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Abstract. Intypical RSA, it is impossible to create a key pair (e, d) such
that both are simultaneously much shorter than ¢(IN). This is because
if d is selected first, then e will be of the same order of magnitude as
@(N), and vice versa. At Asiacrypt’99, Sun et al. designed three variants
of RSA using prime factors p and ¢ of unbalanced size. The first RSA
variant is an attempt to make the private exponent d short below N2
and N°%292 which are the lower bounds of d for a secure RSA as argued
first by Wiener and then by Boneh and Durfee. The second RSA variant
is constructed in such a way that both d and e have the same bit-length
%log2 N + 56. The third RSA variant is constructed by such a method
that allows a trade-off between the lengths of d and e. Unfortunately,
at Asiacrypt’2000, Durfee and Nguyen broke the illustrated instances of
the first RSA variant and the third RSA variant by solving small roots
to trivariate modular polynomial equations. Moreover, they showed that
the instances generated by these three RSA variants with unbalanced
p and ¢ in fact become more insecure than those instances, having the
same sizes of exponents as the former, in RSA with balanced p and q.
In this paper, we focus on designing a new RSA variant with balanced d
and e, and balanced p and ¢ in order to make such an RSA variant more
secure. Moreover, we also extend this variant to another RSA variant in
which allows a trade-off between the lengths of d and e. Based on our
RSA variants, an application to entity authentication for defending the
stolen-secret attack is presented.

Keywords: RSA, Short Exponent Attack, Lattice Reduction, Entity
Authentication

1 Introduction

RSA [14], the most popular public key cryptosystem, was announced in 1978 by
Rivest, Shamir, and Adleman at MIT. However, RSA suffers from heavy com-
putation because it requires exponentiation operations modulo a large integer N
(N = pq, a product of two large primes). The RSA encryption and decryption
time is almost proportional to the number of bits in the exponent. In order to
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reduce the RSA encryption (signature verification) time or decryption (signa-
ture generation) time, it is important to choose a small public exponent or a
short private exponent. Generally speaking, in standard RSA, encryption are
much faster than decryption because the public exponent is usually selected as
216 41, while the private exponent is of the same order of magnitude as ¢(N). In
some applications, one would like to accelerate decryption process. Thus select-
ing a short private exponent is preferred. In such a case, the encryption will be
cost-ineflicient because the size of public exponent will be of the same order of
magnitude as ¢(N). Towards to the use of RSA with short private exponent, one
must be careful with the short exponent attacks on RSA. In 1990, Wiener [21]
first showed that the instances of RSA cryptosystem with short secret exponent
(d < N%25) are insecure because one could find the short private exponent d
in polynomial time by using the continued fractions algorithm. In 1999, Boneh
and Durfee [2] showed how to improve the bound of Wiener up to d < N©292,
Their attack is based on the famous L3-lattice reduction algorithm [10] by Cop-
persmith [4] on finding small roots of particular bivariate modular polynomial
equations.

At Asiacrypt’99, Sun, Yang, and Laih [17, 18] designed three variants of RSA
using prime factors p and ¢ of unbalanced size. The first RSA variant is an at-
tempt to make the private exponent d short below Wiener’s bound [21] and
Boneh and Durfee’s bound [2]. In this variant, the RSA system is constructed
from p and q of different sizes in order to defend against the well-known short pri-
vate exponent attacks. They claimed that when p and ¢ are unbalanced enough,
d can be even smaller than N%25. A suggested choice of parameters is: p of 256
bits, g of 768 bits, and d of 192 bits. Note that in this variant, e is determined
as that in typical RSA, hence e is of 1024 bits. The second RSA variant is con-
structed in such a way that both d and e have the same bit-length % log, N + 56
by choosing unbalanced p of %log2 N — 112 bits and ¢q of %logQ N + 112 bits re-
spectively. The motivation of this variant is for balancing and minimizing both
public and private exponents. A suggested choice of parameters is: p of 400 bits, ¢
of 624 bits, d of 568 bits, and e of 568 bits. The third RSA variant is constructed
by such a method that allows a trade-off between the lengths of d and e (that
is log, e + log, d = logy N + i, where I, is a predetermined constant, e.g., 112)
under the limitation of log, p + log, d < logy N (assuming p < ¢). The purpose
of this variant is for rebalancing the computation cost between encryption and
decryption. By this method, one may shift the work from decryptor to encryptor.
An illustrated instance of RSA has the parameters: p of 256 bits, ¢ of 768 bits,
d of 256 bits, and e of 880 bits. Unfortunately, Durfee and Nguyen [5] broke the
illustrated instances of the first RSA variant and the third RSA variant by solv-
ing small roots to trivariate modular polynomial equations. They also showed
that the instances generated by these three RSA variants with unbalanced p and
q in fact become more insecure than those instances, having the same sizes of
exponents as the former, in RSA with balanced p and ¢. In this paper, we are
interested in enhancing the security of Sun et al.’s RSA variants by using bal-
anced p and ¢. It is clear that for the first RSA variant, the improved one with
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balanced p and ¢ is in fact the standard RSA. Hence, it is impossible to make d
short below Boneh and Durfee’s bound and Wiener’s bound. Therefore, we will
not focus on the first variant. For the second RSA variant, it is unable to make p
and ¢ balanced because p is of % logy N — 112 bits and q is of % logy N + 112 bits
in this variant. For the third RSA variant, the possible constructed RSA with
balanced p and ¢ are only those instances of RSA with d of %log2 N bits and
e of %1og2 N + I, bits. This is due to the limitation of log, p + log, d < log, V.
In this paper, we focus on designing a new RSA variant with balanced p and
¢, and balanced d and e in order to make such an RSA variant more secure
against the Durfee-Nguyen attack and the other existing attacks. Moreover, we
also extend our variant to another RSA variant in which p and ¢ are balanced
and log, e +log, d =~ logy N + [;,. Compared with RSA using CRT-based decryp-
tion (RSA-CRT for short), our schemes seem not to provide better performance
for decryption. However it is still an interesting topic like those short exponent
attacks [2,21] working on the standard RSA. Moreover, based on our schemes,
we present an application to entity authentication for defending the stolen-secret
attack. On the contrary, RSA-CRT can not be applied to the application. We
refer the readers to Section 7.

This paper is organized as follows. In Section 2, we review the standard RSA,
RSA-CRT, Sun et al.’s RSA variants, and recall some well-known attacks on RSA
with short private exponent. In Section 3, we present a new RSA variant with
balanced p and ¢, and balanced e and d; and show the flexibility for constructing
such an RSA variant. In Section 4, we analyze the security of this proposed RSA
variant. In Section 5, we extend the proposed RSA variant in Section 3 to another
RSA variant in which p and ¢ are balanced and log, e + logy d =~ logy N + .
In Section 6, we show the experimental results of our implementations for our
schemes. In Section 7, we compare our RSA variants with RSA-CRT, and give
an application based on our RSA variants. Finally, we conclude this paper in
Section 8.

2 Preliminaries

2.1 Description of Notations

The notations in Table 1 are used throughout this paper.

2.2 The Standard RSA and RSA-CRT

In standard RSA, N = p X ¢ is the product of two large primes p and ¢. The
public exponent e and private exponent d satisfy e x d = 1 mod ¢(N), where
d(N) = (p—1)(¢ — 1) is the Euler totient function of N. Here, N is called the
RSA modulus. The public key is the pair (N, e) that is used for encryption (or
signature verification): ¢ = m® mod N. The private key d is to enable decryption
of ciphertext (or signature generation): m = ¢? mod N. Traditionally, we select
two primes (of 512 bits) p and ¢ first, and then multiply them to obtain N (about
1024 bits). Next, we pick the public exponent e first, and then determine the
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Table 1. Notations.

D, q: The two large primes of RSA.
N : The product of two large prime factors p and ¢, i.e. N =p X q.

e, d: The public exponent and private exponent, ed = 1 mod ¢(IV).
A The prime difference, A = |p — ¢].

S d=N°.

w : e=N".

' lp—q|=N".

Ix : The bit-length of a variable X.

private exponent d by d = e~ ! mod ¢(N), or we select the private exponent d
first, and then compute the public exponent e by e = d~! mod ¢(N). For the
deduction mentioned above, either e or d is of the same order of magnitude as
#(N). Instead of computing m = ¢? mod N, RSA-CRT computes m; =c% mod
p, and mo=c% mod ¢, where dp = dmodp —1 and d; = d mod ¢ — 1, then
applying the Chinese Remainder Theorem, one may easily recover m by mq
and mo.

2.3 Sun, Yang, and Laih’s RSA Variants

At Asiacrypt’99, Sun et al. [17,18] designed three variants of RSA using prime
factors p and ¢ of unbalanced size. The first variant of RSA is an attempt to make
the private exponent d short below Wiener’s bound and Durfee and Nguyen’s
bound. In this variant, the RSA system is designed by unbalanced p and ¢ in
order to defend against all existing attacks on short private exponent. The second
variant of RSA is an attempt to balance and minimize both public and private
exponents. It is constructed in such a way that both d and e have the same
size of %logQ N + 56 bits by choosing unbalanced p of %1og2 N — 112 bits and
q of %logg N + 112 bits respectively. The third variant of RSA is an attempt
to rebalance the computation cost between encryption and decryption. By this
variant, one may shift the work from decryptor to encryptor. It is constructed
by such a method that allows a trade-off between the lengths of d and e (that is
log, e + log, d =~ log, N + 112) under the limitation of log, p + log, d < log, N.
Due to the limit of space, we describe the details of these three RSA variants in
Appendix A.

Very soon, Durfee and Nguyen [5] broke the illustrated instances of the first
RSA variant and the third RSA variant. Moreover, they showed that the in-
stances generated by these three RSA variants with unbalanced p and ¢ in fact
become more insecure than those instances, having the same sizes of exponents
as the former, in RSA with balanced p and q. We describe their attack later.

2.4 Attacks on RSA with Short Private Exponent

Wiener’s Attack and Its Extensions. Wiener’s attack [21] is based on con-
tinued fractions algorithm to find the numerator and denominator of a fraction
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in polynomial time when a sufficiently close estimate of the fraction is known. He
showed that the RSA system can be totally broken if the private exponent is up
to approximately one-quarter as many bits as the modulus under both p and ¢ of
approximately the same size. For simplicity, we slightly modify Wiener’s attack
in the following way. Since ed = 1 mod ¢(N), there exists a k, ged(d, k) = 1, such
that ed = k¢(N) + 1. So, |ﬁ — §| = W' Hence, 7 is an approximation of
70wy We can rewrite the equation: ed = kEp(N)+1 as: ed = k(N —(p+q)+1)+1.
As pointed out by Pinch [12],if p < ¢ < 2pand d < $N%% then p+¢—1 < 3N
and k < d < %NO'%. Using N in place of ¢(N), we obtain:

e k, klptqg—1-1) 1 1 1
— _ 2 = < _ -
N3 AN S aN0Z S 32 S o2

Thus gcan be found because it is one of the log N convergents of the continued
fraction for .

The extension of Wiener’s attack was proposed by Verheul and Tilborg [19].
When d > N%25 their attack needs to do an exhaustive search for about 2t + 8
bits, where ¢ ~ logQ(%). In addition, Weger [20] further proposed another
extension of Wiener’s attack in the case when the prime difference of N, A =
|p — ¢l, is small. Let the prime difference A = |p — q| = N7 for 0.25 < v < 0.5,
and d = N°. Weger showed that if § < % — 7, one could find the short private
exponent d using Wiener’s attack. Thus Weger improved Wiener’s bound from

§<025t00 <3 —r.

The Boneh-Durfee Attack and Its Extension. Based on solving the small
inverse problem, Boneh and Durfee [2] proposed another attack on RSA with
short private exponent, which leads to a better bound than that proposed by
Wiener [21]. They concluded that if e ~# N and d < N°22) then the private
exponent d can be found efficiently.

In typical RSA system, ed = k¢(N) + 1, e = N¥ and d = N°. So, ed =
kp—1)(g=1)+1=k(N+1)=(p+q)+1 Lt A=N+1,5s=—(p+q),
and t = —k. Then ed + t(A + s) = 1. Thus, (A + s) = 1(mod e) and we can
bound s and ¢ by |¢]| < 3e!+°5 and ls| < 2¢=7 . Boneh and Durfee took @ ~ 1
and ignored small constants, and ended up with the following problem: finding
integer ¢ and s such that ¢(A + s) = 1(mod e) where |s| < e%° and |t| < €.

Now, we have a simple review of the lattice theory first. Let vy,..., v, € Z"
be linearly independent vectors with w < n. A lattice L spanned by (vy, ...,
Uy ) s the set of all integer combinations of vy,..., v,,. We denote by v7,..., v}

w
the vectors obtained by applying the Gram-Scmidt process to the vectors vy,...,

vy. We define the determinant of the lattice L as det(L) := 111071||v;* |, where
[|.]| denotes the Euclidean norm on vectors. We say that the lattice is full rank
if w = n. For a lattice L spanned by (v1, ..., vy), the LLL algorithm runs in
polynomial time and produces a new basis (r1, ..., 7,) of L as ||r1|| < 2% det(L)w
and ||| < 297
basis.

1
det(L)@™-1, ry and ry are two shortest vectors in the new
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Boneh and Durfee solved the small inverse problem by using Coppersmith’s
approach [4]. Recall that let h(x,y) € Z[x,y] be a polynomial which is a sum of
at most w monomials. Suppose that (1) h(zg,yo) = 0 mod e™ for some positive
integer m where |zo| < X and |yo| <Y, and (2) ||h(zX,yY)|| < e™/y/w, then
h(zo,yo0) = 0 holds over the integers.

The small inverse problem is the following: given a polynomial f(x,y) =
z(A+y) — 1, find an (z0,y0) as f(zo,%0) = O(mod e) where |zo| < e’ and
lyo| < €%®. We would find a polynomial with a small norm that has (zg,yo)
as a root modulo e™ for some positive integer m. Boneh and Durfee defined
the polynomials g; i (z,y) = 2* f¥(x,y)e™ % and h; (2, y) = v/ f*(z,y)e™ " for
k =0,...,m, where g; x(z,y) is called x-shifts and h;x(z,y) is called y-shifts.
For each k, they used g¢; x(zX,yY) for ¢ = 0,...,m — k and used h;,(zX,yY)
for 7 = 0,...,t, where t is minimized based on m. Observe that the matrix is
triangular and has a dimension w + t(m 4+ 1). The determinant of the
lattice can be easily computed as the product of the diagonal entries

det, = em(m+l)(m+2)/3 . Xm(m+1)(m+2)/3 . Ym(m+l)(m+2)/6
dety _ etm(erl)/Q . Xtm(erl)/Q . Yt(m+1)(m+t+l)/2'

Let det(L) = det, - det,. By Ignoring the denominator in order to simplify the
derivations, we get the condition det(L) < e™". Finally, on the basis of the
lattice theory and Coppersmith’s approach, We deduce that

For large m, this converges to § < % — g ~ 0.285. By working on a sub-
lattice, the bound on ¢ can be improved to § < 1 — @ ~ 0.292.
Another improvement was proposed by Wager [20]. He showed that RSA is

insecure when the length § of the private exponent isin 2—4y < § < 1—4/2vy — %,
where [p — q| = N7 and d = N°.

The Cubic Attack. Here, we review the cubic attack in [17,18]. In RSA,
N = pq and ed = k(p — 1)(¢ — 1) + 1, therefore, the modular equations are
k(p—1)(g— 1) +1 = 0(mod ¢) and pg = N(mod e). According to the above
two equations, we can obtain one cubic equation with two variables k and p :
k(p —1)(N — p) +p = 0(mod e). If log, k + log, p < 3 log, €, we can solve such
a cubic equation heuristically using Coppersmith’s technique [4].

2.5 The Durfee-Nguyen Attack and Its Extension

Extending the Boneh-Durfee attack, Durfee and Nguyen [5] attacked Sun et al.’s
RSA variants by solving small roots to trivariate modular polynomial equations
using Coppersmith’s lattice technique. From the RSA equation ed = k¢(N)+1 =
k(p—1)(¢g—1)+1,let A= N +1, it implies 1 + k(A — p — ¢) = 0(mod e).
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Table 2. Largest § (where d < N‘;) for which Durfee-Nguyen’s attack can be completed.

logy (€)

1.0 09 08 08 07 06 055
0.5]0.284 0.323 0.339 0.363 0.406 0.451 0.475
0.4]0.296 0.334 0.350 0.374 0.415 0.460 0.48311

log(p) 0.3]0.334 0.369 0.384 0.406 0.446 0.487 0.510
0.250.3641 0.398 0.412111 0.433 0.471 0.511 0.532
0.2]0.406 0.437 0.450 0.470 0.505 0.542 0.562
0.1]0.539 0.563 0.573 0.588 0.615 0.644 0.659

They treated the above equation as a trivariate equation modular e with three
unknown variables, k, p, ¢, with the special property that the product pg of
two of them is the known quantity N. Here, the problem is regarded as given a
polynomial f(z,y,z) = xz(4A+y+ z) — 1, finding an integer solution (zq, yo, 20)
satisfying the equation f(zo,y0,20) = 0(mod e) where |zg] < X, |yo| < Y,
|z0| < Z, and ypzo = N. Note that the bounds are X = %, Y ~p, and Z =~ q.

To search for low-norm integer linear combinations of these polynomials of
the form e™~Vz¥ly 2243, f¥(z,y, 2), they chose the polynomials g ; »(x,y, 2) :=
e Friyazb fF(z,y, 2), for k = 0..(m — 1), i = 1..(m — k),and b = 0, 1; and,
hii(z,y,2) = e™ Fy*ti fF(z,y, 2), for k = 0.m and j = 0.., then fixed an
integer m, and let a and ¢ > 0 be integers which would be optimized later.
Following the LLL algorithm [4], they obtained two short vectors correspond-
ing to polynomials hy(z,y, 2), he(z,y,z) that had (k,p,q) as a root over the
integers; and letting z = %, they deduced these polynomials to bivariate poly-
nomials H; (x,y) and Ha(z,y) which had (k, p) as a solution. Taking the resultant
Res,(Hy(x,y), Ha(z,y)) produced an univariate polynomial H(y) which had p
as a root. They summarized the largest possible ¢ for which their attack could
succeed as shown in Table 2.

From Table 2, we conclude that instances from RSA with unbalanced p and
q are in fact more insecure than those from RSA with unbalanced p and ¢.An
improvement of Durfee-Nguyen’s largest ¢ was proposed by Hong et al. in [7].
They showed how to improve the bound from 0.483 to 0.486 when log (p) =~ 0.4,
logy(e) = 0.55 using Coppersmith’s theorem [4]. Because their attack is very
similar to the Durfee-Nguyen attack, we omit to review the details of their attack.

3 New RSA Variant with Balanced Exponents
and Balanced Prime Factors

Sun et al.’s second variant is designed for balancing and minimizing both public
and private exponents. An illustrated instance of this variant was given in [17,
18]. The illustrated instance has parameters: p of 400 bits, ¢ of 624 bits, d of 568
bits, and e of 568 bits. Although this instance is still secure against the Durfee-
Nguyen attack, however, as shown in Table 2, an instance of RSA with the same
size of d and e, and balanced p and ¢ is more secure than the illustrated instance
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in [17,18]. Unfortunately, it is impossible to make p and ¢ balanced in Sun et
al.’s second variant because p is of 3 log, N — 112 bits and ¢ is of £ logy N + 112
bits. In this section, we present a new RSA variant in which d and e are balanced,
and p and q are also balanced.

3.1 The Proposed Scheme

Our scheme is based on the Extended Euclidean algorithm [6]. Recall that for
two integers a,b > 1, if ged(a,b) = 1, then we can find a unique pair (up, vy)
satisfying aup — bvp, = 1,where (h — 1)b < up, < hb and (h — 1)a < v;, < ha, for
any integer A > 1. Our method is as follows:

Scheme A: input: [y and w; output: e, d,p,q and N.

Step 1. Randomly select a prime p of %l N bits.

Step 2. Randomly select a number k', such that &’ (p—1)isof %ZN + w bits,
where w is a security parameter, e.g., w = 56.

Step 3. Randomly select a number d of %ZN + w bits, such that gcd(k/ (p—
1),d) = 1.

Step 4. Determine u',v" such that du — k' (p— 1)’UI =1, where 0 < ' <
E(p—1)and 0 <o <d.

Step 5. If I, < 2ln + w, then assign w=u+k(p—1)andv =v +d.

Step 6. Try to find v o= k//q/, where [,» = w and q/ + 1 is a prime. If this
fails, go to Step 3.

Step 7. Let e=u', g=¢ + 1, and N = pq.

The algorithm will generate RSA instances in which both p and ¢ are approxi-
mately 3 log, N bits long, and both e and d are approximately (3 log, N +w) bits
long. Also the resulting e and d will satisfy ed = k'k” (p—1)(g—1)+1 = kp(N)+1,
where k = k'k”. Note that the prime p generated in Step 1 can be determined
arbitrarily, e.g., by selecting a strong prime p, but the prime ¢q generated in Step
7 cannot. Fortunately, for an RSA key the requirement that p and ¢ are strong
primes is no longer needed due to [15]. As an example, we construct an instance
of RSA that p is of 512 bits, ¢ is of 513 bits, and e and d are 568 bits (assigning
logy N ~ 1024, and w = 56). We show this instance in Appendix B.

3.2 Feasibility for the Algorithm

In this section, we show that the proposed algorithm in Section 3.1 is feasible.
Without loss of generality, we assume logy N =~ 1024, and w = 56. The critical
step in the above algorithm is Step 6. Because v’ is about of 568 or 569 bits, we
will try to find a lower bound for the probability of that being given a random
number x of 568 or 569 bits, it can be expressed in the form = = yz satisfying
le =568 or 569, [, = 56, [, = 512 or 513 or 514, and z + 1 being a prime.
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Theorem 1. The probability that given a randomly selected number x of 568

or 569 bits, it can be expressed in the form x = yz satisfying l, = 568 or 569,

ly =56, [, =512 or 513 or 514, and z + 1 being a prime is much higher than
1

387618 *

Proof. We omit the details due to the limit of space.

Based on Theorem 1, the existence and its probability for a random number
which can go through Step 6 in the proposed scheme has been evaluated. Now
we consider the cost for factoring a 568-bit v’ into the form: k”ql, where [,n =
56, in Step 6. Given a number v,, it is easy for us to find all prime factors of
v’ which are less than 56 bits by some well-known factoring algorithms, such as
ECM algorithm [8]. Then we can try to combine these prime factors to form a
56-bit k& in polynomial time.

4 Security Considerations

In this section, we analyze our scheme to thwart the previous well-known attacks
on short private exponent, including Wiener’s attack [21], the Boneh-Durfee
attack [2], the Durfee-Nguyen attack [5], the cubic attack [17,18], and their
extensions [7, 19, 20].

Defending Against Wiener’s Attack. We will check the security of our RSA
variant according to Wiener’s attack. It is clear that

k. k —1-1 %
¢ _kpta-loy kg

N d d N AN
In our variant, p and ¢ are about of 512 bits, and e and d are about of 568 bits,
s0 2511 < p < 9512 9l < o 9112 9567 < o 9568 9567 < j ~ 9568 Now, we

: k k 211 2511 1 11 :
can obtain |% — 3| > 3% > 5568 X 51034 — 3970 > 52 = 37136 - Thus, Wiener’s

attack does not apply to our scheme.

Defending Against the Boneh-Durfee Attack and the Durfee-Nguyen
Attack. Following Boneh and Durfee’s approach, let A=N+1, s = —(p+ q),
and t = —k. Thus t(A+5s) = 1(mod e). Let |s| < e* and [t| < €. The sufficient
condition for solving the small inverse problem is: 4a(28+a—1) < 3(1—B—a)%.

In our example, p and ¢ are about of 512 bits, and e and d are about of
568 bits, therefore, 2911 < p < 2512 211 < | < 2112 92567 < ¢ < 2568 9511 <
d < 2°12. We can calculate |s| = [p+ q| = e, |k| = €, ie. 2512 < (2568),
2112 < (2968)8 we can get a ~ %, 8 =~ % respectively. It is clear that
4a(28 + a — 1) = 1.06645 > 0.02916 = 3(1 — 3 — a)?. So, the Boneh-Durfee
attack cannot succeed.

Next, we examine the largest § (where d < N?) for which the Durfee-Nguyen
attack [5] can succeed. Our p is of 512 bits, then logy (p) = 0.5; e is of 568 bits,

568

then logy(e) = 0.55; and d is of 568 bits. So, we can figure out d ~ N1021 =~
NO-55 > NO-475 So our RSA variant is secure against the Durfee-Nguyen attack.
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Finally, we check the prime difference that Weger proposed.

2—4y=2-4xi=0andl—/2y—3=1—,/2x3—-2=1-105=
0.29289. In our RSA variant, the private exponent is of 568 bits. Therefore,
§ = 288 — 0.5546875 which is out of the range of 0 < § < 0.29289. So our RSA

1024
variant is secure against Weger’s attack [20].

Defending Against the Cubic Attack. According to Section 2.3.3 for the
cubic attack, in our variant, k is of 112 bits, p is of 512 bits, and e is of 568 bits.
It is clear that logy k +logy p =~ 112 + 512 = 624 >> %10g2 e % X 568, In such
a case, the cubic attack cannot work.

Defending Against an Exhaustive Search. One can check a guess for k
since p(N) = N+1—(p+q) = (—k)"! (mod e) andso (p+q) =N+ 1+ k!
(mod e). Since p + ¢ < e, this gives p + ¢ exactly and then we can test the
guess by checking whether aV*+1~(P+9) = 1(mod N) for a random value a. In
our proposed scheme, k is large enough (112 bits), an exhaustive search method
can not work effectively.

Defending Against Other Attacks. We also consider the extensions of the
above attacks, including the Verheul and Tilborg attack [19], the Weger attack
[20], and Hong et al.” attack [7]. There is no evidence showing that the proposed
scheme is insecure under these extensions. We also try to construct new poly-
nomial equations in which we expect to solve their roots using Coppersmith’s
lattice technique. So far we are unable to find any useful polynomial equation to
do that. Note that it is still an open problem if there exists any polynomial-time
algorithm for breaking Sun et al.’s second RSA variant. This also implies that so
far no feasible attacks can work well on the new RSA variant because breaking
the new RSA variant would be more difficult than breaking Sun et al.’s second
RSA variant.

5 New RSA Variant with Balanced Prime Factors
and Trade-Off Exponents

Sun et al.’s third RSA variant is designed for rebalancing the computation cost
between encryption and decryption. By this method, one may shift the work
from decryptor to encryptor due to log, e + logy d =~ logy N + I, where [ is
a predetermined constant, e.g., [;=112. However, the constructed RSA has the
limitation of logy, p + logy d < logy N (assuming p < ¢). That means that if
we make both p and ¢ have the same length, %logg N, the instances that can
be constructed by Sun et al.’s scheme are only those instances whose d are of
%logQN bits, and e are of %1og2N + I bits. Note that in the past, Sakai et
al. [16] proposed a key generation algorithm for RSA which provides the similar
goal as Sun et al.’s third variant. Regrettably, their algorithm is insecure due to
[17,18]. In this section, we present a new RSA variant with balanced p and ¢
and log, e + log, d =~ log, N + [}, without any other constraint. Without loss of
generality, we assume d < e. If d > e, we need only interchange them.
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Scheme B: input: Iy, 4, and li; output: e, d, p,q and N.

Step 1. Randomly select a prime p of %l N bits.

Step 2. Randomly select a number k" such that &’ (p—1)isof iy + 1k — lg
bits, where [ is a security parameter, e.g., I = 112, and [4 is the
bit-length of d.

Step 3. Randomly select a number d of I4 bits, such that ged(k' (p—1),d) = 1.

Step 4. Determine u',v" such that du’ — k' (p — 1)1)/ =1, where 0 < v’ <
E(p—1)and 0 < v <d.

Step 5. If [,/ < lq4, then assign u=u 4k (p—1) and v =0 +d.

Step 6. (Case I) If I; > iy, try to find v =k"q, where I, = (I — 3IN)
and q, + 1 is a prime. If it fails, go to Step 3; else e = ul, q= q, +1,
and N = pq.

(Case IT) If Iy < Ly, try to find & = k¢, where [,y =l and tv' +1
is a prime. If it fails, go to Step 3; else e = u, q = tv’ + 1, and
N =pq.

Here we omit to analyze the feasibility for this algorithm and the security for
this variant because these analyses are very similar to those of Scheme A. Instead,
we illustrate two instances constructed from this variant. The first instance has
p and ¢ of 512 bits, d of 540 bits, and e of 596 bits; and the other one has p and
q of 512 bits primes, d of 512 bits, and e of 624 bits. These two examples are
shown in Appendix C.

6 Implementations for the Proposed Schemes

In order to show that our schemes are actually feasible, we implemented our
algorithms and measured the average running time for three different sizes of
RSA. The main component in our implementations is the factorization method.
In our implementations, we select Pollard p — 1 method [13] as our fundamen-
tal factorization method. Furthermore, the programming language used for our
implementations is C under NTL with GMP (GNU Multi-Precision library) on
Windows systems using Cygwin tools. The machine we used is a personal com-
puter (PC) with 2.8GHz CPU and 512MB DRAM. We consider three different
cases for comparisons. The first case has p and ¢ of 512 bits, d and e of 568 bits;
the second case has p and ¢ of 512 bits, d of 540 bits, and e of 596 bits; the third
case has p and ¢ of 512 bits, d of 512 bits, and e of 624 bits.

Table 3 shows the results and conditions for generating RSA key pairs in our
schemes. The item “B_Bound”, a predetermined integer using the Pollard p — 1
method, denotes the upper bound for all prime power divisors of p — 1. This
value is chosen by experience in our program. The item “AverageTime” denotes
the average running time for each case upon testing 100 samples. The item
“AverageLoopNum” counts the number of loops running from Step 3 to Step 6.
Note that what we are doing in Step 6 of our implementations is only to find
small factors of v" and then try to compose part of these small factors into what
we need. According to our experiments, if one tries to factor v completely, then
“AverageLoopNum” will be smaller, but “AverageTime” will be longer because
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Table 3. Experimental results in PC platform of 2.8GHz CPU, 512M DRAM.

Scheme A Scheme B
In = 1024 In =1024 |ln = 1024
Input le = 568 le =596 | lc =624
(Bit-length) lg = 568 lg =540 | 1y =512
w = 56 ly =112 | [ =112
B_Bound 150 30
AverageTime (sec) 1060.93 20.61 0.46
AverageLoopNum 290490 29273 319

the time will be dominated by the factorization. From Table 3, we know that the
more balanced e and d are, the more time-consuming our algorithms are. The
most time-consuming case is exactly Scheme A. The average time for generating
such a key pair is about 16 minutes under our implementations. This may be
heavy for the end user’s use. However, it can be much improved by some parallel
techniques and/or high-end computers in the case when the RSA key pair must
be generated and issued by centralized control. For example, a trusted CA issues
smart cards in which every user’s private key, public key, and the corresponding
certificate are embedded by a smart card writer.

7 Discussion and Application

Comparing with the typical RSA with small e and randomly determined d,
Scheme A is about twice faster in decryption, but the public exponent e is about
of %l n bits. On the other hand, RSA-CRT achieves 4 times faster and can choose
small e, e.g. e=2'641. Thus, our variants can not provide better performance
than RSA-CRT. However RSA-CRT needs to keep more secrets (d,, dg, p, and ¢q)
than our schemes. Besides, RSA-CRT usually brings on some additional security
problems [9]. In the following, we further propose an application, based on RSA,
to entity authentication for defending a type of attack, called the stolen-secret
attack. It is remarked that our RSA variants can be applied to realize such an
application, while RSA-CRT can not.

With two-party authentication protocols in place, it would be easy for one
participant to establish trusted communication with the other. In general, there
are three approaches to designing authentication protocols. The first approach
is based on the public-key cryptosystem (involving signature mechanism). This
approach works under PKI environment and needs a trusted CA to support. The
second approach is based on a shared password which is easy to remember by
user. This approach usually need to be designed to defend the dictionary attack.
The third approach is based on a shared secret-key of a symmetric cryptosystem.
This approach uses symmetric-key encryption to validate the identity of protocol
participants. Here we consider the stolen-secret attack in which an adversary who
has stolen the secret (a private key, or a shared password, or a shared secret-key)
from one party can use it directly to masquerade as the other party. Among these
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three approaches, the first approach is secure against the stolen-secret attack
because one party’s private key leaked will not lead to a forgery of the other party.
However, it is only suitable for the environment with CA and PKI supporting.
For the password-based protocol, because two parties share a common password,
therefore it is insecure against the stolen-secret attack. An improvement for this
approach is called the verifier-based protocol in which one party (client) keeps
a password and the other one (server) keeps the corresponding verifier (usually
it is a hashed image of the password). Thus if the verifier is leaked, it will not
lead a forgery of the client. However, if the password is leaked (on the client
side), this will lead to a successful forgery of the server because the verifier can
be easily computed from password. As for the third approach, it is clear that
the stolen-secret attack can work well.

As mentioned above, the stolen-secret attack is a baffling problem in authen-
tication protocols. Here we attempt to enhance the secret-key based protocol
to defend the stolen-secret attack. In general, RSA system generates a key pair
(e,d), where the public key e is disclosed and the private key d is disguised. If
both e and d are kept secret by two parties respectively, and p and ¢ are un-
known to any one. Thus we can regard RSA as a secret-key cryptosystem. We
imagine that a key distribution center generates an RSA key pair (e,d) by using
the key generating algorithm in Scheme A. And then e is kept secret by Alice
and d is kept secret by Bob. The RSA modulus N is public but no one knows p
and ¢ exactly. Thus, neither Alice nor Bob can obtain the secret of each other.
Note that it is clear that RSA-CRT can not be used in such a situation because
p and g are unknown by any party.

In 1993, Bellare and Rogaway [1] proposed two provably secure symmetric-
key authentication protocols, MAP1 and MAP2. MAP1 is a mutual authenti-
cation protocol for two parties, and MAP2 allows arbitrary text strings to be
authenticated along with its flows. As our examples of defending the stolen-
secret attack, we modify MAP1 and MAP2 in the following. A brief outline
of these two protocols and our improvements are presented in Fig. 1 and Fig.
2. Here A% and B“® denote that Alice keeps a shared secret key a with Bob;
and A° and B? denote that Alice keeps e and Bob keeps d, where (e,d) is a
key pair of RSA using our scheme A. Let Rx denote a random challenge from
X and [z]p = (z, fx(x)),where fr(x) is a pseudorandom function family spec-
ified by key k. It is commonly believed that pseudorandom functions can be
well-implemented by encryption primitives in practice. Here we replace f(z)
by either a symmetric-key encryption with key & (in MAP1 and MAP2) or an
encryption of RSA with exponent k (in the improved MAP1 and the improved
MAP2). Here we remark that the plain RSA encryption can not be used directly
for practical purpose, some padding techniques, such as PKCS #1 and OAEP,
are required. We also note that although we limit our discussion to authentica-
tion protocols, there exists the even more important concept of key-distribution,
often coupled with authentication. Our improvements to defend the stolen-secret
attack can be also applied to those key distribution protocols whose security are
based on symmetric-key encryption.
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Ae B* A€ B¢
R Ry
[B.A.RA.RB]a — [B.A.RA.RB]d
Coee s Te
[A.RB]a [ARB]e
- -

Fig.1. MAP1 and Improved MAP1.

A® B® A° B?
Ra.Texty Ra.Textq
= 3 = 3
[B.A.Ra.Rp.Text1.Texts]q — [B.A.Ra.Rp.Text1.Texts)q

[A.RB.Textg]a [A.RB.Te:ctg]e
- —_—

Fig. 2. MAP2 and Improved MAP2.

8 Conclusions

As shown by Durfee and Nguyen, the more unbalanced the prime factors are,
the more insecure Sun et al.’s RSA variants are. In this paper, we propose a new
RSA variant with balanced prime factors and balanced exponents. It is clear
that this proposed variant is more secure than Sun et al.’s second RSA variant
with unbalanced prime factors and balanced exponents. As an example, we can
construct an instance of RSA with p of 512 bits, ¢ of 513 bits, and d and e of
568 bits. In addition, for repairing the security of Sun, Yang, and Laih’s third
RSA variant, we also present another RSA variant with balanced prime factors
and logy e + log, d =~ logy N + [, . This variant is designed for rebalancing the
computation cost between encryption and decryption. It should be noted that
in this variant the private exponent d must be large enough to defend against
the Durfee-Nguyen attack and its extensions. Based on RSA, we also give an
application to entity authentication in order to defend the stolen-secret attack.
Our RSA variants can be applied to realize such an application, while RSA-CRT
can not.
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Appendix A: Sun, Yang, and Laih’s RSA Variants

Scheme(I). input: Iy, l,, 14, and 7; output: e, d, p, ¢ and N.

Step 1. Select two random primes p < ¢ such that both p and N are suf-

ficiently large to defend factorization algorithms such as ECM [11]
and NFS [3].
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Step 2. Randomly select the secret exponent d such that lg + [, > %l ~ and
d > 27p%?, where v is the security parameter (larger than 64).
Step 3. If the public exponent e defined by ed = 1(mod¢(N)) is not larger

than 2V

5, one restarts the previous step.

It is clear that for the first RSA variant, the improved one with balanced
p and ¢ is, in fact, the standard RSA. Hence, it is impossible to make d short
below Boneh and Durfee’s bound and Wiener’s bound.

Scheme(Il). input: l; output: e, d, p,q and N.

Step 1. Randomly select a prlme pof & 5ln — 112 bits, and a k of 112 bits.

Step 2. Randomly select a d of 11y + 56 bits coprime with k(p —1).

Step 3. We can unique determmed two numbers w and v, such that du —
E(p—1)v =1,where 0 <u < k(p—1) ,0<v <d.

Step 4. If ged(v + 1,d) # 1,then go to step 2.

Step 5. Select a number h of 56 bits until ¢ = v + hd + 1 is prime.

Step 6. Let p,g,e = u+ hk(p—1),d, and N = pq are the parameters of RSA.

For the second RSA variant, it is impossible to make p and ¢ balanced because
p is of %1og2 — 112 bits and q is of & 5 logy N + 112 bits in this variant.

Scheme(IIl). input: Iy, 1y, lg,and Ix; output: e, d,p,q and N.

Step 1. Randomly select a prime number p of length [, such that it is large
enough to make an ECM [11] attack infeasible.

Step 2. Randomly select a number k of length I.

Step 3. Randomly select a number d of length l; and gcd(k( —1),d) = L.

Step 4. we can unlquely determine two numbers u’ and v such that du' —
k(p—1)v" =1, where 0 <’ < k(p—1) and 0 < v < d.

Step 5. If ged(v” +1,d) # 1, then go to Step 3.

Step 6. Randomly select a number A of length Iy — I, — Iy , then compute
w=1u4hk(p—1) and v = v + hd.

Step 7. If v + 1 is not a prime number, go to Step 6.

Step 8. Let p, g=v+1, e = u, d, and N = pq are the parameters of RSA.

For the third RSA variant, the possibly constructed RSA with balanced p and
q are only those instances of RSA with d of %log2 N Dbits and e of %log2 N+ I
bits, e.g., {x=112. This is due to the limitation of log, p + log, d < log, N.

Appendix B: An Instance of RSA
with Balanced Prime Factors and Balanced Exponents

As an example for Scheme A, we construct an instance of RSA with p of 512
bits, ¢ of 513 bits, d and e of 568 bits.

p = EB73E838 FE3A755B 1B08COA5 4070CF38 62046A3D 77E26D54 7T3EB8541
6662E060 25388EC1 17129F9F D3F7E81A 81CC11DC 0ED30F96 39E201C4
FACTTET73 73B75CDD
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q= 1 E47C6F97 82515CEE 69DA0782 A1ID1IDEF3 ATF15B88 F513242F
CF505867 24ABI9F4F 39349987 006B5AE6 3A0FBFA7 ATBBFAC7 8D6BOBEE
04089C0C TF82C605 85A66B79

d= F34255 6EB55834 5EB2023d 33DA5792 8C373385 86B72B71 DOA19BB6
4B490155 74BBB648 287F297F 86531387 4F17982D D854F694 82C19436
91F7FB5B B73BE6CB 66952AC4 1A416E69

e= DO01CD7 T7DAT7T5CA6 39247A84 45E39813 BI9SBF2DC 13DEEC98 D31725A4
52F83345 0647E852 0CAT70032 600B582B 1B2BB83F 9DF38D6E 1F73069C
C2B05BCB 81710127 D33D9414 D5654D39

Appendix C: Two Instances of RSA
with Balanced Prime Factors and Trade-off Exponents

As an example for Scheme B, we construct an instance of RSA with p and ¢ of
512 bits, d of 540 bits, and e of 596 bits.

p= DE7332C0 6DDB34F5 86598C8F 2F103983 EE86007F DFB44CBF F503F1EB
F4BCD507 23EA54EA 5E9AE43F 7TFC54021 CD026D8B C23B48CD DOOECDA?2
9054EBB5 C5A6D063

q= 89575BE4 F0310066 113CF04C 1220DAB725DD3F2F DD59BA09 3CC31FAC
467D17F9 2FA38A26 72D92E32 B91333FA 88F1D013 E5EB1A7T4 E4DE793E
E9A299A9 A7C0D24B

e= 88E33 2BF9879D 6AD5324B 6763FB22 E6D21B8D CB28E5SES 437AA101
D27D7992 42E507D3 D2639902 C58C4978 DTID5A0A CF515FAQ 028662AF
5F26F0FB AF60DF38 8E4409F3 63AE6806 B2045771

d= 8BB9953 6F0577AC DF1D6DBS8 0F76A4CF 992F8538 FCI9BEB6 5DEA50E1
124AB868 9BD989B3 D20ASECY B3D697AF 76F1C16F 4BD09BBC C8E53CCB
AC16B232 FD39134E 7E913009
As another example for Scheme B, we construct an instance of RSA with p
and ¢ of 512 bits primes, d of 512 bits, and e of 624 bits.

p=84A0CC27 66 ACCDA9 57646FC5 924AA056 5bE2AC1DA 1137B9DB AC6BE9D2
DDO09FA82 193D6205 0E62C4BD 0D2A0304 037DED34 03290E3A 748C6AF4
S80FB6880 828CF3A3

q =B187BA5F ABICABEC 765897BA B364DB52 D8959D5C BT765A725 1A1IEDCA3
19F9601D 2CE5D8A9 570386BB 1F016B40 6DDBE6C2 EBEA445F 14D48FD4
B7177E03 F4959BFF

e= D260 A347D9C1 76BSBC8B DB527877 F09489C0 E634E313 4ATFAB5C
A135EB1D A6410CBC CD497FB7 092C3CB2 2BA23E7D D02201B3 ABD9E989
584ED3C7 262A3ED0O CEFD6757 00E7TB6DC 414D77BA 050BF525

d= 91273082 5084AB61 D38E2142 3AEDSITE 97TFBDCEC 00081122 3FCF3B70
E3D5D8BE A5ADO7EF5 BOD67990 6C253F89 30A26574 FS80CDOF6 AOOTAEOA
6C131816 E85A4B35



	1 Introduction
	2 Preliminaries
	2.1 Description of Notations
	2.2 The Standard RSA and RSA-CRT
	2.3 Sun, Yang, and Laih’s RSA Variants
	2.4 Attacks on RSA with Short Private Exponent
	2.5 The Durfee-Nguyen Attack and Its Extension

	3 New RSA Variant with Balanced Exponents and Balanced Prime Factors
	3.1 The Proposed Scheme
	3.2 Feasibility for the Algorithm

	4 Security Considerations
	5 New RSA Variant with Balanced Prime Factors and Trade-Off Exponents
	6 Implementations for the Proposed Schemes
	7 Discussion and Application
	8 Conclusions
	References
	Appendix A: Sun, Yang, and Laih’s RSA Variants
	Appendix B: An Instance of RSA with Balanced Prime Factors and Balanced Exponents
	Appendix C: Two Instances of RSA with Balanced Prime Factors and Trade-o. Exponents



