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Abstract. The paper presents an approach for shape analysis based on predicate
abstraction. Using a predicate base that involves reachability relations between
program variables pointing into the heap, we are able to analyze functional prop-
erties of programs with destructive heap updates, such as list reversal and various
in-place list sorts. The approach allows verification of both safety and liveness
properties. The abstraction we use does not require any abstract representation
of the heap nodes (e.g. abstract shapes), only reachability relations between the
program variables.
The computation of the abstract transition relation is precise and automatic yet
does not require the use of a theorem prover. Instead, we use a small model the-
orem to identify a truncated (small) finite-state version of the program whose
abstraction is identical to the abstraction of the unbounded-heap version of the
same program. The abstraction of the finite-state version is then computed by
BDD techniques.
For proving liveness properties, we augment the original system by a well-founded
ranking function, which is abstracted together with the system. Well-foundedness
is then abstracted into strong fairness (compassion). We show that, for a restricted
class of programs that still includes many interesting cases, the small model the-
orem can be applied to this joint abstraction.
Independently of the application to shape-analysis examples, we demonstrate the
utility of the ranking abstraction method and its advantages over the direct use of
ranking functions in a deductive verification of the same property.

1 Introduction

The goal of shape analysis is to analyze properties of programs that perform destructive
updating on dynamically allocated storage (heaps) [11]. Programs manipulating heap
structures can be viewed as parameterized in the number of heap nodes, or, alterna-
tively, the memory size.

This paper presents an approach for shape analysis based on predicate abstraction
that allows for analyses of functional properties such as safety and liveness. The abstrac-
tion used does not require any abstract representation of the heap nodes (e.g. abstract
shapes), but rather, requires only reachability relations between the program variables.
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States are abstracted using a predicate base that contains reachability relations among
program variables pointing into the heap. The computation of the abstract states and
transition relation is precise and automatic and does not require the use of a theorem
prover. Rather, we use a small model theorem to identify a truncated (small) finite-
state version of the program whose abstraction is identical to the abstraction of the
unbounded-heap version of the same program. The abstraction of the finite-state version
is then computed by BDD techniques.

For proving liveness properties, we augment the original system by a well-founded
ranking function, which is then abstracted together with the system. Well-foundedness
is abstracted into strong fairness (compassion). We show that, for a restricted class of
programs (that still includes numerous interesting cases), the small model theorem can
be applied to this joint abstraction.

We demonstrate the power of the ranking abstraction method and its advantages
over direct use of ranking functions in a deductive verification of the same property,
independent of its application to shape-analysis examples.

The method is illustrated on two examples, both using (singly) linked lists: List
reversal and in-place sort. We show how various predicate abstractions can be used to
establish various safety properties, and how, for each program, one of the abstractions
can be augmented with a progress monitor to establish termination.

The paper is organized as follows. Section 2 describes the formal model of fair
transitions systems and their finite heap version, finite heap systems. Section 3 has an
overview of finitary abstraction and predicate abstraction. Section 4 deals with the sym-
bolic computation of abstractions. It states and proves the small model property, and
describes how to apply it to obtain abstract finite heap systems. Section 5 deals with
proving liveness of heap systems. Sections 2–5 use a list reversal program as a running
example. Section 6 presents a more involved example of a nested loop bubble sort, and
shows its formal verification using the new method.

Related Work
The work in [16] presents a parametric framework for shape analysis that deals with
the specification language of the shape analysis framework and the construction of the
shape analyzer from the specification. A 2-value logic is used to represent concrete
stores, and a 3-valued logic is used to represent abstract stores. Properties are specified
by first-order formulae with transitive closure; these also describe the transitions of the
system. The shape analyzer computes a fixed point of the set of equations that are gen-
erated from the analysis specification. The systems considered in [16] are more general
than ours, e.g., we allow at most one “next pointer” for each node. Due to the restricted
systems and properties we consider, we do not have to abstract the heap structure itself,
and therefore our computation of the transition relation is precise. Moreover, their work
does not handle liveness properties.

In [7], Dams and Namjoshi study shape analysis using predicate abstraction and
model checking. Starting with shape predicates and a property, the method iteratively
computes weakest preconditions to find more predicates and constructs abstract pro-
grams that are then model checked. As in the [16] framework, the abstraction computed
in not precise. Some manual intervention is required to apply widening-like techniques
and guide the system into convergence. This work, too, does not handle liveness.
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There are several works studying logics for shape analysis. E.g., [5] present a de-
cidable logic for reasoning about heap structures. No treatment of liveness is described.

Some related but less relevant works are [9, 8] that study concurrent garbage collec-
tion using predicate abstraction, [10] that study loop invariants using predicate abstrac-
tion, and [13] that calculates weakest preconditions for reachability. All these works do
not apply shape analysis or use shape predicates.

2 The Formal Framework

In this section we present our computation model.

2.1 Fair Discrete Systems

As our computational model, we take a fair discrete system (FDS) S = 〈V,Θ, ρ,J , C〉,
where

• V — A set of system variables. A state of S provides a type-consistent interpreta-
tion of the variables V . For a state s and a system variable v ∈ V , we denote by
s[v] the value assigned to v by the state s. Let Σ denote the set of all states over V .

• Θ — The initial condition: An assertion (state formula) characterizing the initial
states.

• ρ(V, V ′) — The transition relation: An assertion, relating the values V of the vari-
ables in state s ∈ Σ to the values V ′ in an S-successor state s′ ∈ Σ.

• J — A set of justice (weak fairness) requirements (assertions); A computation
must include infinitely many states satisfying each of the justice requirements.

• C — A set of compassion (strong fairness) requirements: Each compassion require-
ment is a pair 〈p, q〉 of state assertions; A computation should include either only
finitely many p-states, or infinitely many q-states.

For an assertion ψ, we say that s ∈ Σ is a ψ-state if s |= ψ.
A computation of an FDS S is an infinite sequence of states σ : s0, s1, s2, ..., satis-

fying the requirements:

• Initiality — s0 is initial, i.e., s0 |= Θ.
• Consecution — For each � = 0, 1, ..., the state s�+1 is an S-successor of s�. That

is, 〈s�, s�+1〉 |= ρ(V, V ′) where, for each v ∈ V , we interpret v as s�[v] and v′ as
s�+1[v].

• Justice — for every J ∈ J , σ contains infinitely many occurrences of J-states.
• Compassion – for every 〈p, q〉 ∈ C, either σ contains only finitely many occurrences

of p-states, or σ contains infinitely many occurrences of q-states.

2.2 Finite Heap Systems

To allow the automatic computation of abstractions, we place further restrictions on the
systems we study, leading to the model of finite heap systems (FHS), that is essentially
the model of bounded discrete systems of [2] specialized to the case of heap programs.
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For brevity, we describe here a simplified two-type model; the extension for the general
multi-type case is straightforward.

We allow the following data types parameterized by the positive integer h, intended
to specify the heap size:

1. bool: boolean and finite-range scalars; With no loss of generality, we assume that
all finite domain values are encoded as booleans.

2. index: [0..h];
3. Arrays of the types index �→ bool (bool array) and index �→ index (index array).

We assume a signature of variables of all of these types. Constants are introduced as
variables with reserved names. Thus, we admit the boolean constants 0 and 1, and the
index constant nil . An additional reserved-name variable is H : index whose value is
always h.

We often refer to an element of type index as a node. If the interpretation of an
index variable x in a state s is �, then we say that in s, x points to the node �. An index
term is an index variable or an expression Z[y], where Z is an index array and y is an
index variable.

Atomic formulas are defined as follows:

• If x is a boolean variable, B is a index �→ bool array, and y is an index variable,
then x and B[y] are atomic formulas.

• If t1 and t2 are index terms, then t1 = t2 is an atomic formula.
• A Transitive closure formula (tcf ) of the form Z∗(x1, x2), denoting that x2 is Z-

reachable from x1, where x1 and x2 are index variables and Z is an index array.

A restricted A-assertion is a formula of the form ∀�y.ψ(�x, �y), where �y is a list of
index variables that do not include nil , and ψ(�x, �y) is a boolean combination of atomic
formulas such that the only atomic formulas referring to a universally quantified y are
of the forms B[y], y = u, or Z1[y] = Z2[y] under positive polarity. In particular, note
that in restricted A-assertions, universally quantified variables may not occur in tcf’s.
As the initial conditionΘ, the transition relation ρ, as well as the fairness requirements,
we only allow restricted A-assertions.

The definition of restricted A-assertions allows for programs that manipulate heap
elements strictly via a constant set of reference variables, which is in accordance with
most programming languages. The set of operations that are allowed is however greatly
restricted. For example, arithmetic operations are not allowed. While the present defi-
nition doesn’t allow inequalities, it is not hard to extend it to support them.

Example 1 (List Reversal). Consider program LIST-REVERSAL in Fig. 1, which is a
simple list reversal program. The array Nxt describes the pointer structure. We ignore
the actual data values, but they can easily be added as bool type variables.

Fig. 2 describes the FHS corresponding to program LIST-REVERSAL. The expres-
sion pres(V1) is an abbreviation for

∧
v∈V1

(v′ = v), i.e., pres(V1) means that all the
variables in V1 are not changed by the transition. The expression pres-array(Nxt , U)
is an abbreviation for ∀u ∈ index.u /∈ U → (Nxt ′[u] = Nxt[u]). Note that all the
clauses in Fig. 2 are restricted assertions. The justice requirement states that as long as
the program has not terminated, its execution continues.
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H : integer where H = h
x, y : [0..h] init y = nil
Nxt : array [0..h] of [0..h]






1 : while x �= nil do
2 : (x, y, Nxt [x]) := (Nxt [x], x, y)

end
3 :






Fig. 1. Program LIST-REVERSAL

V :






H : integer
x, y : [0..h]
Nxt : array [0..h] of [0..h]
π : [1..3]

Θ : H = h ∧ π = 1 ∧ y = nil

ρ :









π = 1 ∧ x = nil ∧ π′ = 3 ∧ pres({H, x, y}) ∧ pres-array(Nxt , ∅)
∨ π = 1 ∧ x �= nil ∧ π′ = 2 ∧ pres({H, x, y}) ∧ pres-array(Nxt , ∅)
∨ π = 2 ∧ x′ = Nxt [x] ∧ y′ = x ∧ Nxt ′[x] = y ∧ π′ = 1 ∧

pres({H}) ∧ pres-array(Nxt , {x})
∨ π = 3 ∧ π′ = 3 ∧ pres({H, x, y, π}) ∧ pres-array(Nxt , ∅)









J : {π �= 1, π �= 2}
C : ∅

Fig. 2. FHS for Program LIST-REVERSAL

3 Abstraction

We fix an FHS S = 〈V,Θ, ρ,J , C〉 whose set of states is Σ for this section.

3.1 Finitary Abstraction

The material here is an overview of (a somewhat simplified version of) [12]. See there
for details.

An abstraction is a mapping α : Σ → Σ
A

for some set Σ
A

of abstract states. The
abstraction α is finitary if the set of abstract statesΣA is finite. We focus on abstractions
that can be represented by a set of equations of the form ui = Ei(V ), i = 1, . . . , n,
where the Ei’s are assertions over the concrete variables (V ) and {u1, . . . , un} is the
set of abstract variables, denoted by V

A
. Alternatively, such α can be expressed by:

V
A

= Eα(V )

For an assertion p(V ), we define its abstraction by:

α(p) : ∃V.(VA = EA(V ) ∧ p(V ))

The semantics of α(p) is ‖α(p)‖ = {α(s) | s ∈ ‖p‖}. Note that ‖α(p)‖ is, in general,
an over-approximation – an abstract state is in ‖α(p)‖ iff there exists some concrete
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p-state that is abstracted into it. An assertion p(V, V ′) over both primed and unprimed
variables is abstracted by:

α(p) : ∃V, V ′.(VA = EA(V ) ∧ V ′
A

= EA(V ′) ∧ p(V, V ′))

The assertion p is said to be precise with respect to the abstraction α if ‖p‖ =
α−1(‖α(p)‖), i.e., if two concrete states are abstracted into the same abstract state, they
are either both p-states, or they are both ¬p-states. For a temporal formula ψ in positive
normal form (where negation is applied only to state assertions), ψα is the formula
obtained by replacing every maximal state sub-formula p in ψ by α(p). The formula
ψ is said to be precise with respect to α if each of its maximal state sub-formulas are
precise with respect to α.

In all cases discussed in this paper, the formulae are precise with respect to the
relevant abstractions. Hence, we can restrict to the over-approximation semantics.

The α-abstracted version of S is the system

Sα = 〈V
A
, α(Θ), α(ρ),

⋃

J∈J
α(J),

⋃

(p,q)∈C
(α(p), α(q))〉

From [12] we derive the soundness of finitary abstraction:

Theorem 1. For a system S, abstraction α, and a positive normal form temporal for-
mula ψ:

Sα |= ψα =⇒ S |= ψ

Thus, if an abstract system satisfies an abstract property, then the concrete system sat-
isfies the concrete property.

3.2 Predicate Abstraction

Predicate abstraction is an instance of finitary abstraction where the abstract variables
are boolean. Following [15], an initial predicate abstraction is chosen as follows: Let P
be the (finite) set of atomic state formulas occurring in ρ, Θ, J , C and the concrete
formula ψ that refer to non-control and non-primed variables. Then the abstraction α
is the set of equations {Bp = p : p ∈ P}. The formula ψα is then checked over Sα

producing either a confirmation that Sα |= ψa or a counterexample. In the former case,
the process terminates concluding that S |= ψ. Else, the counterexample produced is
concreticized and checked whether it is indeed a feasible S-trace. If so, the process
terminates concluding that S �|= ψ. Otherwise, the concrete trace implies a refinement
α′ of α under which the abstract error trace is infeasible. The process repeats (with
a′) until it succeeds – ψ is proven to be valid or invalid – or the refinement reaches
a fixpoint, in which case the process fails. See [6, 3, 4] for discussion of the iterated
abstraction refinement method.

We close this section by demonstrating the process of predicate abstraction on pro-
gram LIST-REVERSAL. In the next section we show how to automatically compute the
abstraction.
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Example 2 (List Reversal Abstraction). Consider program LIST-REVERSAL of Exam-
ple 1. One of the safety properties one wishes to prove is that no elements are removed
from the list, i.e., that every element initially reachable from x is reachable from y upon
termination. This property can be expressed by:

∀t.(π = 1 ∧ t �= nil ∧ Nxt∗(x, t)) → �(π = 3 → Nxt∗(y, t)) (1)

We augment the program with a generic variable t, which is a variable whose initial
value is unconstrained and remains fixed henceforth. Then validity of Formula (1) re-
duces to the validity of:

(π = 1 ∧ t �= nil ∧ Nxt∗(x, t)) → �(π = 3 → Nxt∗(y, t)) (2)

Following the above discussion, to prove the safety property of Formula (2), the set
P consists of x = nil , t = nil , Nxt∗(x, t), and Nxt∗(y, t), which we denote as the
abstract variables x nil , t nil , r xt , and r yt respectively.

The abstract program is ABSTRACT-LIST-REVERSAL, shown in Fig. 3, and the
abstract property corresponding to Formula (2) is:

ψα : (Π = 1 ∧ ¬t nil ∧ r xt) → �(Π = 3 → r yt)

where Π is the program counter of the abstract program.

x nil , t nil , r xt , r yt : bool
init x nil = t nil = 0, r xt = 1, r yt = t nil

















1 : while ¬x nil do

2 :











(r xt , r yt) := case
¬r xt ∧ ¬r yt : (0, 0)
¬r xt ∧ r yt : {(0, 1), (1, 1)}
otherwise : {(0, 1), (1, 0), (1, 1)}

esac
x nil := if r xt then 0 else {0, 1}

end
3 :

















Fig. 3. Program ABSTRACT-LIST-REVERSAL

It is now left to check whether Sα |= ψα, which can be done, e.g., using a model
checker. Here, the initial abstraction is precise enough, and program ABSTRACT-LIST-
REVERSAL satisfies ψα. In Section 6 we present a more challenging example requiring
several iterations of refinement.

4 Symbolic Computation of Abstractions

This section describes a methodology for symbolically computing an abstraction of
an FHS. The methodology is based on a small model property, that establishes that
satisfiability of a restricted assertion can be checked on small instantiation of a system.
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Let V be a vocabulary of typed variables, whose types are taken from the restricted
type system allowed in an FHS. A model M for V consists of the following elements:

• A positive integer h > 0.
• For each boolean variable b ∈ V , a boolean value M [b] ∈ {0, 1}. It is required that
M [0] = 0 and M [1] = 1.

• For each index variable x ∈ V , a natural value M [x] ∈ [0..h]. It is required that
M [nil ] = 0 and M [H ] = h.

• For each boolean array B ∈ V , a boolean functionM [B] : [0..h] �→ {0, 1}.
• For each index array Z ∈ V , a functionM [Z] : [0..h] �→ [0..h].

We define the size of model M to be h + 1. Let ϕ = ∀�y.ψ(�x, �y) be a restricted A-
assertion, where �x is the set of free variables appearing in ϕ. For a given �x-model M ,
we can evaluate the formula ϕ over the modelM . ModelM is called a satisfying model
for ϕ if M |= ϕ. An index term t ∈ {x, Z[x]} is called a free term in ϕ. Let Tϕ denote
the set consisting of the term nil and all free terms which occur in formula ϕ.

A model M is called a Z-uniform model (uniform model for short), if for every
k ∈ [0..h] and every index arraysZ1 andZ2 such thatM [Z1](k) = k1 andM [Z2](k) =
k2 for k1 �= k2, then k and at least one of k1 or k2 are M -interpretations of a free
term belonging to Tϕ. A restricted A-assertion is called a Z-uniform assertion (uniform
assertion for short) if all its models are Z-uniform. For example, assertion ρ of Fig. 2 is
uniform where Z1 and Z2 are the arrays Nxt and Nxt ′. From now on, we will restrict
our attention to uniform assertions and their models. This restriction is justified since
in all programs we are studying here, every pointer that is being updated is assigned a
value of a variable or a free term, e.g., Nxt ′[x] = y or Nxt ′[y] = Nxt [yn] (though the
value of the pointer before the assignment is not necessarily pointed to by any variable).

The following theorem states that if ϕ has a satisfying model, then it has a small
satisfying model. The theorem is a variant of a similar one stated originally in [14].

Theorem 2 (Small model property). Let ϕ : ∀�y.ψ be a uniform restricted A-assertion
and T be a set of free terms containing Tϕ. Then ϕ has a satisfying model iff it has a
satisfying model of size not exceeding |T | + 1.

Proof. Let M be a satisfying model of size exceeding |T | + 1. We will show that M
can be reduced to a smaller satisfying model M whose size does not exceed |T | + 1.

Let 0 = n0 < · · · < nm be all the distinct values that modelM assigns to the terms
in T . Obviously,m < |T |. Let d be the minimal value in [0..h] which is different from
each of the ni’s. Define a mapping γ : [0..h] → [0..m] as follows:

γ(u) =
{
i if u = ni

m+1 otherwise

We define the model M as follows:

• h = m+1.
• M [x] = M [x] for each boolean variable x ∈ T .
• M [u] = γ(M [u]), for each free index variable u ∈ T .
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• M [B] = λi.if i ≤ m then M [B](ni) else M [B](d), for each boolean array
B ∈ T .

• Finally consider an index array Z ∈ T . We let M [Z](m+1) = m+1. For i ≤ m
let v = M [Z](ni). If some n ∈ {n0, . . . , nm} is Z-reachable from v in M , let nj ,
j ≤ m, be the “Z-closest” to v, and then M [Z](i) = j. Otherwise, M [Z](i) =
m+1.

Concerning the last clause in the definition, note that if nj is “Z1-closest” to v then, due
to uniformity, it is also the “Z2-closest” to v, for every Z2.

It remains to show that M |= ϕ under the assumption that M |= ϕ. The proof of
this claim is presented in Appendix A. �

For example, consider a formula ϕ and a set T = {nil , v1, v2, v3} that includes Tϕ. Let
M be a uniform model with h = 7; M [v1] = 1;M [v2] = 3,M [v3] = 5,M [Nxt] =
[6, 6, 7, 5, 5, 5, 7]. Then, according to the construction, h = 4;M [nil ] = 0;M [v1] =
1;M [v2] = 2;M [v3] = 3;M [Nxt ] = [3, 4, 3, 4].

Given a restricted A-assertion ϕ and a positive integer h0, we define the h0-
bounded version of ϕ, denoted �ϕ�h0 , to be the conjunction ϕ ∧ (H ≤ h0). Theorem 2
can be interpreted as stating that ϕ is satisfiable iff �ϕ�|T | is satisfiable.

Next, we would like to extend the small model theory to the computation of ab-
stractions. Consider first the case of a restricted A-assertion ϕ which only refers to
unprimed variables. As explained in Subsection 3.1, the abstraction of ϕ is given by
α(ϕ) = ∃V (V

A
= E

A
(V )∧ϕ(V )). Assume that the set of (finitely many combinations

of) values of the abstract system variables VA is {U1, . . . , Uk}. Let sat(ϕ) be the subset
of indices i ∈ [1..k], such that Ui = Eα(V ) ∧ ϕ(V ) is satisfiable. Then, it is obvious
that the abstraction α(ϕ) can be expanded into

α(ϕ)(V
A
) =

∨

i∈sat(ϕ)

(V
A

= Ui) (3)

Next, let us consider the abstraction of �ϕ�|T |, where T consists of all free terms in ϕ
and Eα(V ) and the variable H , i.e. all the free terms in the assertion Ui = Eα(V ) ∧
ϕ(V )∧(H ≤ h0). Our reinterpretation of Theorem 2 implies that sat(�ϕ�|T |) = sat(ϕ)
which leads to the following theorem:

Theorem 3. Let ϕ be an assertion which only refers to unprimed variables, α : V
A

=
E

A
(V ) be an abstraction mapping, T be the set of free terms in the formula (Ui =

EA(V )) ∧ ϕ(V ) ∧ (H ≤ h0), and h0 = |T |. Then

α(ϕ)(V
A
) ∼ α(�ϕ�h0)(VA

)

Theorem 3 deals with assertions that do not refer to primed variables. It can be extended
to the abstraction of an assertion such as the transition relation ρ. Recall that the abstrac-
tion of such an assertion involves a double application of the abstraction mapping, an
unprimed version and a primed version. Thus, we need to consider the set of free terms
in the formula (Ui = EA(V )) ∧ Uj = EA(V ′) ∧ ρ(V, V ′) plus the variable H .

Next we generalize these results to entire systems. For an FHS S = 〈V,Θ, ρ,J , C〉
and positive integer h0, we define the h0-bounded version of S, denoted �S�h0 , as
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〈V ∪ {H}, �ρ�h0, �J �h0 , �C�h0〉, where �J �h0 = {�J�h0 | J ∈ J } and �C�h0 =
{(�p�h0 , �q�h0) | (p, q) ∈ C}. Let h0 be the maximum size of the sets of free terms for
all the abstraction formulas necessary for computing the abstraction of all the compo-
nents of S. Then we have the following theorem:

Theorem 4. Let S be an FHS, α be an abstraction mapping, and h0 the maximal size
of the relevant sets of free terms as described above. Then the abstract system Sα is
equivalent to the abstract system �S�α

h0
.

We use TLV [1] to compute the abstract system �S�α
h0

. The only manual step in the
process is the choice of the state predicates. As discussed in Section 3, the initial choice
is usually straightforward. One of the attractive advantages of using a model checker
for the abstraction is that it can be invisible – thus, the abstraction, and checking of the
(abstract) property over it, can be done completely automatically, and the user need not
see the abstract program, giving rise to the method of invisible abstraction. However,
because of the need for refinement, the user may actually prefer to view the abstract
program.

Example 3. Consider again program LIST-REVERSAL of Example 1. In Example 2
(of Section 3) we described its abstraction, which was manually derived. In order
to obtain an automatic abstraction for the system whose set of free terms is T =
{nil , H, x, y, t, x′, y′,Nxt ′[x]}, we bounded the system by h0 = 8.

We compute the abstraction in TLV by initially preparing an input file describing the
concrete truncated system. We then use TLV’s capabilities for dynamically constructing
and updating a model to construct the abstract system by separately computing the ab-
straction of the concrete initial condition, transition relation, and fairness requirements.

Having computed the abstract system, we check the safety property ψα, which, of
course, holds. All code is in http://www.cs.nyu.edu/acsys/shape-analysis.

5 Liveness

5.1 Transition Abstraction

State abstraction often does not suffice to verify liveness properties and needs to be
augmented with transition abstraction. Let (D,�) be a partially ordered well founded
domain, and assume a ranking function δ : Σ → D. Define a function decrease by:

decrease =






1 δ � δ′

0 δ = δ′

−1 otherwise

Transition abstraction can be incorporated into a system by (synchronously) composing
the system with a progress monitor [12], shown in Fig. 4. The compassion requirement
corresponds to the well-foundedness of (D,�): the ranking cannot decrease infinitely
many times without increasing infinitely many times. To incorporate this in a state ab-
straction α, we add the defining equation decA = dec to α.
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dec : {-1, 0, 1}
compassion (dec = 1, dec = −1)[

loop forever do
1 : dec := decrease

]

Fig. 4. Progress Monitor M(δ) for a Ranking δ

Example 4 (List Reversal Termination). Consider program LIST-REVERSAL and the
termination property �(π = 3). The loop condition x �= nil in line 1 implies that
the set of nodes starting with x is a measure of progress. This suggests the ranking
δ = {i | Nxt∗(x, i)} over the well founded domain (2N,⊃). That is, the rank of a
state is the set of all nodes which are currently reachable from x. As the computation
progresses, this set loses more and more of its members until it becomes empty. Using
a sufficiently precise state abstraction, one can model check that the abstract property�(Π = 3) indeed holds over the program.

Just like the case of predicate abstraction, we lose nothing (except efficiency) by
adding potentially redundant rankings. The main advantage here over direct use of
ranking functions within deductive verification is that one may contribute as many el-
ementary ranking functions as one wishes. Assuming a finitary abstraction, it is then
left to the model-checker to sort out their interaction and relevance. To illustrate this,
consider the program NESTED-LOOPS in Fig. 5. The statements x := ?, y := ? in
lines 0 and 2 denote assignments of a random natural to x and y. Due to this unbounded
non-determinism, a deductive termination proof of this program needs to use a ranking
function ranging over lexicographic triplets, whose core is (π = 0, x, y). With augmen-
tation, however, one need only provide the rankings δ1 : x and δ2 : y.

5.2 Computing the Augmented Abstraction

We aim to apply symbolic abstraction computation of Section 4 to systems augmented
with progress monitors. However, since progress monitors are not limited to restricted
A-assertions, such systems are not necessarily FHS’s. Thus, for any ranking function δ,
one must show that Theorem 4 is applicable to such an extended form of FHS’s. Since all
assertions in the definition of an augmented system, with the exception of the transition
relation, are restricted A-assertions, we need only consider the augmented transition
relation ρ ∧ ρδ , where ρ is the unaugmented transition relation and ρδ is defined as
dec′ = decrease. Let T be a set consisting of all free terms in the assertions ρ ∧ ρδ,

x, y : N















0 : x := ?
1 : while x > 0 do










2 : y := ?
3 : while y > 0 do[

4 : y := y − 1
5 : skip

]

6 : x := x − 1
7 : skip










8 :
















Fig. 5. Program NESTED-LOOPS
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Eα(V ), and Eα(V ′), as well as the variable H . Then Theorem 4 holds if it is the case
that

sat(�ρ ∧ ρδ�|T |) = sat(ρ ∧ ρδ) (4)

Since proving Formula (4) for an arbitrary ranking is potentially a significant manual
effort, we specifically consider the following commonly used ranking functions over
the well founded domain (2N,⊃):

δ1(x) = {i | Nxt∗(x, i)} (5)

δ2(x, y) = {i | Nxt∗(x, i) ∧ Nxt∗(i, y)} (6)

In the above, x, y are index variables, and Nxt is an index array. Ranking δ1 is used
to measure the progress of a forward moving pointer x, while ranking δ2 is used to
measure the progress of pointers x and y toward each other. Throughout the rest of this
section we assume that the variables x and y appearing in δ1 or δ2 are free terms in the
unaugmented transition relation.

In order to extend the small model property to cover transition relations of the form
ρδ we impose stronger conditions on the set of terms T . A term set T is said to be
history closed if for every term of the form Nxt[x], Nxt ′[x] ∈ T only if Nxt [x] ∈ T .
From now on, we restrict to history-closed term sets. Note that history closure implies
a stronger notion of uniformity as follows: For any model M and nodes k, k1, k2, if
M [Nxt](k) = k1 �= k2 = M [Nxt ′](k), then all of k, k1, k2 are pointed to by terms
in T .

The following theorem, whose proof is in Appendix B, establishes the soundness of
our method for proving liveness for the two ranking functions we consider.

Theorem 5. Let S be an unaugmented FHS with transition relation ρ, δi be a ranking
with i ∈ {1, 2}, M be a uniform model satisfying ρ ∧ ρδ , T be a history-closed term
set containing the variableH and the free index terms in the assertions ρ ∧ ρδ , Eα(V ),
and Eα(V ′), and M be the appropriate reduced model of size h0 = |T |.

Then M |= ρδi only if M |= ρδi .

Example 5 (List Reversal Termination, concluded). In Example 4 we propose the rank-
ing δ1 to verify termination of program LIST-REVERSAL. From the Theorem 5 it fol-
lows that there is a small model property for the augmented program. The bound of the
truncated system, according to Theorem 4, is

h0 = |T | = |{H,nil , x, y, x′, y′,Nxt ′[x],Nxt [x]}| = 8

We have computed the abstraction, and proved termination of LIST-REVERSAL using
TLV.

6 Bubble Sort

We present our experience in verifying a bubble sort algorithm on acyclic, singly-linked
lists. The program is given in Fig. 6. The requirement of acyclicity is expressed in the
initial condition Nxt∗(x,nil) on the array Nxt . In Subsection 6.1 we summarize the
proof of some safety properties. In Subsection 6.2 we discuss issues of computational
efficiency, and in Subsection 6.3 we present a ranking abstraction for proving termina-
tion.
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H : integer where H = h
x, y, yn, prev, last : [0..h]
Nxt : array [0..h] of [0..h] where Nxt∗(x, nil)
D : array [0..h] of bool

























0 : (prev, y, yn, last) := (nil , x,Nxt [x],nil);
1 : while last �= Nxt[x] do

















2 : while yn �= last do














3 : if (D[y] > D[yn]) then









4 : (Nxt [y],Nxt[yn]) := (Nxt [yn], y);
5 : if (prev = nil) then

6 : x := yn
else

7 : Nxt[prev] := yn;
8 : (prev, yn) := (yn, Nxt[y])










else
9 : (prev, y, yn) := (y, yn, Nxt[y])































10 : (prev, y, yn, last) := (nil , x,Nxt [x], y);
11 :

























Fig. 6. Program BUBBLE SORT

6.1 Safety

Two safety properties of interest are preservation and sortedness, expressed as follows:

∀t.(π = nil ∧ t �= nil ∧ Nxt∗(x, t)) → �(Nxt∗(x, t)) (7)

∀t, s.(π = 11 ∧ Nxt∗(x, t) ∧ Nxt∗(t, s)) ⇒ D[t] ≤ D[s] (8)

As in Example 2 we augment the program with a generic variable for each universal
variable. The initial abstraction consists of predicates collected from atomic formulas
in properties (7) and (8) and from conditions in the program. These predicates are

last = Nxt[x], yn = last, D[y] > D[yn], prev = nil , t = nil ,
Nxt∗(x,nil), Nxt∗(x, t), Nxt∗(t, s), D[t] ≤ D[s]

This abstraction is too coarse for either property, requiring several iterations of refine-
ment. Since we presently have no heuristic for refinement, new predicates must be de-
rived manually from concretized counterexamples. In shape analysis typical candidates
for refinement are reachability properties among program variables that are not ex-
pressible in the current abstraction. For example, the initial abstraction cannot express
any nontrivial relation among the variables x, last, y, yn, and prev. Indeed, our final
abstraction includes, among others, the predicates Nxt∗(x, prev) and Nxt∗(yn, last).
In the case of prev, y, and yn, it is sufficient to use 1-step reachability, which is more
efficiently computed. Hence we have the predicates Nxt [prev] = y and Nxt[y] = yn.

6.2 Optimizing the Computation

When abstracting BUBBLE SORT, one difficulty, in terms of time and memory, is in
computing the BDD representation of the abstraction mapping. This becomes apparent
as the abstraction is refined with new graph reachability predicates. Naturally, comput-
ing the abstract program is also a major bottleneck.

One optimization technique used is to compute a series of increasingly more re-
fined (and complex) abstractions α1, . . . , αn, with αn being the desired abstraction.
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For each i = 1, . . . , n − 1, we abstract the program using αi and compute the set of
abstract reachable states. Let ϕi be the concretization of this set, which represents the
strongest invariant expressible by the predicates in αi. We then proceed to compute the
abstraction according to αi+1, while using the invariant ϕi to limit the state space. This
technique has been invaluable in limiting state explosion, almost doubling the size of
models we have been able to handle.

6.3 Liveness

Proving termination of BUBBLE SORT is more challenging than that of LIST-
REVERSAL due to the nested loop. While a deductive framework would require con-
structing a global ranking function, the current framework requires only to identify in-
dividual rankings of each loop. Therefore we examine both loops independently, specif-
ically their exit conditions.

The outer loop condition (last �= Nxt [x]) implies that “nearness” of last to x is a
measure of progress. We conjecture that after initialization, subsequent assignments ad-
vance last “backward” toward x. This suggests the ranking δ2 defined in Subsection 5.2.
As for the inner loop, it iterates while yn �= last. We conjecture that yn generally pro-
gresses “forward” toward the list tail. This suggests the ranking δ1 from Subsection 5.2.

We use δ1 and δ2 as a ranking augmentation, as well as a version of state abstraction
described in Subsection 6.1 that omits predicates related to generic variables.

7 Conclusion

We have shown an approach for combining augmentation and predicate abstraction with
model-checking, for the purpose of performing shape analysis without explicit repre-
sentation of heap shapes. Using a small model property as a theoretical basis, we are
able to use the model-checker in a role traditionally relegated to external decision proce-
dures. Consequently, the complete process, from abstraction to verification, is automatic
and fully encapsulated in the model-checker. We have shown successful application of
the method to two programs that perform destructive heap updates – a list reversal al-
gorithm and a bubble sort algorithm on linked lists.

In the immediate future we plan to focus on optimization of the abstraction compu-
tation. One such direction is to integrate with a SAT-solver. Another natural direction is
to generalize the model from singly-linked structures to trees and finite DAG’s.
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A Proof of Claim in Theorem 2

To complete the proof of Theorem 2, we show that, with the given construction of M ,
M |= ϕ under the assumption that M |= ϕ.

To interpret the formula ϕ over M , we consider an arbitrary assignment η to the
quantified variables �y which assigns to each variable y a value η[y] ∈ [0..m+1]. For
compatibility, we pick an assignment η, which assigns an M -value to variable y, given
by η(y) = if η(y) = i then ni else d. It remains to prove that (M,η) |= ψ under the
assumption that (M,η) |= ψ. For simplicity, we denote by Mη the joint interpreta-
tion (M,η) which interprets all quantified variables according to η and all other terms
according to M . Similarly, let Mη denote the joint interpretation (M,η).
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We list below several properties of the extended model Mη

P1. For every boolean variable b, Mη[b] = Mη[b].
P2. For every boolean array B and variable u ∈ �x ∪ �y, Mη[B[u]] = Mη[B[u]].
P3. If t is a free term, then Mη[t] ∈ {n0, . . . , nm} and Mη[t] = i iff Mη[t] = ni.
P4. If t is a non-free term, such that Mη[t] = ni for some i ≤ m, then Mη[t] = i.
P5. If x1 and x2 are free variables then Mη |= Z∗(x1, x2) iff Mη |= Z∗(x1, x2)

Properties P1–P3 are direct consequences of the definition of Mη. Let us consider
Property P4. For the case that t = y, then Mη[y] = ni iff η[y] = ni iff η[y] = i iff
Mη[y] = i. The other case is that t = Z[y]. By considering separately the cases that
Mη[y] = nj and Mη[y] = d, we can show that Mη[Z[y]] = i.

Property P5 follows from the definition of M [Z] and the fact that M [Z](m+1) =
m+1, so that no spurious Z-chains through m+1 are generated by M .

To prove M |= ϕ, it is sufficient to show that each free atomic formula (i.e., a
formula not referring to any of the �y variables) is true in Mη iff it is true in Mη and,
for each non-free atomic formula p, if Mη |= p then Mη |= p. The relaxation in
the requirements about non-free atomic formulas stems from the fact that they always
appear under positive polarity in ϕ. We consider in turn each type of an atomic formula
p that may occur in ψ.

For the case that p is a boolean variable b or a boolean term B[u], the claim follows
from properties P1, P2.

Next, consider the case that p is the formula t1 = t2, where t1 and t2 are free index
terms. According to Property P3, the values of t1 and t2 are equal in Mη iff they are
equal in Mη.

Turning to the case that p is the formula y = u, where y is a quantified variable, the
correspondence between the assignments η and η, guarantee that this equality holds in
Mη iff it holds in Mη.

Finally, let us consider the non-free atomic formula Z1[y] = Z2[y], and the case
that Mη |= Z1[y] = Z2[y]. For the case that Mη[y] = d, the equality holds in Mη

since Mη[Z1](m+1) = Mη[Z2](m+1) = m+1. Otherwise, let Mη[y] = ni, and let
n = Mη[Z1](ni) = Mη[Z2](ni). If n = nj then Mη[Z1(y)] = Mη[Z2(y)] = j.
Otherwise, Mη[Z1(y)] and Mη[Z2(y)] are both equal to j, where nj is the closest nk

which is Z1-reachable (equivalently,Z2-reachable) from n, if there exist one. If no such
nk is Z1-reachable from n, then Mη[Z1(y)] = Mη[Z2(y)] = m+ 1.

The case of atomic formulas of the form Z∗(x1, x2) follows from Property P5. �

B Proof of Theorem 5

Theorem 5 claims that M |= ρδi implies M |= ρδi , where ρδi is defined as dec′ =
decrease. We prove the claim for a ranking δ1 of the form δ1(x) = {i | Nxt∗(x, i)}
specified in equation (5). The case of δ2 is justified by similar arguments.

The evaluation of δ1 inM , writtenM [δ1], is the set {i |M [Nxt∗](M [x], i)}, i.e, the
set of all M -nodes which are reachable from M [x] by M [Nxt]-links. The evaluation of
δ1 in M and of δ′1 in M and M are defined similarly.

First note the following property of terms in T : It follows directly from Property P5
of Theorem 2 that, for any term t in T and δ ∈ {δ1, δ′1},M [t] ∈M [δ] iffM [t] ∈M [δ].
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To prove the claim it is enough to show that both properties δ1 ⊃ δ′1 and δ1 = δ′1
are satisfied by M iff they are satisfied by M . First assume M |= δ1 ⊃ δ′1. It is easy
to show that δ1 ⊇ δ′1 is satisfied in M . This is true since by construction, any node
i ∈ [0 . . . N ] is pointed to in M by a term in T , and membership in δ1, δ′1 is preserved
for such terms.

It is left to show that δ1 �= δ′1 is satisfied in M . We do this by identifying a term in
T that M interprets as a node in M [δ1] −M [δ′1]. Such a term must point to a node in
M that is a member of M [δ1] −M [δ′1]. To perform this identification, let � be a node
in M [δ1] − M [δ′1]. Let M [x] = r1, . . . , rq = � denote the shortest Nxt-path in M
from the node M [x] to �, i.e., for i = 1, . . . , q−1, M [Nxt](ri) = ri+1. Let j be the
maximal index in [1..q] such that rj ∈ {n0, . . . , nm}, i.e., rj is the M -image of some
term t ∈ T . If rj �∈M [δ′1], our identification is complete.

Assume therefore that rj ∈ M [δ′1]. According to our construction, there exists an
M [Nxt]-chain connecting rj to �, proceeding along rj+1, rj+2, . . . , �. Consider the
chain ofM [Nxt ′]-links starting from rj . At one of the intermediate nodes: rj , . . . , �, the
M [Nxt]-chain and the M [Nxt ′]-chain must diverge, otherwise � would also belong to
M [δ′1]. Assume that the two chains diverge at rk, for some j ≤ k < q. Then, according
to strong uniformity (implied by history closure), rk+1 ∈ {n0, . . . , nm}, contradicting
the assumed maximality of j.

In the other direction, assume that M satisfies δ1 ⊃ δ′1. We first show that M
satisfies δ1 ⊇ δ′1. Let n be a node in M [δ′1], and consider a Nxt ′-path from M [x′] to
n in M . Let m be the ancestor nearest to n that is pointed to by a term in T . From
Theorem 2 it follows that m ∈ M [δ1]. The fact n ∈ M [δ1] follows by induction on
path length from m to n and by uniformity of M and M . Therefore M [δ1] ⊇ M [δ′1].
We now show that M satisfies δ1 ⊃ δ′1. Let j be a node such that j ∈ M [δ1] −M [δ′1].
By construction, j is pointed to in M by a term t or j = m+1. In the first case, t points
to a node nj in M , such that nj ∈ M [δ1] −M [δ′1], and we are done. In the latter case,
from construction we have M [Nxt](m+1) = M [Nxt ′](m+1) = m+1. Therefore, if
m+1 is not Nxt ′-reachable from M [x′], there must exist a node i in M [δ1] −M [δ′1]
such that M [Nxt ](i) �= M [Nxt ′](i). By uniformity, i must be pointed to in M by a
term in T . From Theorem 2 there exists a corresponding node in M .

It is left to show that M |= (δ1 = δ′1) iff M |= (δ1 = δ′1). This is done by similar
arguments.

The case of δ2, while not presented here, is shown by generalization: While δ1
involves nodes reachable from a single distinguished pointer x, δ2 involves nodes on
a path between x and a pointer y. Thus, given node � satisfying some combination of
properties of membership in δ2, δ′2, we identify a node satisfying the same properties,
that is also pointed to by a term in T . Here, however, we consider not only distant
ancestors of � on the path from x, but also distant successors on the path to y. �
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