation (23) is satisfied if acr ≥ 2/3. If we have an accuracy
of more than 67%, the lower bound for the degradation is valid.

We repeat the above process with γ in Equation (24) and obtain

γ = (7xaba + 3xabc − xaab)/4acr ≤
(5(xaba + xabc) − xaab)/4acr ≤ 0

⇐⇒ 5(1 − acr) − acr ≤ 0.

Hence, γ in Equation (24) is negative if acr ≥ 5/6 = 83.3%. On the other hand,

γ = (7xaba + 3xabc − xaab)/4acr ≥
(3(xaba + xabc) − xaab)/4acr ≥ 0

⇐⇒ 3(1 − acr) − acr ≥ 0.

Now, γ is positive if acr ≤ 3/4 = 75%. Thus, for parsers with reasonable accuracy, γ
will be small and the approximation of the degradation will be accurate.

References

1. Carroll, J., Briscoe, T., Sanfilippo, A.: Parser evaluation: a survey and a new proposal. In:
Proceedings of LREC 1998, Granada, Spain (1998) 447–454

2. Hogenhout, W.I., Matsumoto,Y.: Towards a more careful evaluation of broad coverage parsing
systems. In: Proceedings of Coling 1996, San Francisco, USA (1996) 562–567

3. Menzel, W.: Robust processing of natural language. In: Proceedings of 19th Annual German
Conference on Artificial Intelligence, Berlin, Germany (1995) 19–34

4. Bigert, J., Knutsson, O., Sjöbergh, J.: Automatic evaluation of robustness and degradation in
tagging and parsing. In: Proceedings of RANLP 2003, Bovorets, Bulgaria (2003)

5. Vilares, M., Darriba, V.M., Vilares, J., Rodriguez, R.: Robust parsing using dynamic pro-
gramming. Lecture Notes in Computer Science 2759 (2003) 258–267

6. Foster, J.: Parsing ungrammatical input: An evaluation procedure. In: Proceedings of LREC
2004, Lisbon, Portugal (2004) 2039–2042

7. Li, X., Roth, D.: Exploring evidence for shallow parsing. In Daelemans, W., Zajac, R., eds.:
Proceedings of CoNLL 2001, Toulouse, France (2001) 38–44

8. Bigert, J., Ericson, L., Solis, A.: Missplel and AutoEval: Two generic tools for automatic
evaluation. In: Proceedings of Nodalida 2003, Reykjavik, Iceland (2003)

154 J. Bigert et al.

9. Knutsson, O., Bigert, J., Kann, V.: A robust shallow parser for Swedish. In: Proceedings of
Nodalida 2003, Reykjavik, Iceland (2003)

10. Voutilainen,A.: Parsing Swedish. In: Proceedings of Nodalida 2001, Uppsala, Sweden (2001)
11. Nivre, J.: An efficient algorithm for projective dependency parsing. In: Proceedings of IWPT

2003, Nancy, France (2003) 149–160
12. Nivre, J., Hall, J., Nilsson, J.: Memory-based dependency parsing. In: Proceedings of CoNLL,

Boston, MA (2004)
13. Megyesi, B.: Data-Driven Syntactic Analysis – Methods and Applications for Swedish. PhD

thesis, KTH, Stockholm, Sweden (2002)
14. Ejerhed, E., Källgren, G., Wennstedt, O., ström, M.: The Linguistic Annotation System

of the Stockholm-Umeå Project. Department of Linguistics, University of Umeå, Sweden
(1992)

15. Brants, T.: TnT – a statistical part-of-speech tagger. In: Proceedings of ANLP 2000, Seattle,
USA (2000)

Å

	Introduction
	Proposed Method
	Five Cases
	Upper and Lower Bounds
	Estimation of the Degradation

	Empirical Results
	Parser Robustness Evaluation
	Evaluating the Evaluation Method

	Conclusions
	A Conditions
	References

