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Abstract. Predicate abstraction and canonical abstraction are two finitary ab-
stractions used to prove properties of programs. We study the relationship be-
tween these two abstractions by considering a very limited case: abstraction of
(potentially cyclic) singly-linked lists.
We provide a new and rather precise family of abstractions for potentially cyclic
singly-linked lists. The main observation behind this family of abstractions is that
the number of shared nodes in linked lists can be statically bounded. Therefore,
the number of possible “heap shapes” is also bounded. We present the new ab-
straction in both predicate abstraction form as well as in canonical abstraction
form.
As we illustrate in the paper, given any canonical abstraction, it is possible to de-
fine a predicate abstraction that is equivalent to the canonical abstraction. How-
ever, with this straightforward simulation, the number of predicates used for
the predicate abstraction is exponential in the number of predicates used by the
canonical abstraction.
An important feature of the family of abstractions we present in this paper is
that the predicate abstraction representation we define is far more practical as it
uses a number of predicates that is quadratic in the number of predicates used by
the corresponding canonical abstraction representation. In particular, for the most
abstract abstraction in this family, the number of predicates used by the canonical
abstraction is linear in the number of program variables, while the number of
predicates used by the predicate abstraction is quadratic in the number of program
variables.
We have encoded this particular predicate abstraction and corresponding trans-
formers in TVLA, and used this implementation to successfully verify safety
properties of several list manipulating programs, including programs that were
not previously verified using predicate abstraction or canonical abstraction.

1 Introduction

Abstraction and abstract interpretation [7] are essential techniques for automatically
proving properties of programs. The main challenge in abstract interpretation is to de-
velop abstractions that are precise enough to prove the required property and efficient
enough to be applicable to realistic applications.
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Predicate abstraction [11] abstracts the program into a Boolean program which con-
servatively simulates all potential executions. Every safety property which holds for the
Boolean program is guaranteed to hold for the original program. Furthermore, abstrac-
tion refinement [6, 2] can be used to refine the abstraction when the analysis produces a
“false alarm”. When the process terminates, it yields a concrete error trace in which the
property is violated, or successfully verifies the property. In principle, the whole process
can be fully mechanized given a sufficiently powerful theorem prover. This process was
successfully used in SLAM [19] and BLAST [12] to prove safety properties of device
drivers.

Canonical abstraction [23] is a finitary abstraction that was specially developed to
model properties of unbounded memory locations (inspired by [16]). This abstraction
has been implemented in TVLA [17], and successfully used to prove various properties
of heap-manipulating programs (e.g., [21, 25, 24]).

1.1 Main Results

In this paper, we study the utility of predicate abstraction to prove properties of pro-
grams operating on singly-linked lists. We also compare the expressive power of predi-
cate abstraction and canonical abstraction.

The results in this paper can be summarized as follows:

– We show that current state-of-the-art iterative refinement techniques fail to prove
interesting properties of singly-linked lists such as pointer equalities and absence
of null dereferences in a fully automatic manner. This means that on many simple
programs the process of refinement will diverge when the program is correct. This
result is inline with the experience of Blanchet et al. [4].

– We show that predicate abstraction can simulate arbitrary finitary abstractions and,
in particular, canonical abstraction. This trivial result is not immediately useful
because of the number of predicates used. The number of predicates required to
simulate canonical abstraction is, in the worst case, exponential in the number of
predicates used by the canonical abstraction (usually, this means exponential in the
number of program variables).

– We develop a new family of abstractions for heaps containing (potentially cyclic)
singly-linked lists. The main idea is to summarize list elements on unshared list seg-
ments not pointed-to by local variables. For programs manipulating singly-linked
lists, this abstraction is finitary since the number of shared list elements reachable
from program variables is bounded. Abstractions in this family vary in their level
of precision, which is controlled by the level of sharing-relationships recorded.

– We show that the abstraction recording only one-level sharing relationships (i.e.,
the least precise member of the family that records sharing) is sufficient for suc-
cessfully verifying all our example programs, including programs that were not
verified earlier using predicate abstraction or canonical abstraction.

– We show how to code the one-level-sharing abstraction using both canonical ab-
straction (with a linear number of unary predicates) and predicate abstraction (with
a quadratic number of nullary predicates).
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//head points to the first element of an acyclic list
//tail points to the last element of the same list

1 curr = head;
2 while (curr != tail) {
3 assert (curr != null);
4 curr = curr.n;
5 }

Fig. 1. A simple program on which counterexample-guided refinement diverges

1.2 Motivating Examples

Fig. 1 shows a program that traverses a singly-linked list with a head-pointer head and
a tail-pointer tail. This is a trivial program since it only uses an acyclic linked list,
and does not contain destructive pointer updates. When counterexample-guided itera-
tive refinement is applied to this program to assure that the assertion at line 3 is never
violated, it will diverge. At the i-th iteration it will generate an assertion of the form
curr(.n)i! = null. However, no finite value of i will suffice. Indeed, the problem of
proving the absence of null-dereferences is undecidable even in programs manipulating
singly-linked lists and even under the (non-realistic) assumption that all control flow
paths are executable [5].

In contrast, the TVLA abstract interpreter [17] proves the absence of null dererefer-
ences in this program in 2 seconds, consuming 0.6MB of memory. TVLA uses canon-
ical abstraction which generalizes predicate abstraction by allowing first-order pred-
icates (relation symbols) that can have arguments. Thus, nullary (0-arity) predicates
correspond to predicates in the program and in predicate abstractions. Unary predicates
(1-arity) are used to denote sets of unbounded locations and binary (2-arity) predicates
are used to denote relationships between unbounded locations.

A curious reader may ask herself: Are there program properties that can be verified
with canonical abstractions but not with predicate abstractions?

It is not hard to see that the answer is negative, since any finitary abstraction can
be simulated by a suitable predicate abstraction. For example, consider an abstraction
mapping α : C → A, from a concrete domain C to a finite abstract domain of indexed
elements A = {1, . . . , n}. Define the predicate BIT[j] to hold for the set of concrete
states {c | the jth bit of α(c), in its binary representation, is 1}. Now, the set of predi-

cates {BIT[j]}�log n�
j=1 yields a predicate abstraction that simulates A. This simulation is

usually not realistic, since it contains too many predicates. The number of predicates
required by predicate abstraction to simulate canonical abstraction can be exponential
in the number of predicates used by the canonical abstraction.

Fortunately, the only nullary predicate crucial to prove the absence of null deref-
erences in this program is the fact that tail is reachable from curr by a path of n
selectors (of some length). Similar observations were suggested independently in [15,
3, 14]. In this paper, we define a quadratic set of nullary predicates that captures the
invariants in many programs manipulating (potentially cyclic) singly-linked lists.

Fig. 2 shows a simple program removing a contiguous segment from a cyclic singly-
linked list pointed-to by x. For this example program, we would like to verify that the
resulting structure pointed-to by x remains a cyclic singly-linked list. Unfortunately,
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// x points to a cyclic singly-linked list
// low and high are two integer values, low < high

1 t = null;
2 y = x;
3 while (t != x && y.data < low) {
4 t = y.n; y = t;
5 }
6 z = y;
7 while (z != x && z.data < high) {
8 t = z.n; z = t;
9 }
10 t = null;
11 if (y != z) {
12 y.n = null;
13 y.n = z;
14 }

Fig. 2. A simple program that removes the segment between low and high from a linked list

using TVLA’s canonical abstraction with the standard set of predicates turns out to
be insufficient. The problem stems from the fact that canonical abstraction with the
standard set of predicates loses the ordering between the 3 reference variables that point
to that cyclic singly-linked list (this is further explained in the next section).

In this paper, we provide two abstractions – a predicate abstraction, and a canonical
abstraction – that are able to correctly determine that the result of this program is indeed
a cyclic singly-linked list.

The rest of this paper is organized as follows: Sec. 2 provides background on the
basic concrete semantics we are using, canonical abstraction, and predicate abstraction.
Sec. 3 presents an instrumented concrete semantics that records list interruptions. Sec. 4
shows a quite precise predicate abstraction for singly-linked lists. Sec. 5 shows a quite
precise canonical abstraction of singly-linked lists. In Sec. 6, we show that the predicate
abstraction of Sec. 4 and the canonical abstraction of Sec. 5 are equivalent. Sec. 7
describes our experimental results.

Proofs of claims and additional technical details can be found in [18].

2 Background

In this section, we provide basic definitions that we will use throughout the paper. In
particular, we define canonical abstraction and predicate abstraction.

2.1 Concrete Program States

We represent the state of a program using a first-order logical structure in which each
individual corresponds to a heap-allocated object and predicates of the structure corre-
spond to properties of heap-allocated objects.

Definition 1. A 2-valued logical structure over a vocabulary (set of predicates) P is
a pair S = 〈U, ι〉 where U is the universe of the 2-valued structure, and ι is the in-
terpretation function mapping predicates to their truth-value in the structure: for every
predicate p ∈ P of arity k, ι(p) : Uk → {0, 1}.
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We denote the set of all 2-valued logical structures over a set of predicates P by
2-STRUCTP . In the sequel, we assume that the vocabulary P is fixed, and abbreviate
2-STRUCTP to 2-STRUCT.

Table 1. Predicates used for representing concrete program states

Predicates Intended Meaning
eq(v1, v2) v1 is equal to v2

{x(v) : x ∈ PVar } reference variable x points to the object v

n(v1, v2) next field of the object v1 points to the object v2

Table 1 shows the predicates we use to record properties of individuals. A unary
predicate x(v) holds when the object v is pointed-to by the reference variable x. We
assume that the set of predicates includes a unary predicate for every reference variable
in a program. We use PVar to denote the set of all reference variables in a program. A
binary predicate n(v1, v2) records the value of the reference field n.
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Fig. 3. The effect of the statement y.n=null in the concrete semantics. (a) a possible state of
the program of Fig. 2 at line 12; (b) the result of applying y.n=null to (a)

Concrete Semantics. Program statements are modelled by actions that specify how
statements transform an incoming logical structure into an outgoing logical structure.
This is done primarily by defining the values of the predicates in the outgoing struc-
ture using formulae of first-order logic with transitive closure over the incoming struc-
ture [23]. The update formulae for heap-manipulating statements are shown in Table 2.
For brevity, we omit the treatment of the allocation statement new T(), the interested
reader may find the details in [23].

To simplify update formulae, we assume that every assignment to the n field of an
object is preceded by first assigning null to it. Therefore, the statement at line 12 of the
example program of Fig. 2 assigns null to y.n before the next statement assigns it the
new value z.
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Table 2. Predicate-update formulae that define the semantics of heap-manipulating statements

Statement Update formulae
x = null x′(v) = 0

x = t x′(v) = t(v)

x = t.n x′(v) = ∃v1 : t(v1) ∧ n(v1, v)

x.n = null n′(v1, v2) = n(v1, v2) ∧ ¬x(v1)

x.n = t (assuming x.n == null) n′(v1, v2) = n(v1, v2) ∨ (x(v1) ∧ t(v2))

Example 1. Applying the action y.n = null to the concrete structure of Fig. 3(a),
results with the concrete structure of Fig. 3(b). Throughout this paper we assume that
all heaps are garbage-free, i.e., every element is reachable from some program variable,
and that the concrete program semantics reclaims garbage elements immediately after
executing program statements. Thus, the two objects between y and z are collected
when y.n is set to null, as they become unreachable.

2.2 Canonical Abstraction

The goal of an abstraction is to create a finite representation of a potentially unbounded
set of 2-valued structures (representing heaps) of potentially unbounded size. The ab-
stractions we use are based on 3-valued logic [23], which extends boolean logic by
introducing a third value 1/2 denoting values that may be 0 or 1.

We represent an abstract state of a program using a 3-valued first-order structure.

Definition 2. A 3-valued logical structure over a set of predicates P is a pair S =
〈U, ι〉 where U is the universe of the 3-valued structure (an individual in U may rep-
resent multiple heap-allocated objects), and ι is the interpretation function mapping
predicates to their truth-value in the structure: for every predicate p ∈ P of arity k,
ι(p) : Uk → {0, 1, 1/2}.

An abstract state may include summary nodes, i.e., an individual which corresponds
to one or more individuals in a concrete state represented by that abstract state. A
summary node u has eq(u, u) = 1/2, indicating that it may represent more than a
single individual.

Embedding. We now formally define how states are represented using abstract states.
The idea is that each individual from the (concrete) state is mapped into an individual
in the abstract state. More generally, it is possible to map individuals from an abstract
state into an individual in another, less precise, abstract state.

Formally, let S = 〈U, ι〉 and S′ = 〈U ′, ι′〉 be abstract states. A function f : U → U ′

such that f is surjective is said to embed S into S′ if for each predicate p of arity k, and
for each u1, . . . , uk ∈ U , one of the following holds:

ι(p(u1, . . . , uk)) = ι′(p(f(u1), . . . , f(uk))) or ι′(p(f(u1), . . . , f(uk))) = 1/2

We say that S′ represents S when there exists such an embedding f .
One way of creating an embedding function f is by using canonical abstraction.

Canonical abstraction maps concrete individuals to an abstract individual based on the
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values of the individuals’ unary predicates. All individuals having the same values for
unary predicate symbols are mapped by f to the same abstract individual.

Table 3. Predicates used for the canonical abstraction in Fig. 4, and their meaning

Predicates Intended Meaning Defining formulae
{x(v) : x ∈ PVar } reference variable x points to v

n(u, v) next field of u points to v

{ rx(v) : x ∈ PVar } v is reachable from x by ∃vx.x(vx) ∧ n∗(vx, v)
dereferencing n fields

cn(v) v resides on a cycle of n fields n+(v, v)

is(v) v is heap-shared ∃v1, v2.n(v1, v) ∧ n(v2, v) ∧ (v1 �= v2)

Table 3 presents the set of predicates used in [23] to abstract singly-linked lists. The
predicates rx(v), cn(v), and is(v), referred to in [23] as instrumentation predicates,
record derived information and are used to refine the abstraction.
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Fig. 4. (a) a concrete possible state of the program of Fig. 2 at line 12, (b) its canonical abstraction
in TVLA, (c) its predicate abstraction with the set of predicates in Table 4

This set of predicates has been used for successfully verifying many programs ma-
nipulating singly-linked lists, but is insufficient for verifying that the output of the ex-
ample program of Fig. 2 is a cyclic singly-linked list pointed-to by x.

Example 2. Fig. 4(b) shows the canonical abstraction of the concrete state of Fig. 4(a),
using the predicates of Table 3. The node with double-line boundaries is a summary
node, possibly representing more than a single concrete node. The dashed edges are
1/2 edges, a dashed edge exists between v1 and v2 when n(v1, v2) = 1/2. The abstract
state of Fig. 4(b) records the fact that x,y, and z point to a cyclic list (using the cn(v)
predicate), and that all list elements are reachable from all 3 reference variables (using
the rx(v),ry(v), and rz(v) predicates). This abstract state, however, does not record
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the order between the reference variables. In particular, it does not record that x does
not reside between y and z (the segment that is about to be removed by the program
statement at line 12). As a result, applying the abstract effect of y.n=z to this abstract
state results with a possible abstract state in which the cyclic list is broken.

2.3 Predicate Abstraction

Predicate abstraction abstracts a concrete state into a truth-assignment for a finite set of
propositional (nullary) predicates.

A predicate abstraction is defined by a vocabulary PA = {P1, . . . , Pm}, where
each Pi is associated with a defining formula ϕi that can be evaluated over concrete
states. An abstract state is a truth assignment to the predicates in PA. Given an abstract
state A, we denote the value of Pi in A by Ai.

A concrete state S over a vocabulary PC , is mapped to an abstract state A by an
abstraction mapping β : 2-STRUCT[PC ] → 2-STRUCT[PA]. The abstraction mapping
evaluates the defining formulae of the predicates in PA over S and sets the appropriate
values to the respective predicates in A. Formally, for every 1 ≤ i ≤ m, Ai = [[ϕi]]S2 .

Table 4. Predicates used for the predicate abstraction in Fig. 4, and their meaning. Note that the
maximal tracked length K is fixed a priori

Predicates Intended meaning Defining formulae
{NotNull[x] : x ∈ PVar } x is not null ∃vx.x(vx)

{EqualsNextk[x, y] the node pointed-to by y ∃v0, . . . , vk.x(v0) ∧ y(vk)∧
: x, y ∈ PVar, is reachable by k n fields

∧
0≤i<k n(vi, vi+1)

0 ≤ k ≤ K } from the node pointed-to by x

Table 4 shows an example set of predicates similar to the ones used in [1, 8].

Example 3. Fig. 4(c) shows the predicate abstraction of the concrete state shown in
Fig. 4(a) using the predicates of Table 4. A predicate of the form NotNull[x] records the
fact that x is not null. In Fig. 4(c), all three variables x,y,and z are not null. A predicate
of the form EqualsNextk[x, y] records that the node pointed-to by y is reachable by k
steps over the n fields from the node pointed-to by x (Note that K , the maximal tracked
length, is fixed a priori). For example, in Fig. 4(c), the list element pointed-to by y is
reachable from the list element pointed-to by x in 2 steps over the n field, and therefore
EqualsNext2[x, y] holds.

3 Recording List Interruptions

In this section, we instrument the concrete semantics to record a designated set of nodes,
called interruptions, in singly-linked lists. The instrumented concrete semantics pre-
sented in this section serves as the basis for the predicate abstraction and the canonical
abstraction presented in the following sections.
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3.1 The Intuition

The intuition behind our instrumented concrete is that a garbage-free heap, containing
only singly-linked lists, is characterized by two factors: (i) the “shape” of the heap,
i.e., the connectivity relations between a set of designated nodes (interruptions); and
(ii) the length of “simple” list segments connecting interruptions, but not containing
interruptions themselves. This intuition is similar to proofs of small model properties
(e.g., [22]).

Considering this characterization, we observe that the number of shapes that are
equivalent, up to lengths of simple list segments, is bounded. We therefore instrument
our concrete semantics to record interruptions, which are an essential ingredient of the
sharing patterns.

The abstractions presented in the next sections, abstract the lengths of simple list
segments into a fixed set of abstract lengths (thereby obtaining a finite representation).
These abstractions retain the general shape of the heap but lose any correlations between
the actual lengths of different simple list segments. Our experience indicates that the
correctness of program properties usually depends on the shape of heap, rather than on
the lengths of simple list segments.

In the rest of this section, we formally define the notions of interruptions and sim-
ple list segments, and formally define the information recorded by our instrumented
concrete semantics.

3.2 Basic Definitions

We say that a list node v is an interrupting node, or simply an interruption, if it is
pointed-to by a program variable or it is heap-shared. Fig. 5 shows a heap with 4 in-
terruptions: (i) the node pointed-to by x, (ii) the node pointed-to by y, (iii) the node
pointed-to by xs,1 and ys,1, and (iv) the node pointed-to by xs,2 and ys,2.

Definition 3 (Uninterrupted Lists). We say that there is an uninterrupted list between
list node u and list node v, denoted by UList(u, v), when there is a non-empty path
between them, such that, every node on the path between them (i.e., not including u and
v) is non-interrupting.

We also say that there is an uninterrupted list between list node v and null, denoted
by UListNULL(v), when there is a non-empty path from v to null, such that, every node
on the path, except possibly v, is non-interrupting.

Table 5 formulates UList(u, v) and UListNULL(v) as formulae in FOTC .
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Fig. 5. Two lists sharing the same tail, and their representation in the instrumented concrete se-
mantics
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Table 5. Shorthand notations used throughout this paper

Shorthand Meaning Formula
HeapShared(v) v is heap-shared ∃a, b.n(a, v) ∧ n(b, v) ∧ (a �= b)

PtByVar(v) v is pointed-to by some variable
∨

var∈PVar
var(v)

Interruption(v) v is an interrupting list node HeapShared(v) ∨ PtByVar(v)

UList1(u, v) there is an uninterrupted list of n(u, v)
length 1 from u to v

UList2(u, v) there is an uninterrupted ∃m.¬Interruption(m)∧
list of length 2 from u to v n(u, m) ∧ n(m, v)

UList>2(u, v) there is an uninterrupted ∃m1, m2 : n(u, m1) ∧ n(m2, v)∧
list of length > 2 from u to v (TC a, b : n(a, b) ∧ ¬Interruption(a)∧

¬Interruption(b))(m1, m2)

UList(u, v) there is an uninterrupted list of UList1(u, v) ∨ UList2(u, v)∨
some length from u to v UList>2(u, v)

UListNULL1(v) there is an uninterrupted list of ∀w.¬n(v, w)
length 1 from v to null

UListNULL2(v) there is an uninterrupted ∃m.n(v, m) ∧ ¬Interruption(m)∧
list of length 2 from v to null UListNULL1(m)

UListNULL>2(v) there is an uninterrupted ∃m1, m2 : n(v, m1) ∧ UListNULL1(m2)
list of length > 2 from v (TC a, b : n(a, b) ∧ ¬Interruption(a)∧
to null ¬Interruption(b))(m1, m2)

UListNULL(v) there is a list of some length UListNULL1(v) ∨ UListNULL2(v)∨
from v to null UListNULL>2(v)

Given a heap, we are actually interested in a subset of its uninterrupted lists. We say
that an uninterrupted list is maximal when it is not contained in a longer uninterrupted
list.

The heap in Fig. 5 contains 4 maximal uninterrupted lists: (i) from the node pointed-
to by x and the node pointed-to by xs,1 and ys,1, (ii) from the node pointed-to by y and
the node pointed-to by xs,1 and ys,1, (iii) from the node pointed-to by xs,1 and ys,1 to
the node pointed-to by xs,2 and ys,2, and (iv) from the node pointed-to by xs,2 and ys,2

to itself.

3.3 Statically Naming Heap-Shared Nodes

We now explain how to use a quadratic number of auxiliary variables to statically name
all heap-shared nodes. This will allow us to name all maximal uninterrupted lists us-
ing nullary predicates for the predicate abstraction, and using unary predicates for the
canonical abstraction.

Proposition 1. A garbage-free heap, consisting of only singly-linked lists with n pro-
gram variables, contains at most n heap-shared nodes and at most 2n interruptions.

Corollary 1. In a garbage-free heap, consisting of only singly-linked lists with n pro-
gram variables, list node v is reachable from list node u if and only if it is reachable by
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a sequence of k < n uninterrupted lists. Similarly, there is a path from node v to null if
and only if there is a path from v to null by a sequence of k < n uninterrupted lists.

Proof. By Proposition 1, every simple path (from u to v or from v to null) contains at
most n interruptions, and, therefore, at most n − 1 maximal uninterrupted lists.

For every program variable x, we define a set of auxiliary variables {xs,k|k =
1 . . . n− 1}. Auxiliary variable xs,k points to a heap-shared node u when there exists a
simple path consisting of k maximal uninterrupted lists from the node pointed by x-to
to u, such that all of the interrupting nodes on the path are not pointed-to by program
variables (i.e., they are heap-shared). Formally, we define the set of auxiliary variables
derived for program variable x by using the following set of formulae in FOTC .

xs,1(v) ≡ ∃vx.x(vx) ∧ UList(vx, v) ∧ HeapShared(v) ∧ ¬PtByVar(v),
. . .
xs,k+1(v) ≡ ∃vk.xs,k(vk) ∧ UList(vk, v) ∧ HeapShared(v)∧

¬PtByVar(v) ∧ ¬(
∨

m=1...k xs,m(v)) .

We denote the set of auxiliary variables by AuxVar and the set of all (program and
auxiliary) variables by Var = PVar ∪ AuxVar.

Proposition 2. Every heap-shared node is pointed-to by a variable in Var. Also, xs,k(v)
holds for at most one node, for every reference variable x and k.

3.4 Parameterizing the Concrete Semantics

Let n denote the number of (regular) program variables. Notice that |AuxV ar| =
O(n2). In the following sections, we will see that using the full set of auxiliary variables
yields a canonical abstraction with a quadratic (O(n2)) number of unary predicates, and
a predicate abstraction with a bi-quadratic (O(n4)) number of predicates.

We use a parameter k to define different subsets of Var as follows: Vark = PVar ∪
{xs,i(v)|x ∈ PVar, i ≤ k}. By varying the “heap-shared depth” parameter k, we are
able to distinguish between different sets of heap-shared nodes. We discovered that,
in practice, heap-shared nodes with depth > 1 rarely exist (they never appear in our
examples), and, therefore, restricting k to 1 is usually enough to capture all maximal
uninterrupted lists. Using Var1 as the set of variables to record, we obtain a canonical
abstraction with a linear number of unary predicates (O(n)) and a predicate abstraction
with a quadratic (O(n2)) number of variables.

Fig. 5 shows a heap containing a heap-shared node of depth 2 (pointed by xs,2 and
ys,2). By setting the heap-shared depth parameter k to 1, we are able to record the
following facts about this heap: (i) there is a list of length 1 from the node pointed-to by
x to a heap-shared node, (ii) there is a list of length 1 from the node pointed-to by y to
a heap-shared node, (iii) the heap-shared node mentioned in (i) and (ii) is the same (we
record aliasing between variables), and (iv) there is a partially cyclic list (i.e., a non-
cyclic list connected to a cyclic list) from the heap-shared node mentioned in (iii). We
know that the list from the first heap-shared node does not reach null (since we record
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lists from interruptions to null) and it is not a cycle from the first-heap shared node to
itself (otherwise there would be no second heap-shared node and the cycle would be
recorded). The information lost, due to the fact that xs,2 and ys,2 are not recorded, is
that the list from the first heap-shared node to second has length 2 and the cycle from
the second heap-shard node to itself is also of length 2.

The Instrumented Concrete Semantics. The instrumented concrete semantics op-
erates by using the update formulae presented in Table 2 and then using the defining
formulae of the auxiliary variables to update their values.

4 A Predicate Abstraction for Singly-Linked Lists

We now describe the abstraction used to create a finite (bounded) representation of
a potentially unbounded set of 2-valued structures (representing heaps) of potentially
unbounded size.

4.1 The Abstraction

We start by defining a vocabulary PA of nullary predicates, which we use in our ab-
straction. The predicates are shown in Table 6.

Table 6. Predicates used for the predicate abstraction and their meaning

Predicates Defining formulae and intended meaning
{Aliased[x, y] : x, y ∈ Var } ∃v : x(v) ∧ y(v)

variables x and y point to the same object
{UList1[x, y] : x, y ∈ Var } ∃vx, vy : x(vx) ∧ y(vy) ∧ n(vx, vy)

the n field of the object pointed-to by x and the variable y
point to the same object

{UList2[x, y] : x, y ∈ Var } ∃vx, vy : x(vx) ∧ y(vy) ∧ UList2(vx, vy)
there is an uninterrupted list of length 2 from the
object pointed-to by x to the object pointed-to by y

{UList[x, y] : x, y ∈ Var } ∃vx, vy : x(vx) ∧ y(vy) ∧ UList(vx, vy)
there is an uninterrupted list of length 1 or more from the
object pointed-to by x to the object pointed-to by y

{UList1[x, null] : x ∈ Var } ∃vx : x(vx) ∧ UListNULL1(vx)
there n field of the object pointed-to by x points to null

{UList2[x, null] : x ∈ Var } ∃vx.x(vx) ∧ UListNULL2(vx)
there is an uninterrupted list of length 2 from the
object pointed-to by x to null

{UList[x, null] : x ∈ Var } ∃vx.x(vx) ∧ UListNULL(vx)
there is an uninterrupted list of length 1 or more from the
object pointed-to by x to null

Intuitively, the heap is partitioned into a linear number of uninterrupted list seg-
ments and each list segment is delimited by some variables. The predicates in Table 6
abstract the path length of list segments into one of the following abstract lengths: 0 (via
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the Aliased[x, y] predicates), 1 (via the UList1[x, y] predicates), 2 (via the UList2[x, y]
predicates), or any length ≥ 1 (via the UList[x, y] predicates), and infinity (i.e., there is
no uninterrupted path and thus all of the previously mentioned predicates are 0).

The abstraction function βPredAbs : 2-STRUCT[PC ] → 2-STRUCT[PA] operates as
described Sec. 2.3 where PA is the set of predicates in Table 6.

Aliased[x, x], Aliased[y, y], Aliased[z, z]

UList2[x, y], UList2[z, x]

UList[x, y], UList[y, z], UList[z, x]

Aliased[x, x], Aliased[y, y], Aliased[z, z]

UList1[y, null]
UList2[x, y], UList2[z, x]

UList[x, y], UList[z, x], UList[y, null]
(a) (b)

Fig. 6. The abstract effect of y.n=null under predicate abstraction. (a) predicate abstraction of
the state of Fig. 3(a); (b) result of applying the abstract transformer of y.n=null to (a)

Example 4. Fig. 6(a) shows an abstract state abstracting the concrete state of Fig. 3(a).
The predicates Aliased[x, x],Aliased[y, y], Aliased[z, z] represent the fact that the ref-
erence variables x, y, and z are not null. The predicate UList2[x, y] represents the fact
that there is an uninterrupted list of length exactly 2 from the object pointed-to by x
to the object pointed-to by y. This adds on the information recorded by the predicate
UList[x, y], which represents the existence of a list of length 1 or more. Similarly, the
predicate UList2[z, x] records the fact that a list of exactly length 2 exists from z to x.
Note that the uninterrupted list between y and z is of length 3, a length that is abstracted
away and recorded as a uninterrupted list of an arbitrary length by UList[y, z].

4.2 Abstract Semantics

Rabin [20] showed that monadic second-order logic of theories with one function sym-
bol is decidable. This immediately implies that first-order logic with transitive closure
of singly-linked lists is decidable, and thus the best transformer can be computed as sug-
gested in [22]. Moreover, Rabin also proved that every satisfiable formula has a small
model of limited size, which can be employed by the abstraction. For simplicity and
efficiency, we directly define the abstractions and the abstract transformer. The reader
is referred to [13] which shows that reasonable extensions of this logic become unde-
cidable. We believe that our techniques can be employed even for undecidable logics
but the precision may vary. In particular, the transformer we provide here is the best
transformer and operates in polynomial time.

Example 5. In order to simplify the definition of the transformer for y.n = null,
we split it to 5 different cases (shown in [18]) based on classification of the next list
interruption. The abstract state of Fig. 6(a) falls into the case in which the next list
interruption is a node pointed-to by some regular variable (z in this case) and not heap-
shared (case 3). The update formulae for this case are the following:
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UList1[z1, z2]′ = UList1[z1, z2] ∧ ¬Aliased[z1, y]
UList1[z1, null]′ = UList1[z1, null] ∨ Aliased[z1, y]
UList2[z1, z2]′ = UList2[z1, z2] ∧ ¬Aliased[z1, y]
UList[z1, z2]′ = UList[z1, z2] ∧ ¬Aliased[z1, y]
UList[z1, null]′ = UList[z1, null] ∨ Aliased[z1, y]

Applying this update to the abstract state of Fig. 6(a) yields the abstract state of
Fig. 6(b).

In [18], we show that these formulae are produced by manual construction of the
best transformer.

5 Canonical Abstraction for Singly-Linked Lists

In this section, we show how canonical abstraction, with an appropriate set of predi-
cates, provides a rather precise abstraction for (potentially cyclic) singly-linked lists.

5.1 The Abstraction

As in Sec. 4, the idea is to partition the heap into a linear number of uninterrupted
list segments, where each segment is delimited by a pair of variables (possibly includ-
ing auxiliary variables). The predicates we use for canonical abstraction are shown in
Table 7. The predicates of the form cul[x](v), for x ∈ Var, record uninterrupted lists
starting from the node pointed-to by x.

Table 7. Predicates used for the canonical abstraction and their meaning. We use the shorthand
UList(u, v) as defined in Def. 3

Predicates Intended Meaning Defining Formulae
{ x(v) : x ∈ Var } object v is pointed-to by x
{ cul[x](v) : x ∈ Var } there exists an uninterrupted list to v, ∃vx : x(vx) ∧ UList(vx, v)

starting from the node pointed-to by x

Example 6. Fig. 7(a) shows an abstract state abstracting the concrete state of Fig. 3(a).
The predicates cul[x](v),cul[y](v), and cul[z](v) record uninterrupted list segments.
Note that, in contrast to the abstract state of Fig. 4(b) (which uses the standard TVLA
predicates), the abstract configuration of Fig. 7(a) records the order between the refer-
ence variables, and is therefore able to observe that x is not pointing to an object on the
list from y to z.

6 Discussion

Equivalence of the Canonical Abstraction and the Predicate Abstraction. We first
show that the two abstractions – the predicate abstraction of Sec. 4, and the canonical
abstraction of Sec. 5 – are equivalent. That is, both observe the same set of distinctions
between concrete heaps.
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Fig. 7. The abstract effect of y.n=null under canonical abstraction. (a) canonical abstraction
of the state of Fig. 3(a); (b) result of applying the abstract transformer of y.n=null to (a)

Theorem 1. The abstractions presented in Section 4 and in Section 5 are equivalent.

Proof (Sketch). We prove the equivalence of the two abstractions by showing that,
for any two concrete heaps C1 and C2 (2-valued structures), we have βPredAbs(C1) =
βPredAbs(C2) if and only if βCanonic(C1) = βCanonic(C2).

Denote the result of applying the predicate abstraction to the concrete heaps by
AP

1 = βPredAbs(C1) and AP
2 = βPredAbs(C2), and the result of applying the canonical

abstraction to the concrete heaps by AC
1 = βCanonic(C1) and AC

2 = βCanonic(C2).
When AP

1 and AP
2 have different values for some predicate in PA, we show that:

(i) there exists an individual v1 in AC
1 that does not exist in AC

2 (i.e., there is no individual
in AC

2 with the same values for all unary predicates as v1 has in AC
1 ), or (ii) there exist

corresponding pairs of individuals (i.e., with same values for all unary predicates) in
AC

1 and AC
2 such that the value of n between them is different for AC

1 and AC
2 . This is

done by considering every predicate from PA in turn.
Finally, when all predicates in PA have the same values for both AP

1 and AP
2 , we

show that there is a bijection between the universe of AC
1 and the universe of AC

2 that
preserves the values of all predicates.

The Number of Predicates Used by the Abstractions. In general, the number of
predicates needed by a predicate abstraction to simulate a given canonical abstraction
is exponential in the number of unary predicates used by the canonical abstraction. It is
interesting to note that, in this case, we were able to simulate the canonical abstraction
using a sub-exponential number of nullary predicates.

We note that there exist predicate abstractions and canonical abstractions that are
equivalent to the most precise member of the family of abstractions presented in the
previous sections (i.e., with the full set of auxiliary variables) but require less predicates.
We give the intuition to the principles underlying those abstractions and refer the reader
to [18] for the technical details.
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In heaps that do not contain cycles, the predicates in Table 3 are sufficient for keep-
ing different uninterrupted lists from being merged. We can “reduce” general heaps to
heaps without cycles by considering only interruptions that occur on cycles:

Interruptionc(v) ≡ Interruption(v) ∧ OnCycle(v) ,

and use these interruptions to break cycles by redefining the formulae for uninterrupted
lists to use Interruptionc instead of Interruption. Now, a linear number of auxiliary
variables can be used to syntactically capture those interruptions. For every reference
variable x, we add an auxiliary variable xc, which is captured by the formula

xc(v) ≡ x(v) ∧ OnCycle(v)∨
∃v1, v2.x(v1) ∧ n∗(v1, v2) ∧ ¬OnCycle(v2) ∧ n(v2, v) .

The set of all variables is defined by Var′ = PVar ∪ {xc | x ∈ PVar}, and the
predicates in Table 8 define the new canonical abstraction.

Table 8. Predicates used for the new canonical abstraction with linear number of predicates. The
shorthand UListc denotes an uninterrupted list where interruptions are defined by Interruptionc

Predicates Intended Meaning Defining Formulae
{ x(v) : x ∈ Var′ } object v is pointed-to by x
{ culc[x](v) : x ∈ Var′ } there exists an uninterrupted list to v, ∃vx : x(vx) ∧ UListc(vx, v)

starting from the node pointed-to by x
is(v) u is heap-shared HeapShared(v)

Recording Numerical Relationships. We believe that our abstractions can be gener-
alized along the lines suggested by Deutsch in [9], by capturing numerical relationships
between list lengths. This will allow us to prove properties of programs which traverse
correlated linked lists, while maintaining the ability to conduct strong updates, which
could not be handled by Deutsch. Indeed, in [10] numerical and canonical abstractions
were combined in order to handle such programs.

7 Experimental Results

We implemented in TVLA the analysis based on the predicates and abstract transform-
ers described in Section 2.3. We applied it to verify various specifications of programs
operating on lists, described in Table 9. For all examples, we checked the absence of
null dereferences. For the running example and reverse cyclic we also verified that the
output list is cyclic and partially cyclic, respectively.

The experiments were conducted using TVLA version 2, running with SUN’s JRE
1.4, on a laptop computer with a 796 MHZ Intel Pentium Processor with 256 MB RAM.

The results of the analysis are shown in Table 9. In all of the examples, the analysis
produced no false alarms. In contrast, TVLA, with the abstraction predicates in Table 1,
is unable to prove that the output of reverse cyclic is a partially cyclic list and that the
output of removeSegment is a cyclic list.
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The dominating factor in the running times and memory consumption is the loading
phase, in which the predicates and update formulae are created (and explicitly repre-
sented). For example, the time and space consumed during the chaotic iteration of the
merge example is 8 seconds and 7.4 MB, respectively.

Table 9. Time, space and number of errors measurements. Rep. Err. is the number of errors
reported by the analysis, and Act. Err. is the number of real errors

Benchmark Description Time Space Rep. Err./
(sec) (MB) Act. Err.

create Dynamically allocates a new linked list 3 1.8 0/0
delete Removes an element from a list 7 9.1 0/0
deleteAll Deallocates a list 3 2.7 0/0
getLast Retrieves the last element in a list 4 4 0/0
insert Inserts an element into a sorted list 9 13.5 0/0
merge Merges two sorted lists into a single list 15 29.6 0/0
removeSegment The running example 7 8.4 0/0
reverse Reverses an acyclic list in-place 5 6 0/0
reverse cyclic reverse, applied to a partially cyclic list 2 7.1 0/0
rotate Moves the first element after the last element 6 7.9 0/0
search Searches for an element with a specified value 3 2.1 0/0
search nullderef Erroneous implementation of search that 3 2.4 1/1

dereferences a null pointer
swap Swaps the first two elements in a list 6 8.8 0/0
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