
Weak Automata for the Linear Time µ-Calculus

Martin Lange

Institut für Informatik, University of Munich, Germany

Abstract. This paper presents translations forth and back between for-
mulas of the linear time µ-calculus and finite automata with a weak par-
ity acceptance condition. This yields a normal form for these formulas,
in fact showing that the linear time alternation hierarchy collapses at
level 0 and not just at level 1 as known so far. The translation from
formulas to automata can be optimised yielding automata whose size is
only exponential in the alternation depth of the formula.

1 Introduction

One of the main reasons for the apparent success of automata theory within
computer science is the tight connection that exists between automata and logics.
Often, automata are the only tool for deriving (efficient) decision procedures for
a logic.

Starting in the 60s, Büchi and Rabin have used automata to show that
Monadic Second Order Logic (MSO) over infinite words and trees is decidable [5,
18]. Since then, automata have been found to be particularly useful for temporal
logics which usually are fragments of MSO over words or trees. Their emptiness
and membership problems are used to decide satisfiability and model check-
ing for various logics, and often certain automata and logics have been shown
to be equi-expressive. This characterises logics computationally and automata
denotationally.

The type of automaton used – i.e. structures they work upon, rank of de-
terminism, acceptance mode – depends on the type of logic one is interested
in: linear time logics need automata over words [21], branching time logics need
automata over trees [14]. In any case, alternating automata [16, 6] – i.e. those
featuring nondeterministic as well as universal choices – have proved to be most
beneficial for two reasons: (1) a temporal logic usually has disjunctions and
conjunctions which can uniformly be translated into automata states. (2) Alter-
nating automata are usually more succinct then (non-)deterministic automata,
hence, they can lead to more efficient decision procedures.

The acceptance condition needs to match the temporal constructs featured
in the logic. LTL for example is happy with a simple Büchi condition since it
only has very simple temporal constructs. Logics with more complex temporal
operators like extremal fixpoint quantifiers are best matched with more complex
acceptance conditions like Rabin, Streett, or Muller conditions for example.

R. Cousot (Ed.): VMCAI 2005, LNCS 3385, pp. 267–281, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

268 Martin Lange

Best suited, however, for fixpoint logics with alternation1 – the interleaved
nesting of least and greatest fixpoint operators – are parity automata. Here,
every state is assigned a priority, and acceptance means the parity of the least
priority seen infinitely often in a run must be even. The match to fixpoint log-
ics can be explained as follows: both least and greatest fixpoints are recursion
mechanisms that get translated into automata states. A least fixpoint quantifier
is a recursive program that is bound to terminate eventually. Its dual counter-
part, a greatest fixpoint quantifier is a recursive program that is allowed to run
ad infinitum. Thus, automata states obtained from least fixpoint quantifiers ob-
tain odd priorities, those obtained from greatest fixpoint quantifiers obtain even
priorities.

Fixpoint alternation means a least fixpoint recursion X can call a greatest
fixpoint recursion Y which can in return call X , and vice versa. Then, the outer-
most program, i.e. the one that called the other first, determines whether or not
infinite recursion is good or bad. Hence, for example seeing priority 17 infinitely
often is alright, as long as priority 8 is also seen infinitely often.

The connection between parity tree automata, parity games – the evaluation
of a run of an alternating parity automaton – and the modal µ-calculus is widely
known, and much has been written about it [9, 8, 19, 7]. This immediately entails
an equal connection between its pendant over infinite words, the linear time µ-
calculus µTL [1, 20], and parity word automata. Just as the modal µ-calculus
can be seen as a backbone for branching time logics, µTL is the backbone for
linear time logics capable of defining at most regular properties.

Fixpoint alternation is what makes formulas hard to evaluate. Equally, the
emptiness and word problems for parity automata are harder than those for
simple Büchi automata and usually require algorithms that recurse over the
number of priorities present in the automaton. It is fair to look for simpler
acceptance conditions that still capture the essence of some logic’s constructs.
One possibility are weak automata. This concept was first introduced by Muller,
Saoudi and Schupp [17] as a structural restriction on Büchi automata. Weakness
refers to the fact that there are ω-regular languages that cannot be accepted by
these automata.

Alternation, however, makes up for weakness [13]: every alternating Büchi
automaton can be translated into a weak alternating Büchi automaton. The
problem of having established the term “weak” but also knowing that these
automata are not any weaker is solved by redefining weakness in terms of ac-
ceptance rather than the structure of an automaton’s state space. Weak Büchi
acceptance is looking for the occurrence of a final state rather than its infinite
recurrence. Consequently, a weak parity automaton accepts if the least priority
occurring at all is even.

1 Note that the term alternation is overloaded. It describes the type of the transition
function in an automaton as well as a structural property of formulas with fixpoint
quantifiers. Each time we use the term alternation it should become clear from the
context which type is meant. However, we will try to speak of fixpoint alternation
in the latter case.

Weak Automata for the Linear Time µ-Calculus 269

The advantage that weak parity automata have over normal parity automata
is apparent: it is easy to keep track of the least priority seen in a run so far
without worrying whether or not it would occur infinitely often. Consequently,
emptiness or word problems for weak automata are easier to solve.

Here we present first of all a direct translation from formulas of the linear
time µ-calculus into weak alternating parity automata. The novel part of this is
the directness. It is known that this translation is possible via alternating parity
automata, alternating Muller automata, and alternating Büchi automata. The
complexity of this translation however is exponential in the size of the formula.
We also show how to improve the direct translation in order to obtain weak
automata that are exponentially large in the alternation depth of the formula
only.

Then we present the converse translation from weak alternating parity au-
tomata back into µTL. This is based on ideas from [11] and [15]. The latter
deals with the connection between weak alternating automata and MSO. The
former considered automata models for µTL, obtaining an important result that
does not hold true for the modal µ-calculus [4]: every ω-regular language can be
defined by a µTL formula of alternation depth at most 1. A simple translation
from ω-regular expressions into µTL – just meant to form an intuition about
how µTL formulas express ω-regular properties – yields an alternative proof of
this result. But the translation back from weak alternating parity automata into
formulas of the linear time µ-calculus even improves this: the µTL alternation
hierarchy indeed collapses at level 0.

This paper is organised as follows. Section 2 recalls notions about infinite
words, alternating automata and the linear time µ-calculus. Section 3 presents
the aforementioned translations. Their complexities and possible optimisations
are discussed in Section 4. Finally, Section 5 concludes with a discussion about
the usefulness of this automaton characterisation for ω-regular word languages.

2 Preliminaries

2.1 Infinite Words and ω-Regular Expressions

Let Σ = {a, b, . . .} be a finite set of symbols. As usual, Σω denotes the set of
infinite words over Σ. Given a w ∈ Σω we write wk for the k-th symbol in w,
i.e. w = w0w1w2

Σ∗ denotes the set of finite words over Σ. For an L1 ⊆ Σ∗ and an L2 ⊆ Σω,
their concatenation L1L2 consists of all words w ∈ Σω that can be decomposed
into w = w1w2 s.t. w1 ∈ L1 and w2 ∈ L2.

An ω-regular expression is of the form

α := ε | a | α ∪ α | α;α | α∗ | αω

describing, resp. the language containing just the empty word, all words begin-
ning with the letter a, the union and the concatenation of two languages, finite
and infinite iteration of a language. We write [[α]] for the language defined by α.

270 Martin Lange

Theorem 1. [5] For every ω-regular language L there is an ω-regular expres-
sion of the form δ =

⋃n
i=1 αi;β

ω
i for some n ∈ N, s.t. [[δ]] = L. Additionally, for

all i = 1, . . . , n we have: neither αi nor βi contains a subexpression of the form
γω, and ε �∈ [[βi]].

2.2 The Linear Time µ-Calculus µTL

Definition 1. Let Σ = {a, b, . . .} be a finite alphabet, and let V = {X,Y, . . .}
be a set of propositional variables. Formulas of the linear time µ-calculus µTL
are defined by the following grammar.

ϕ ::= a | X | ϕ ∨ ϕ | ϕ ∧ ϕ | ©ϕ | µX.ϕ | νX.ϕ

where a ∈ Σ and X ∈ V . With ϕ{ψ/χ} we denote the formula that is obtained
from ϕ by replacing every occurrence of χ in it with ψ. We will write σ for either
of the fixpoint quantifiers µ or ν.

The set of subformulas of a µTL formula is defined in the usual way, i.e.
Sub(ϕ ∨ ψ) = {ϕ ∨ ψ} ∪ Sub(ϕ) ∪ Sub(ψ) and Sub(σX.ϕ) = {σX.ϕ} ∪ Sub(ϕ)
for example. Equally, free(ϕ) is the usual set of variables occurring in ϕ which
are not in the scope of a binding quantifier. We assume that formulas are well-
named, i.e. a variable is not quantified more than once in a formula. Then for
every closed ϕ there is a function fpϕ() : V ∩Sub(ϕ) → Sub(ϕ) which maps each
variable X to its unique defining fixpoint formula σX.ϕ. We say that X has
fixpoint type µ if fpϕ(X) = µX.ψ for some ψ, otherwise it is ν.

Assuming that 1 < |Σ| < ∞ it is easy to define the propositional constants
true and false as tt :=

∨
a∈Σ a and ff := a ∧ b for some a, b ∈ Σ with a �= b. If

the assumption does not hold then one can also include tt and ff as primitives
in the logic.

Formulas of µTL are interpreted over ω-words w ∈ Σω. Since the semantics
is defined inductively, one needs to explain the meaning of open formulas. This is
done using an environment which is a mapping ρ : V → 2N. With ρ[X �→M] we
denote the function that mapsX to M and behaves like ρ on all other arguments.

[[a]]wρ := {i ∈ N | wi = a}
[[X]]wρ := ρ(X)
[[ϕ ∨ ψ]]wρ := [[ϕ]]wρ ∪ [[ψ]]wρ
[[ϕ ∧ ψ]]wρ := [[ϕ]]wρ ∩ [[ψ]]wρ
[[©ϕ]]wρ := {i ∈ N | i+ 1 ∈ [[ϕ]]wρ }
[[µX.ϕ]]wρ :=

⋂{M ⊆ N | [[ϕ]]wρ[X �→M] ⊆M}
[[νX.ϕ]]wρ :=

⋃{M ⊆ N |M ⊆ [[ϕ]]wρ[X �→M]}

We write w |=ρ ϕ iff 0 ∈ [[ϕ]]wρ . If ϕ does not contain free variables we also drop
ρ since in this case the positions in w satisfying ϕ do not depend on it. The set
of all models of ϕ is denoted L(ϕ) := {w ∈ Σω | w |= ϕ}. Two formulas ϕ and
ψ are equivalent, ϕ ≡ ψ, if L(ϕ) = L(ψ).

Weak Automata for the Linear Time µ-Calculus 271

Approximants of a formula µX.ϕ are defined for all k ∈ N as

µ0X.ϕ := ff µk+1X.ϕ := ϕ{µkX.ϕ/X}

Dually, approximants of a νX.ϕ are defined as

ν0X.ϕ := tt νk+1X.ϕ := ϕ{νkX.ϕ/X}

The next result is a standard result about approximants.

Lemma 1.
a) w |= µX.ϕ iff there is a k ∈ N s.t. w |= µkX.ϕ.
b) w |= νX.ϕ iff for all k ∈ N: w |= νkX.ϕ.

The fixpoint depth fpd(ϕ) of ϕ measures the maximal number of fixpoint quan-
tifiers seen on any path in ϕ′s syntax tree. It is defined as

fpd(a) = fpd(X) := 0
fpd(ϕ ∨ ψ) = fpd(ϕ ∧ ψ) := max{fpd(ϕ), fpd (ψ)}

fpd(©ϕ) := fpd(ϕ)
fpd(σX.ϕ) := 1 + fpd(ϕ)

We say that X depends on Y in ϕ, written Y ≺ϕ X , if Y ∈ free(fpϕ(X)).
We write <ϕ for the transitive closure of ≺ϕ. The nesting depth nd(ϕ) of ϕ
is the length n of a maximal chain X0 <ϕ . . . <ϕ Xn. The alternation depth
ad(ϕ) is the length of such a maximal chain in which adjacent variables have
different fixpoint types. Note that for any ϕ we have ad(ϕ) ≤ nd(ϕ) ≤ fpd(ϕ).
Let µTLk := {ϕ ∈ µTL | free(ϕ) = ∅ and ad(ϕ) ≤ k + 1}.

A formula ϕ is guarded if every occurrence of a variable X ∈ Sub(ϕ) is in the
scope of a © operator inside of fpϕ(X). It is strictly guarded if every occurrence
of a variable X ∈ Sub(ϕ) is immediately preceeded by a © operator.

Lemma 2. Every ϕ ∈ µTLk for any k ∈ N is equivalent to a strictly guarded
ϕ′ ∈ µTLk.

Proof. It is known from [12] or [22] for example that every formula of the modal
µ-calculus can equivalently be translated into a guarded formula. There, guard-
edness means occurrence in the scope of either a 〈a〉 or a [a]. The alternation
depth is not effected by this process. The construction for µTL formulas proceeds
in just the same way.

Finally, strict guardedness can easily be achieved by pushing the next oper-
ator inwards using the equivalences ©(ϕ ∨ ψ) ≡ ©ϕ ∨ ©ψ and ©(ϕ ∧ ψ) ≡
©ϕ∧©ψ. What remains to be seen is that the next operator also commutes with
the fixpoint quantifiers. Take a formula of the form ©µX.ϕ(X,Y). By induction
hypothesis, X is already strictly guarded in it, but Y may not. Let ϕ(©X) be the
formula that results from ©ϕ by pushing the © operators in as far as possible

272 Martin Lange

and removing it right in front of every occurrence of X . By hypothesis it exists.
Now

©µX.ϕ(X,Y) ≡ ©
∨

i∈N

µiX.ϕ(X,Y)

≡ ©ff ∨
∨

i≥1

©µiX.ϕ(X,Y)

≡
∨

i≥1

©ϕ(µi−1X.ϕ(X,Y), Y)

≡
∨

i≥1

ϕ(©X)(©µi−1X.ϕ(X,Y), Y)

≡
∨

i≥1

µiX.ϕ(©X)(X,Y)

≡ µX.ϕ(©X)(X,Y)

The penultimate step requires a straight-forward induction on i. The temporary
introduction of infinitary formulas is justified by Lemma 1. The case of a greatest
fixpoint formula is analogous. ��

Just like the modal µ-calculus can define all (bisimulation-invariant) regular
languages of infinite trees [10], µTL can define all ω-regular word languages. We
will show this by giving a translation from ω-regular expressions into µTL.

Definition 2. For any ω-regular expression α we define trX(α) ∈ µTL that
describes the same ω-language over Σ. The inductive and uniform translation
uses a free variable X that will eventually be bound by an ω-operator. This
is essentially continuation-passing if the ω-regular expression is regarded as a
computation.

trX(ε) := X

trX(a) := a ∧©X

trX(α0 ∪ α1) := trX(α0) ∨ trX(α1)
trX(α0;α1) := trX(α0){trX(α1)/X}

trX(α∗) := µY.X ∨ trY (α)
trX(αω) := νX.trX(α)

This translation does not only give an automata-free proof of the fact that µTL
can describe all ω-regular languages. It also yields an alternative way of showing
that the alternation hierarchy in µTL collapses at level 1.

Theorem 2. For every µTL formula ϕ there is a ϕ′ ∈ µTL1 s.t. ϕ ≡ ϕ′.

Proof. It is well-known that a µTL formula can be regarded as an alternating
parity automaton. These can be translated into alternating Muller automata,

Weak Automata for the Linear Time µ-Calculus 273

then into alternating Büchi automata, then into nondeterministic Büchi au-
tomata, and finally into ω-regular expressions – whilst preserving equivalence
in each step. According to Theorem 1, the resulting expressions do not contain
nested ω-operators. Using Definition 2 they can be translated into µTL formulas
whose subformulas of the form µX.ψ contain at most one free variable that is
bound by a ν-operator. Hence, the alternation depth of the resulting formula is
at most 1. ��
Not only can this result be improved in terms of the level at which the hierarchy
collapses – see below. Such a translation is also of no practical relevance since it
is at least double exponential in the size of the formula.

2.3 Positive Boolean Formulas

For a given set Q let B
+(Q) be the set of positive boolean formulas over Q.

I.e. B
+(Q) is the least set that contains Q and fulfils: if f, g ∈ B

+(Q) then
f ∨ g, f ∧ g ∈ B

+(Q). We say that P ⊂ Q is a model of f if f evaluates to tt
when every q ∈ P in it is replaced by tt and every q �∈ P in it is replaced by ff.

We write f [q′/q] for the positive boolean formula that results from f by
replacing every occurrence of q in it with q′.

Later we will use a simple operation ()l that tags the elements of Q as ql.
This is extended to B

+(Q) in the obvious way: (f ∨ g)l := (f)l ∨ (g)l, and
(f ∧ g)l := (f)l ∧ (g)l.

2.4 Alternating Automata

An alternating parity automaton (APA) is a tuple A = (Q,Σ, q0, δ, Ω) where Q
is a finite set of states, Σ a finite alphabet, and q0 ∈ Q the designated starting
state, δ : Q×Σ → B

+(Q) is the transition function. Ω : Q→ N assigns to each
state a priority.

A run r of A on a word w ∈ Σω is an infinite tree rooted with q0, s.t. for
every node qj on level i the set {p1, . . . , pn} of its children is a model of δ(qj , wi).

Let π = q0, q1, . . . be a path of a run r of A on w. Let

Occ(π) := {q | ∃i ∈ N s.t. qi = q}
Inf (π) := {q | ∀j ∈ N : ∃i ≥ j s.t. qi = q}

A run r of an APA A on w is accepting iff for every path π of r: min{Ω(q) |
q ∈ Inf (π)} is even. A accepts w if there is an accepting run of A on w. The
language L(A) is the set of all words accepted by A.

A weak alternating parity automaton (WAPA) is an APA A with a less
demanding acceptance condition. A run r of a WAPA A on w is accepting if for
all paths π of r: min{Ω(q) | q ∈ Occ(π)} is even. L(A) is defined in the same
way.

An alternating Büchi automaton (ABA) is an APA A = (Q,Σ, q0, δ, Ω) where
Ω : Q→ {0, 1}. We usually write an ABA as (Q,Σ, q0, δ, F) with F := {q ∈ Q |

274 Martin Lange

Ω(q) = 0}. Acceptance then boils down to a state in F being visited infinitely
often.

A weak alternating Büchi automaton (WABA) could just be defined as
a WAPA with two priorities only. However, for technical reasons we prefer
the equivalent and original definition from [17]. A WABA is an ABA A =
(Q,Σ, q0, δ, F) where Q can be partitioned into components C0, . . . , Cn s.t.

– for all q ∈ Q, i, j ∈ {0, . . . , n}, a ∈ Σ: if q ∈ Ci and q′ ∈ Cj and δ(q, a) =
f(. . . , q′, . . .) for some f then j ≤ i,

– for all 0 ≤ i ≤ n: Ci ⊆ F or Ci ∩ F = ∅.

3 From µTL to WAPA and Back

Definition 3. A WAPA with a hole q is a A = (Q,Σ, q0, δ, Ω) with q ∈ Q s.t.
δ(q, a) = ⊥ (undefined) for any a ∈ Σ, and Ω(q) = ⊥. Intuitively, a WAPA with
a hole is a WAPA whose construction is not finished yet.

Let A be a WAPA with a hole q, B be another WAPA and L ⊆ Σω. We write
A[q : B] for the WAPA that results from A by replacing q in A with the starting
state of B. We also write A[q : L] instead of A[q : B] for some B with L(B) = L.

Let Aff = ({ff}, Σ, ff, {(ff, a) �→ ff | a ∈ Σ}, {ff �→ 1}) be a WAPA that
accepts the empty language.

Theorem 3. For every closed ϕ ∈ µTL there is a WAPA Aϕ s.t. L(Aϕ) =
L(ϕ).

Proof. The proof proceeds by induction on the structure of ϕ. According to
Lemma 2, ϕ can be assumed to be strictly guarded.

Despite closeness of ϕ, we need to handle open subformulas. This will be done
using WAPAs with holes. Furthermore, we need to strengthen the inductive
hypothesis: for every ϕ we will construct a WAPA A = (Q,Σ, q0, δ, Ω) with
Ω(q0) > Ω(q) for all q �= q0.

Figure 1 shows the intuition behind some of the cases below.

Case ϕ = a. Let Aa = ({a, tt, ff}, Σ, a, δ, Ω) with δ(a, a) = tt, δ(a, b) = ff for
any b �= a, δ(q, a) = q for any a ∈ Σ, q ∈ {tt, ff} and Ω(a) = 2, Ω(ff) = 1,
Ω(tt) = 0. Then L(Aa) = {a}Σω = L(a).

Case ϕ = X. Let AX be the WAPA that consists of the hole X only.

Case ϕ = ©ψ. By hypothesis there is a WAPA Aψ = (Q,Σ, q0, δ, Ω) with
L(Aψ) = L(ψ). Assume ϕ �∈ Q, and let p := 1 + max{Ω(q) | q ∈ Q}. Define
Aϕ = (Q ∪ {ϕ}, Σ, ϕ, δ′, Ω′) with δ′ = δ ∪ {(q, a) �→ q0 | a ∈ Σ}, Ω′ = Ω ∪ {q �→
p}. Then L(Aϕ) = ΣL(Aψ) = L(©ψ). Note that every run of Aϕ starts with ϕ
but then contains only states with strictly smaller priorities. Thus, a word aw is
accepted by Aϕ iff w is accepted by Aψ .

Weak Automata for the Linear Time µ-Calculus 275

Aψ1

Aψ0

∨
∨ ∨

Arec
ψ

Aend
ψ

X

ff

p− 1

≥ p

< p − 1

case ϕ = ψ0 ∨ ψ1 case ϕ = µX.ψ

Fig. 1. Illustrations of the translation from µTL to WAPA.

Case ϕ = ψ0 ∨ ψ2. By hypothesis there are WAPAs Aψi = (Qi, Σ, q0,i, δi, Ωi)
for i ∈ {0, 1} s.t. L(Aψi) = L(ψi). We can assume Q0 and Q1 to be disjoint. Let
Q := Q0 ∪Q1 ∪ {ϕ}. This is where strict guardedness is needed. It ensures that
inside each Aψi there is a proper transition between the starting state and any
hole. Define Aϕ = (Q,Σ,ϕ, δ,Ω) where for any a ∈ Σ, q ∈ Q:

δ(q, a) :=
{
δ0(q0,0, a) ∨ δ(q0,1, a) if q = ϕ
δi(q, a) if q ∈ Qi, i ∈ {0, 1}

Ω(q) :=
{

1 + max{Ωi(q) | q ∈ Qi, i ∈ {0, 1}} if q = ϕ
Ωi(q) if q ∈ Qi, i ∈ {0, 1}

A run of Aϕ on any w is also a run of either Aψ0 or Aψ1 on w with the exception
that the root of the run in Aϕ has a higher priority. Hence, if w ∈ L(Aϕ) then
w ∈ L(Aψi) for some i ∈ {0, 1}. For the converse direction we need the stronger
hypothesis. Suppose w ∈ L(Aψi) for some i ∈ {0, 1}. Thus, on any path the
minimal priority that occurs is even. However, this cannot be the priority of the
root since it is the greatest occurring at all. But then the corresponding run of
Aϕ accepts w, too.

Case ϕ = ψ0 ∧ ψ1. Analogous to the previous case. The automaton for ϕ is
obtained as the disjoint union of the automata for the conjuncts with a new
starting state which does the conjunction of the two components’ starting states.

Case ϕ = µX.ψ. By hypothesis there is a WAPA Aψ = (Q,Σ, q0, δ, Ω). Let
p′ := max{Ω(q) | q ∈ Q} and p := p′ +2+(p′ mod 2) a strict even upper bound
on all the priorities occurring in Aψ .

Note that µX.ψ ≡ ψ if X �∈ free(ψ). Thus, Aψ can be assumed to contain a
hole X . Note that one hole suffices since holes are states that clearly behave in
the same way – namely not at all – and hence, can be collapsed.

Aϕ will consist of two disjoint copies of Aψ : one that unfolds the fixpoint a
finite number of times and one that puts a halt to the recursion. Technically, let

276 Martin Lange

Aϕ = (Q′, Σ, ϕ, δ′, Ω′) where

Qrec := {qrec | q ∈ Q \ {X}} ∪ {X}
Qend := {qend | q ∈ Q \ {X}} ∪ {ff}
Q′ := {ϕ} ∪Qrec ∪Qend

δ′(q, a) :=






(δ(q0, a))rec ∨ (δ(q0, a))end if q = ϕ

(δ(q0, a))rec ∨ (δ(q0, a))end if q = X

ff if q = ff

(δ(q, a))rec if q ∈ Qrec \ {X}
(δ(q, a))end [ff/X] if q ∈ Qend \ {ff}

Ω′(q) :=






2 · p− 1 if q = ϕ

p− 1 if q = X

1 if q = ff

Ω(q) + p if q ∈ Qrec \ {X}
Ω(q) if q ∈ Qend \ {ff}

Let Aend
ψ and Arec

ψ be the respective restrictions of Aϕ to Qend and Qrec. Note
the following facts:

– All the priorities in Aend
ψ are strictly smaller than those in Arec

ψ .
– In Arec

ψ , state X has the smallest priority which is odd.
– Aend

ψ is isomorphic to Aψ [X : ∅].
– Arec

ψ has the same structure as Aψ except for state X which accepts either
L(Aend

ψ) or L(Arec
ψ).

– Every path in an accepting run of Aϕ must not visit state X infinitely often,
for otherwise the least priority seen on this path at all would be odd.

Thus, L(Aϕ) is the least solution to the equation

L = L(Aψ[X : ∅]) ∪ L(Aψ[X : L])

Using the hypothesis twice as well as the approximant characterisation of least
fixpoints and Lemma 1 we get

L(Aϕ) =
⋃

k≥1

L(µkX.ψ) =
⋃

k≥0

L(µkX.ψ) = L(µX.ψ) = L(ϕ)

Case ϕ = νX.ψ. This is dual to the previous case. In order to adhere to Lemma 1,
the starting state as well as the recursion state X conjunctively combine the
transitions of qrec0 and qend

0 . State X obtains an even priority. The whole X in
the end-component is filled by a state tt which has priority 0 and loops back to
itself with any alphabet symbol. ��

Weak Automata for the Linear Time µ-Calculus 277

The next theorem is featured as an observation in [15] already. However, we
include its proof here in order to have a complete and effective translation from
WAPAs to µTL formulas. The result is also very similar to the theorem in
[13] stating that ABAs can be translated into WABAs. Consequently, its proof
proceeds along the same lines.

Theorem 4. [15, 13] For every WAPA A there is a WABA A′ s.t. L(A′) =
L(A).

Proof. Let A = (Q,Σ, q0, δ, Ω) with Ω : Q → {0, . . . , p}. Define A′ = (Q ×
{0, . . . , p}, Σ, (q0, Ω(q0)), δ′, F) where for all q ∈ Q, a ∈ Σ:

δ′((q, k), a) := 〈δ(q, a)〉min{k,Ω(q)}

with 〈f ∨ g〉k := 〈f〉k ∨ 〈f〉k, 〈f ∧ g〉k := 〈f〉k ∧ 〈f〉k, and 〈q〉k := (q, k). Finally,
let F := { (q, k) | k is even }.

First observe that A′ is indeed a WABA. Let Ci := {(q, i) | q ∈ Q}. Then
C0, . . . , Cp is a partition on Q×{0, . . . , p}, transitions either stay inside a Ci or
lead to a Cj with j < i. At last, for every Ci we either have Ci ⊆ F or Ci∩F = ∅.

Now suppose that w ∈ L(A). A run r of A on w naturally induces a run r′ of
A′ on w. Every node in this run carries an extra component which remembers
the minimal priority seen on this path so far. Hence, if r is accepting, so is r′

since every path will eventually be trapped in a component that remembers even
priorities. The converse direction is proved in the same way. If every path of a
run in A′ visits infinitely many final states, then the corresponding run of A
must have seen even priorities as the least on every path. ��

Theorem 5. For every WABA A there is a µTL0 formula ϕA s.t. L(ϕA) =
L(A).

Proof. Let A = (Q,Σ, q0, δ, F) with Q being disjointly partitioned into compo-
nents C0, . . . , Cp. W.l.o.g. we can assume for any i ∈ {0, . . . , p} that Ci ⊆ F if
i is even, and Ci ∩ F = ∅ if i is odd. Since transitions can at most lead into
components with smaller indices we can also assume q0 ∈ Cp.

Take such a component Ci and a state q ∈ Ci. For each component we use
the same method as proposed in [11] in order to come up with a µTL formula.
First, Ci is unfolded into a tree-like structure with root q that admits loops but
no merging of paths. A state at the beginning of a loop is called a (q, i)-loop
state. With Cqi we denote this unfolding of Ci.

We will translate every unfolded Cqi into a formula ϕqi using auxiliary formu-
las that describe the local behaviour of state q in component i with root q′:

ψqq′,i :=






σiXq′,i.
∧

a∈Σ
a→ ©||δ(q′, a)||qi if q′ is a (q, i) − loop state

∧

a∈Σ
a→ ©||δ(q′, a)||qi o.w.

278 Martin Lange

where σi = µ if i is odd, σi = ν if it is even, and

||f ∨ g||qi := ||f ||qi ∨ ||g||qi
||f ∧ g||qi := ||f ||qi ∧ ||g||qi

||q′||qi :=

{
Xq′,i if q′ is a (q, i) − loop state
ψq′,i o.w.

Finally, let ϕqi := ψq,i.
Note that every connected component of A is translated into a formula with-

out free variables that only uses closed formulas from components with lower
indices. Furthermore, the formulas created from one component have a single
fixpoint type only. Hence, the resulting formula is alternation-free.

The correctness of this construction can be shown using tableaux or games
for µTL as it is done in [11]. ��
Corollary 1. Every ϕ ∈ µTL is equivalent to a ϕ′ ∈ µTL0.

Proof. By composition of Theorems 3, 4 and 5. ��

4 Optimising the Translations

Proposition 1. For every ϕ ∈ µTL there is a WAPA Aϕ with L(Aϕ) = L(ϕ)
s.t. |A| = O(|ϕ| · 2fpd(ϕ)).

Proof. Immediate from the proof of Theorem 3. All inductive constructions are
linear, except those for fixpoint quantifiers. They double the size of the automata.

��
Proposition 2. For every WAPA A there is a ϕA ∈ µTL0 with L(ϕA) = L(A)
s.t. |ϕ| = O(|A|4).
Proof. Using Theorem 4, A can be transformed into a WABA of size O(|A|2).
Note that it is fair to assume that there are not more priorities than there are
states. Furthermore, Theorem 5 constructs for every state, every component and
every state in that component – i.e. every pair of states – a µTL formula of linear
size. Composing these two constructions yields a formula of size O(|A|4). ��
In the following we discuss how to improve the translation from µTL formulas
into WAPAs. The main focus is on optimising the costly translation of fixpoint
quantifiers. The first attempt reduces the size of the automaton by not dupli-
cating automata for nested but closed fixpoint formulas.

Take a formula of the form ϕ = σ1X1.ψ1(σ2X2.ψ2) s.t. X1 �∈ free(ψ2). Thus,
X2 does not depend on X1 and nd(ϕ) < fpd(ϕ). A clever algorithm for calculat-
ing the semantics of ϕ would calculate the semantics of σ2X2.ψ2 only once and
reuse it in every iteration needed to calculate the semantics of ϕ. Note that the
automaton constructed in the proof of Theorem 3 would include the automaton
A2 for σ2X2.ψ2 twice. Since there is no path out of A2 it suffices to include a

Weak Automata for the Linear Time µ-Calculus 279

∨ ∨∨

Aψ2

Aψ1

Aψ1

Aψ2

ffff

X2 X1

Fig. 2. Simultaneously translating fix-
point formulas into WAPAs.

single copy of A. However, in the worst case A2 is a lot smaller than the au-
tomaton for ψ1 and no asymptotic improvement compared to O(|ϕ| · 2fpd(ϕ)) is
achieved.

The second attempt is based on Békic̀’s Theorem. Let µx.f denote the least
fixpoint of an arbitrary function f that takes an argument x.

Theorem 6. [2] Let A × B be a complete lattice and F : A × B → A × B a
monotone function defined by F (x, y) = (f1(x, y), f2(x, y)). Then µ(x, y).F =
(µx.f1(x, µy.f2(x, y)), µy.f2(µx.f1(x, µy.f2(x, y)), y).

The same holds for greatest fixpoints. Regarding formulas of µTL, Theorem 6
says that fixpoints of the same type can be computed simultaneously. We will
show how to build automata that do so for two fixpoint formulas. It can easily
be extended to formulas of arbitrary nesting depth as long as all variables are of
the same type.

Take a formula ϕ = µX1.ψ1(X1, µX2.ψ2(X1, X2)). Instead of building an au-
tomaton for µX2.ψ2(X1, X2) and then one for ϕ we will construct an automaton
for ϕ directly. By hypothesis we can assume that we already have automata Aψ2

with two holes X1 and X2, as well as an automaton Aψ1 with a hole for X1 and
another hole Z.

First let A′ := Aψ1 [Z : Aψ2]. We can collapse holes and assume that A′

only contains two holes X1 and X2. Then a WAPA Aϕ for L(ϕ) can be built
by duplicating A′ in the same way as it is done in the proof of Theorem 3. The
two states X1 and X2 get odd priorities that lie between those in the rec-part
and those in the end -part. Additionally, X1 has transitions back to either of the
beginnings of Aψ1 , X2 has transitions back to either of the beginnings of Aψ2 .
An illustration of this construction is given in Figure 2.

Proposition 3. Every µTL formula ϕ can be translated into an equivalent
WAPA of size O(|ϕ| · 2ad(ϕ)).

5 Conclusion

We reinforced the importance of weak alternating automata in the algorithmics
of ω-regular languages by giving direct translations from formulas of the linear

280 Martin Lange

time µ-calculus into these automata and back. Definition 2 has shown that every
ω-regular expression can easily be translated into µTL.

Remember that – just as the modal µ-calculus can be used as a specification
language for the verification of branching time properties – µTL is a straight-
forward temporal logic for the verification of linear time properties. In fact, the
work presented here is part of the development of a verification tool under the
term “bounded model checking for all ω-regular properties”. Bounded model
checking [3] only considers paths of finite length through a transition system,
and uses SAT-solvers for finding counterexamples to unsatisfied properties. It is
incomplete in the sense that it cannot show the absence of errors. However, it
is very successful as a symbolic verification method because of two reasons: (1)
often, errors occur “early”, i.e. small boundedness parameters suffice for finding
them. (2) In recent years, much effort has been put into the development of
SAT-solvers that behave efficiently despite SAT’s NP-hardness.

So far, bounded model checking is – to the best of our knowledge – only done
for LTL, hence, is only suitable for the verification of star-free, resp. first-order
definable properties. The work presented here yields a computational model for
all regular, i.e. monadic second-order definable properties that is easy to handle
algorithmically. It will be used in a bounded model checker that verifies regular
properties. Weak alternating parity automata will serve as the link between a
denotational specification language like µTL or ω-regular expressions on one
hand, and the actual model checker that generates formulas of propositional
logic on the other hand. These formulas then only need to describe the run of
a WAPA on a finite word or a word of the form wvω . Weakness, i.e. checking
for occurrence of priorities rather than infinite recurrence simplifies this process
vastly.

We believe that the direct translation from µTL, resp. ω-regular properties to
weak alternating automata can prove to be useful for other verification purposes
as well.

References

1. H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model and its
temporal logic. In Proc. 13th Annual ACM Symp. on Principles of Programming
Languages, pages 173–183. ACM, 1986.

2. H. Békic̀. Programming Languages and Their Definition, Selected Papers, volume
177 of LNCS. Springer, 1984.

3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In R. Cleaveland, editor, Proc. 5th Int. Conf. on Tools and Algorithms
for the Analysis and Construction of Systems, TACAS’99, volume 1579 of LNCS,
Amsterdam, NL, March 1999.

4. J. C. Bradfield. The modal µ-calculus alternation hierarchy is strict. In U. Mon-
tanari and V. Sassone, editors, Proc. 7th Conf. on Concurrency Theory, CON-
CUR’96, volume 1119 of LNCS, pages 233–246, Pisa, Italy, August 1996. Springer.

5. J. R. Büchi. On a decision method in restricted second order arithmetic. In Proc.
Congress on Logic, Method, and Philosophy of Science, pages 1–12, Stanford, CA,
USA, 1962. Stanford University Press.

Weak Automata for the Linear Time µ-Calculus 281

6. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, January 1981.

7. S. Dziembowski, M. Jurdziński, and I. Walukiewicz. How much memory is needed
to win infinite games? In Proc. 12th Symp. on Logic in Computer Science, LICS’97,
pages 99–110, Warsaw, Poland, June 1997. IEEE.

8. E. A. Emerson. Model checking and the µ-calculus. In N. Immerman and P. G.
Kolaitis, editors, Descriptive Complexity and Finite Models, volume 31 of DI-
MACS: Series in Discrete Mathematics and Theoretical Computer Science, chap-
ter 6. AMS, 1997.

9. E. A. Emerson and C. S. Jutla. Tree automata, µ-calculus and determinacy. In
Proc. 32nd Symp. on Foundations of Computer Science, pages 368–377, San Juan,
Puerto Rico, October 1991. IEEE.

10. D. Janin and I. Walukiewicz. On the expressive completeness of the propositional
µ-calculus with respect to monadic second order logic. In U. Montanari and V. Sas-
sone, editors, Proc. 7th Conf. on Concurrency Theory, CONCUR’96, volume 1119
of LNCS, pages 263–277, Pisa, Italy, August 1996. Springer.

11. R. Kaivola. Using Automata to Characterise Fixed Point Temporal Logics. PhD
thesis, LFCS, Division of Informatics, The University of Edinburgh, 1997. Tech.
Rep. ECS-LFCS-97-356.

12. D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, December
1983.

13. O. Kupferman and M. Y. Vardi. Weak alternating automata are not that weak.
ACM Transactions on Computational Logic, 2(3):408–429, 2001.

14. O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, March 2000.

15. C. Löding and W. Thomas. Alternating automata and logics over infinite words.
In Proc. IFIP Int. Conf. on Theoretical Computer Science, IFIP TCS2000, volume
1872 of LNCS, pages 521–535. Springer, August 2000.

16. D. Muller and P. Schupp. Alternating automata on infinite objects: determinacy
and rabin’s theorem. In M. Nivat and D. Perrin, editors, Proc. Ecole de Printemps
d’Informatique Théoretique on Automata on Infinite Words, volume 192 of LNCS,
pages 100–107, Le Mont Dore, France, May 1984. Springer.

17. D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give a
simple explanation of why most temporal and dynamic logics are decidable in
exponential time. In Proc. 3rd Symp. on Logic in Computer Science, LICS’88,
pages 422–427, Edinburgh, Scotland, July 1988. IEEE.

18. M. O. Rabin. Decidability of second-order theories and automata on infinite trees.
Trans. of Amer. Math. Soc., 141:1–35, 1969.

19. C. Stirling. Local model checking games. In I. Lee and S. A. Smolka, editors, Proc.
6th Conf. on Concurrency Theory, CONCUR’95, volume 962 of LNCS, pages 1–11,
Berlin, Germany, August 1995. Springer.

20. M. Y. Vardi. A temporal fixpoint calculus. In ACM, editor, Proc. Conf. on Princi-
ples of Programming Languages, POPL’88, pages 250–259, NY, USA, 1988. ACM
Press.

21. M. Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic, volume
1043 of LNCS, pages 238–266. Springer, New York, NY, USA, 1996.

22. I. Walukiewicz. Completeness of Kozen’s axiomatization of the propositional µ-
calculus. In Proc. 10th Symp. on Logic in Computer Science, LICS’95, pages 14–24,
Los Alamitos, CA, 1995. IEEE.

	1 Introduction
	2 Preliminaries
	2.1 Infinite Words and \omega-Regular Expressions
	2.2 The Linear Time \mu-Calculus \mu TL
	2.3 Positive Boolean Formulas
	2.4 Alternating Automata

	3 From \mu TL to WAPA and Back
	4 Optimising the Translations
	5 Conclusion
	References

