
Update on SHA-1�

Vincent Rijmen1,2 and Elisabeth Oswald1

1 IAIK, Graz University of Technology,
Inffeldgasse 16a, A-8010 Graz, Austria

{vincent.rijmen,elisabeth.oswald}@iaik.tugraz.at
2 Cryptomathic A/S,

Jægerg̊ardsgade 118, DK-8000 Århus C, Denmark

Abstract. We report on the experiments we performed in order to as-
sess the security of SHA-1 against the attack by Chabaud and Joux [5].
We present some ideas for optimizations of the attack and some proper-
ties of the message expansion routine. Finally, we show that for a reduced
version of SHA-1, with 53 rounds instead of 80, it is possible to find col-
lisions in less than 280 operations.

Keywords: hash functions, cryptanalysis

1 Introduction

In [5], Chabaud and Joux presented a method to find collisions for the original
Secure Hash Standard (here denoted by SHA-0). We present here the results
of our attempts to apply their attack to SHA-1, as well as some extensions to
the approach described in [5]. For a good understanding of our results, it is
recommended to study [5] very carefully. Space restrictions do not permit us to
copy all the important details of the original attack.

In the case of SHA-0, the message expansion shows a certain weakness, which
allows to reduce the search space for difference patterns to a size which makes
exhaustive search possible. This weakness has been fixed in SHA-1 and conse-
quently, it was necessary to design and implement more intelligent searching
algorithms.

Furthermore, we investigated the use of alternative linear approximations
for the non-linear functions. We also optimized the equation solving step, which
allows to solve larger systems of equations. Finally, we analyzed in much detail
the complexity of an attack on a version of SHA-1 reduced to 53 rounds.

The appendix lists some expanded message words with very low weight, which
we can’t use in an attack.

In parallel to our research, Biham and Chen [1] improved the complexity of
the Chabaud-Joux attack on SHA-0. The same authors announce forthcoming
results on SHA-1 in [2]. Saarinen describes attacks on block ciphers based on
SHA-1 in [6].

� This research was supported financially by the A-SIT, Austria and by the BSI,
Germany.

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 58–71, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Update on SHA-1 59

2 SHA-0 and SHA-1

The SHA family of hash functions is described in [4]. Briefly, the hash functions
consist of two phases: a message expansion and a state update function. These
are explained in more detail in the following. SHA-0 and SHA-1 share the same
state update, but SHA-0 has a simpler message expansion. Both SHA-0 and
SHA-1 consist of 80 rounds. Because we will mainly study reduced versions
here, we make the number of rounds variable, and denote it by R.

2.1 Message Expansion

In SHA-1, the message expansion is defined as follows. The input is a 512-bit
message, denoted by a row vector m. The message is also represented by 16
32-bit words, denoted by Mt, with t = 0, 1, . . . , 15.

In the message expansion, this input is expanded linearly into R 32-bit words
Wt, also denoted as the 32R-bit expanded message word w. The words Wt are
defined as follows.

Wt = Mt, t = 0, . . . 15 (1)
Wt = (Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16) ≪ 1, t > 15 (2)

The message expansion of SHA-0 is very similar, but uses:

Wt = Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16 . (3)

Consequently, a bit at a certain position i in one of the words of w only depends
on the bits at corresponding positions in the words of m.

2.2 State Update Transformation

The state update transformation starts from a (fixed) initial state for 5 32-bit
registers and updates them in R steps, using one word Wt in every step. Figure 1
illustrates one step of the state update function. The function f depends on the
round number: rounds 1 to 20 use the IF-function, rounds 41 to 60 use the
MAJ-function.

fif(X, Y, Z) = XY ⊕ XZ (4)
fmaj(X, Y, Z) = XY ⊕ XZ ⊕ Y Z (5)

The remaining rounds use 3-input XOR. A round constant Kt is added in every
round. There are four different constants; one for rounds 1 to 20, one for rounds
21 to 40, one for rounds 41 to 60 and one for rounds 61 to 80. After the last
application of the state update transformation, the initial register values are
XOR-ed to the final values, and the result is outputted.



60 Vincent Rijmen and Elisabeth Oswald

�
≫ 2

+

�

+

�

+

�

+

�
�• ≪ 5 �

f �

�•

�•

�•
� Kt

� Wt

� � � � �

Fig. 1. One step of the state update function of SHA-1.

3 The Basic Attack Strategy

The attack on SHA-0 can be summarized as follows [5].

1. Firstly, a linear approximation of SHA-0 is constructed.
2. Secondly, collisions for the linear approximation are determined.
3. Thirdly, a collision for the real SHA-0 is searched among the collisions for

the linear approximation.

We now discuss each of these steps and point out the differences between SHA-0
and SHA-1 relevant to the attack. The next sections also go into more detail for
step 2 and step 3.

3.1 Determining a Linear Approximation

In this step, we replace all non-linear components by linear approximations.
For our purposes, a linear function λ is a ‘good’ approximation for a non-linear
function γ if the relation

γ(x ⊕ δ) ⊕ γ(x) = λ(x ⊕ δ) ⊕ λ(x) = λ(δ) (6)

holds for relatively many values of x and δ. The complexity of the third step of
the attack is influenced by the quality of the approximation.

Both in SHA-0 and SHA-1, there are 3 non-linear components. Firstly, there
is the addition modulo 232. This component is approximated by a bitwise ex-
clusive-or of the inputs, i.e. the carry is ignored.

Next are the functions fif(X, Y, Z) and fmaj(X, Y, Z). The functions operate
bitwise, hence the approximation should also be a bitwise function. The authors



Update on SHA-1 61

of [5] approximate both functions by a bitwise exclusive-or of the 3 inputs. Since
the f -function used in half of the rounds is exactly given by this exclusive-or,
this approximation results in 80 iterations of the same round. On the other hand,
the quality of this approximation seems sub-optimal. We discuss some ideas for
improvements in Section 4.

3.2 Finding Collisions for the Linear Approximation

Finding a collision for a linear approximation of SHA-1 is not difficult. Whether
two messages will produce a collision or not, doesn’t depend on the value of the
messages, but depends on the value of their difference only. Collision-producing
values of the difference can be found as the solutions of an under-determined set
of linear equations.

The difficulty lies in the additional constraints imposed by the third step of
the attack. We want to find a collision that minimizes the work of the third step.
The explanation of the third step will show that the most important requirement
is that the weight of the difference should be small.

The problem of finding a collision-producing difference with small weight can
be translated to the problem of finding a codeword with small weight in a linear
code.

Since the message expansion is linear, there is a 512 × 32R matrix E such
that w = mE. The message expansion starts with a copy of the message, cf. (1).
Hence, there is a 512× 32(R − 16) matrix F such that E can be written as:

E512×32R =
[
I512×512 F512×32(R−16)

]
. (7)

For the linearized state update transformation, we can construct a 32R × 160
matrix A that produces the output vector o from the expanded message w.

o = wA = mEA (8)

A message word m corresponds to a collision-producing difference if and only if
o = 0. Hence, the set of collision-producing differences is a linear code with check
matrix H160×512 = (EA)t. The dimension of the code is k = 512 − 160 = 352.
The length of the code is n = 512. Later on, it becomes more useful to look at
the expanded words w, which are code words of a code with k = 352, n = 32R
and check matrix

H ′
(32R−352)×32R =

[
At|160×32R

F t|(32R−512)×512 I(32R−512)×(32R−512)

]
. (9)

In [5] an additional condition is imposed on the differences. The differences
are constructed as the sum of a perturbation word wp and 5 correction words
wc,i, i = 1, 2, 3, 4, 5. The authors require that wp and the 5 wc,i are all codewords.
It can be seen that this is a sufficient, but not a necessary condition for the sum
to be a codeword as well.

This restriction of the search space corresponds to adding 160 rows to the
check matrix of the code. It allows to zoom in quickly on the optimal solutions



62 Vincent Rijmen and Elisabeth Oswald

in the case of SHA-0. In the case of SHA-1, our experiments indicate that this
restriction on the search space leads to suboptimal results (cf. Table 4). Hence,
we can’t apply the perturbation-correction technique. A small side-effect is that
the weights we quote in this paper, are always weights for the full codeword,
which makes it difficult to compare them to the results in [5], where the authors
quote the weights of the perturbation words only.

3.3 Finding the Collisions for the Real SHA-1

We now have a difference that produces collisions in the linear approximation of
SHA-1. In the non-linear components of SHA-1, the propagation of the differ-
ences may be the same as in the linear case, or it may be different, depending
on the value of the message bits.

In order to find a collision, we want to find the values of the inputs such that
the difference propagation in SHA-1 corresponds to the difference propagation
in the linear approximation. This condition results in the equations that we have
to solve in order to find the collision.

For example, consider the addition of a register At and a word Wt of the
expanded message. Let the result be denoted by Bt. Assume now that in both
inputs, the differences are equal to zero except for one bit, at position i. It is
clear that in the linear approximation of the addition, the result has difference
zero. In Bt, the result of the real addition, the difference will be zero for the
bits with positions 0, 1, . . . , i. The difference at positions above i will be zero if
and only if the carry into position i + 1 has difference zero. Writing down the
equations for the carry results in the following requirement on the value of the
operands: the bits at position i in At and Wt should be of opposite value.

If we look at the equations generated during the attack, we typically get
groups of several equations involving the same state bit(s). It is then often pos-
sible to rework some of the equations and obtain linear equations involving bits
of the expanded message words only. Linear equations in the expanded message
words can easily be translated into conditions on the message words. They can
easily be solved.

Besides the additions, also the approximations of fif and fmaj result in con-
ditions. These conditions can be derived from Table 1. If the functions are ap-
proximated by 3-input XOR, then the first 3 and the 7th equation have to be
copied from the table (output difference equal to 1 is desired), while the 4th,
5th and 6th have to be inverted (output difference equal to 0 is desired). The
conditions result in equations involving bits from one, two or three registers.
Some special attention should go to the 4th equation for fif , respectively the 7th
equation for fmaj. For instance, when fif is approximated by 3-input XOR, this
input difference is problematic. It was this observation that led us to the idea of
considering other linear approximations. This is discussed in Section 4.



Update on SHA-1 63

Table 1. Conditions to have output difference equal to 1.

fif(x, y, z)

δ equation

001 x = 0
010 x = 1
100 y + z = 1
011 always
101 x + y + z = 1
110 x + y + z = 0
111 y + z = 0

fmaj(x, y, z)

δ equation

001 x + y = 1
010 x + z = 1
100 y + z = 1
011 y + z = 0
101 x + z = 0
110 x + y = 0
111 always

4 Other Linear Approximations

4.1 Motivation

Approximation of both fif and fmaj by 3-input XOR has as main advantage that
the resulting approximation for SHA-1 has 80 identical rounds. There appear to
be also a couple of disadvantages related to this choice:

1. For δ = 011, the output bit of the linear approximation flips with probability
0, but the output bit of fif flips with probability 1. Hence there is no input
pair that produces the same behavior in fif and the approximation.

2. 3-Input XOR has good diffusion properties (avalanche effect). Other linear
functions on the 3 inputs have worse diffusion properties.

The first property complicates the search for a suitable collision in the linear
approximation of SHA-1, because the situation where δ = 011, has to be avoided.
The restriction of the search space corresponds to the addition of non-linear
conditions. The second property makes it more difficult to prevent a difference
from expanding; more equations have to be added. Therefore we considered also
other linear approximations, which produce different equations, that can also be
generated by copying and inverting equations from Table 1.

Table 2 lists for both f -functions and the 7 possible linear functions with 3
inputs the probability that the output bit flips for the given input difference. By
definition, the output flip probability for a linear function is either 0 or 1; it can
be computed by simply evaluating f(δ).

The quality of the approximations differs only for the values δ = 011 and
δ = 111. For these values of δ, the output bit of fif , respectively fmaj, flips
with probability 1. The first disadvantage explained above can be avoided by
selecting a linear approximation that does not have output bit flip probability
equal to 0 when the non-linear function has output flip probability equal to 1.
The second criterion for the quality of an approximation is the diffusion: an
approximation with bad diffusion is more likely to result in low-weight collision-
producing differences.

For the function fif , the approximations y, z, x ⊕ y and x ⊕ z appear to be
better choices. For the function fmaj, the approximations x, y and z have equally
good flip probabilities as x ⊕ y ⊕ z, and less avalanche.



64 Vincent Rijmen and Elisabeth Oswald

Table 2. The probability that the output bit changes value when the input bits are
changed according to the input difference, for the two f -functions and for all the linear
approximations.

δ output flip probability
fif fmaj linear functions

xy ⊕ xz xy ⊕ xz ⊕ yz x y z x ⊕ y x ⊕ z y ⊕ z x ⊕ y ⊕ z

000 0 0 0 0 0 0 0 0 0
001 1/2 1/2 0 0 1 0 1 1 1
010 1/2 1/2 0 1 0 1 0 1 1
011 1 1/2 0 1 1 1 1 0 0
100 1/2 1/2 1 0 0 1 1 0 1
101 1/2 1/2 1 0 1 1 0 1 0
110 1/2 1/2 1 1 0 0 1 1 0
111 1/2 1 1 1 1 0 0 0 1

4.2 Results

Despite the expected improvements in the search for low-weight codewords, the
results obtained with alternative linear approximations turn out to be inferior.
We tried out replacing the approximations by any of the other linear functions
with the same or better flip probabilities. For versions with more than 25 rounds,
we never obtained better results than with the original approximation.

We can think of two possible explanations. The use of alternative approxi-
mations for the Boolean functions results in an approximation for SHA-1 that
has two different round transformations (at least), since the 40 rounds using the
3-input XOR clearly can’t be approximated by another linear function. Hence
we obtain a linear code with less regularity.

As we explain in Section 5, we use heuristic algorithms to search for low-
weight codewords. A first explanation would be that the decrease in regularity
causes an increase in the minimum distance of the code. But this almost implies
that the round transformation of SHA-1 would show some kind of weakness,
which results in a lower minimum distance of the corresponding linear code.
An alternative explanation is that the decrease in regularity makes the heuristic
search algorithms perform worse: the low-weight words are still there, but we
can’t find them. In that case, perhaps better search algorithms can be found.

5 Searching for Low-Weight Codewords

There is no fast, deterministic algorithm known that can find low-weight code-
words in arbitrary linear codes. Different approaches are possible:

1. Exhaustive search.
2. Apply heuristic techniques that can be used to find low-weight codewords in

random linear codes, e.g. [3].
3. Exploit the structure of the code and obtain an analytical solution.



Update on SHA-1 65

In the case of SHA-0, it is possible to define a restricted search space that is
very likely to contain the best codewords. Since the restricted search space has
dimension 216, exhaustive search is possible. For SHA-1, it seems impossible to
define a search space small enough to allow an exhaustive approach.

It seems that the dimensions we are dealing with here, are still out of reach
for the algorithms discussed in [3]. Secondly, as follows from Section 4, we are
clearly not in the situation of a purely random code.

The best strategy seems to combine the second and the third approach.
For instance, we know that the codewords are produced by an LFSR. If w =
(W0, W1, . . .) is a codeword, then also (rot(W0), rot(W1), . . .) is a codeword. More
specific knowledge of the LFSR allowed us to define other strategies resulting in
words with a weight probably very close to the minimal weight for R < 50. For
larger values of R, the problem is still open.

5.1 Our Search Algorithm

Our heuristic search algorithm is based on an observation that resulted from
experiments on SHA-1 versions with R ≤ 25. First, we introduce the following
notation. Let the bitwise OR operation be denoted by ∨, then we define the
following shorthand notation.

W∨ =
R−1∨

i=0

Wi (10)

Observation 1. For codewords w = (W0, W1, . . . , WR−1) with low Hamming
weight, the Hamming weight of W∨ is low. In other words: codewords with low
Hamming weight have the property that the non-zero bits usually occur at the
same positions in all the words Wi.

The observation was derived from experiments, but we believe it is also in agree-
ment with intuition. Differences introduced in the state have to be compensated
for and eventually canceled. This requires that the differences in the expanded
message words occur in ‘bands’. Algorithm 1 uses the observation to perform an
accelerated search. The results obtained with the algorithm are shown in Table 3.
Further restriction of the search space is possible by using Observation 2.

Observation 2. The non-zero bits in W∨ occur at consecutive positions, or
‘almost’ consecutive positions.

By ‘occur in almost consecutive positions,’ we mean that there are at most
two runs of ones, separated by a run of one or two zeroes. Motivated by this
observation, we remove the inner for-loop of Algorithm 1, which results in an
important speedup. Algorithm 2 uses a parameter u, which denotes the sum of
the lengths of the runs of ones and the one or two zeroes in between.

By starting with the large values of u and moving to the lower ones, we save
on the operations needed to compute the new check matrix of the code and its
rank. The algorithm starts an exhaustive search when the dimension of the code



66 Vincent Rijmen and Elisabeth Oswald

Table 3. Minimal weights of collision-producing codewords for reduced versions of
SHA-1. Produced with Algorithm 1.

R Hwt(W∨) Hwt(w)

20 3 18
25 6 34
30 6 38
31 6 38
32 6 38
33 6 38
34 6 38
35 8 76
36 8 76
37 8 80
38 8 100
39 8 112
40 10 128

gets below a parameter D. Algorithm 2 was executed for various numbers of
rounds. In the cases where there were several values for u that resulted in a code
with less than 2D codewords, it was always the case that the codeword with the
lowest weight was among those with the smallest u. The results are presented in
Table 4.

In order to optimize the complexity of the attack, the first 15 message words
are pre-computed such that the conditions in the first 15 rounds are satisfied.
Hence, the weight in the first 15 rounds is not relevant. Therefore, the results in
Table 4 do not take into account the first 15 rounds (neither in Hwt(w), nor in
u). The results indicate that a shortcut attack finding a collision is feasible for
versions reduced to 35–40 rounds. In Section 6, we examine the complexity of
the attack for a version reduced to 53 rounds.

5.2 Observations on the Message Expansion

We applied Algorithm 2 also to the naked message expansion: dropping the con-
dition to have a collision and simply searching for low-weight expanded message
words. The results are given in Table 5. Since the words are obtained with a
heuristic algorithm, it is not proven that these are the best words. Indeed, in
Appendix A, we give three 80-rounds expanded message words with Hamming
weight 44 (including the first 15 rounds), obtained by other means. Neverthe-
less, the values in the table give some indication about the ‘penalty’ in additional
weight coming from the requirement to produce a collision.

For all the words listed in this paper, it can be observed that the rounds that
contribute the most to the total weight, are situated at the beginning and at
the end. Furthermore, the rounds with the lowest weight aren’t situated exactly
in the middle, but slightly more towards the end of the word. This can be
explained by the fact that the diffusion of the message expansion goes slower in
the backwards direction.



Update on SHA-1 67

Algorithm 1

Input: H /* check matrix of the code */
n /* length of the code */

For h = 1 to 32 do
For all values of W∨ with Hamming weight h do

Copy H to He

Extend He with R × (32 − h) rows corresponding to the conditions on
the bits of W0, W1, . . . at the positions where W∨ = 0

If rank(He) < n then
Perform an exhaustive search for low-weight codewords
Output the word with lowest weight and exit

Algorithm 2

Input: H /* check matrix of the code */
n /* length of the code */
D /* exhaustive search space bound */

For u = 32 to 1 do
Extend H with R rows corresponding to the conditions on

the bits of W0, W1, . . . at position h − 1
If n − rank(H) < D then

Perform an exhaustive search for low-weight codewords
Output the word with lowest weight

Table 4. Hamming weights of the codewords with smallest weights, for reduced ver-
sions of SHA-1. Produced with Algorithm 2. The weight of the first 15 rounds is not
taken into account. The fourth and the fifth column list the results obtained when the
search space is restricted to the perturbation-correction codewords used with success
on SHA-0 in [5]. The second and the third column give the results for an unrestricted
search space.

full search space restricted space

R u Hwt(w) u Hwt(w)

35 6 35 16 127
40 8 67 17 178
45 8 81 17 215
50 8 83 18 258
51 8 86
53 8 95
54 10 145
55 10 157
60 12 167
65 12 226
70 12 276
75 13 278
80 14 333 21 552



68 Vincent Rijmen and Elisabeth Oswald

Table 5. Weight of low-weight codewords for the message expansion of SHA-1. The
weight includes the weight of the first 15 rounds. Produced with Algorithm 2.

R u Hwt(m)

50 3 20
60 3 31
70 4 41
80 5 51

The diffusion of the message expansion (2) is determined by the feedback
polynomial and the rotation. If we visualize the expanded message as a 32 × R
rectangle, then the ‘influence region’ of a bit occurring at position i in round t
can be visualized as two triangles meeting at the point (t, i). This is illustrated in
Figure 2. In the forward direction, the upper line of the triangle has a slope of 3
rounds per bit. The lower line has a slope of 16 rounds per bit. In the backwards
direction, the influence region is bounded by the horizontal line and a line with
a slope of 16 rounds per bit. This region expands much slower.

Consequently, a good strategy to find a low-weight codeword is to place a
word with weight 1 somewhere in the middle, add 7 or 8 zero words before
and after, and compute the other rounds backwards and forwards. Since the
diffusion backwards goes slower, it is better to compute more rounds backwards
than forwards.

31

i

0 t 79

Fig. 2. Diffusion in the SHA-1 message expansion. A bit at position i in round t
influences only bits in the shaded triangles.

6 Experiments with a 53-Round Characteristic

Table 4 shows that the weight of our best 54-round codeword is significantly
larger than the weight of our best 53-round codeword. Therefore, we decided
to use a version of SHA-1 reduced to 53 rounds to apply the third step of the
attack: generating (and possibly solving) the equations. The codeword we used,
is listed in Table 6.

During the generation of equations, a new problem became apparent. In the
original attack on SHA-0, the modular additions have input differences in 0, 1



Update on SHA-1 69

Table 6. Low-weight codeword for SHA-1 reduced to 53 rounds.

00000000 80000030 00000020
00000000 20000001 80000001
00000000 C0000012 C0000002
40000000 60000041 40000040
00000008 40000032 40000002
40000002 20000003 80000002
90000040 C0000042 80000040
50000011 E0000042 80000002
10000068 E0000002 80000000
E0000002 00000002 80000000
F0000022 00000040 80000000
70000051 80000001 00000000
10000010 80000060 00000000
60000041 80000001
C0000022 40000042
80000003 C0000040
E0000052 40000042
C0000040 00000000
E0000052 80000040
20000003 00000003

or 2 of the input words. However, our codeword results also in situations where
3 input words have a non-zero difference at the same position. In this situation,
a carry to the next position can’t be avoided. Hence, there is no input that
can behave the same in the linear approximation and in the real SHA-1. An
exception to this rule is of course formed by the most significant bit position,
where the carry simply overflows. It turns out that we are lucky enough that all
the situations with 3 non-zero input differences occur at the same bit position,
hence we can choose a rotated version of the codeword where all cases happen
at the most significant bit position.

In order to achieve the best results, we decided to avoid the ‘IF -rounds’ of
SHA-1, by defining the start of our reduced version at round 21. Doing this, we
get a total of 166 equations. From these equations, we can isolate 62 linear equa-
tions in bits of the message words only, leaving 104 equations. 33 equations apply
to the first 15 rounds, and can be solved explicitly during the pre-computation
phase, leaving 71 equations for the main step. Using the most naive methods for
solving non-linear Boolean equations, these equations can be solved with a com-
plexity that is close to but below that of 271 hash function evaluations. Hence,
in principle it is possible to find collisions for the reduced version, faster than by
the birthday paradox.

7 Conclusions

In this paper we presented the results from our attempts to extend the Chabaud-
Joux attack to SHA-1. The application to SHA-1 results in several complications,



70 Vincent Rijmen and Elisabeth Oswald

which were not obvious from the start. We proposed several strategies for opti-
mization of the attack and examined their effectiveness.

As a result, we have described a theoretical shortcut attack on a version of
SHA-1 reduced to 53 rounds. The shortcut attack becomes feasible for SHA-
1 reduced to 35–40 rounds. It is also clear that we are still far from even a
theoretical attack on the full SHA-1.

Furthermore, we presented several observations that came out of our exper-
iments. We hope that they might be of use for other cryptographers trying to
break SHA-1.

Acknowledgements

The authors wish to thank Carlos Cajal for assistance with the programming,
and Antoon Bosselaers for helpful discussions.

References

1. Eli Biham, Rafi Chen, “Near-Collisions of SHA-0,” Advances in Cryptology – Crypto
’04, LNCS, M. Franklin, Ed., Springer-Verlag, to appear.

2. Eli Biham, Rafi Chen, “Near-Collisions of SHA-0,” Cryptology ePrint Archive, Re-
port 2004/146, 2004, version of June 22, 2004, http://eprint.iacr.org/.

3. Anne Canteaut, Florent Chabaud, “A new algorithm for finding minimum-weight
words in a linear code: application to McEliece’s cryptosystem and to narrow-sense
BCH codes of length 511,” IEEE Transactions on Information Theory, Vol. 44,
No. 1, January 1998.

4. Federal Information Processing Standard 180-2, Secure Hash Standard, August 1,
2002.

5. Florent Chabaud, Antoine Joux, “Differential Collisions in SHA-0,” Advances in
Cryptology – Crypto ’98, LNCS 1462, H. Krawczyk, Ed., Springer-Verlag, 1998,
pp. 56–71.

6. Markku-Juhani O. Saarinen, “Cryptanalysis of Block Ciphers Based on SHA-1 and
MD5,” Fast Software Encryption 2003, LNCS 2887, T. Johansson, Ed., Springer-
Verlag, 2003, pp. 36–44.

A Some Low-Weight Codewords

Below is a codeword for 80 rounds, with weight 51. It is the word corresponding
to the entry in Table 5. The weight includes the weight of the first 15 rounds.
The ordering is from top to bottom, and then from left to right.



Update on SHA-1 71

10000000 40000000 40000000 00000000
20000000 40000000 20000000 40000000
00000000 40000000 00000000 00000000
30000000 00000000 00000000 00000000
40000000 00000000 40000000 00000000
41000000 20000000 60000000 00000000
40000000 00000000 00000000 00000000
40000000 50000000 40000000 00000000
10000000 40000000 40000000 00000000
40000000 50000000 00000000 00000000
00000000 00000000 00000000 00000000
30000000 40000000 40000000 00000000
00000000 00000000 00000000 00000000
21000000 60000000 00000000 00000000
40000000 00000000 00000000 00000000
40000000 40000000 40000000 00000000
50000000 40000000 00000000 00000000
20000000 20000000 40000000 80000000
00000000 00000000 00000000 00000000
30000000 40000000 40000000 00000000

The absolutely smallest weight we found for the 80-round message expan-
sion, is 44. We found 3 such codewords, given below. The 3 codewords have a
large amount of Wi in common. The first codeword starts top left and ends at
the bottom of the fourth column, the second codeword is shifted over 4 Wi’s,
the third one over a further two. The words have W∨ = C0000FF, C0001FF,
C0003FF and Hwt(W∨) = 10, 11, 12.

80000000 80000000 00000001 00000002 00000050
00000000 00000000 00000000 00000000 00000100
C0000000 00000001 00000001 00000000 00000010
00000001 00000001 00000000 00000004 00000000
00000001 80000000 00000001 00000000 00000210
00000001 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000008
00000000 00000001 00000000 00000000
80000000 80000001 00000000 00000004
00000000 00000000 00000000 00000010
40000001 00000001 00000000 00000000
00000001 00000001 00000000 00000000
40000001 00000000 00000000 00000020
00000000 00000000 00000000 00000000
00000001 00000001 00000000 00000014
00000000 00000000 00000000 00000040
80000001 00000000 00000000 0000000C
00000000 00000000 00000000 00000000
00000001 00000001 00000000 00000080
00000001 00000000 00000000 00000010


	1 Introduction
	2 SHA-0 and SHA-1
	2.1 Message Expansion

	3 The Basic Attack Strategy
	3.1 Determining a Linear Approximation
	3.2 Finding Collisions for the Linear Approximation
	3.3 Finding the Collisions for the Real SHA-1

	4 Other Linear Approximations
	4.1 Motivation
	4.2 Results

	5 Searching for Low-Weight Codewords
	5.1 Our Search Algorithm
	5.2 Observations on the Message Expansion

	6 Experiments with a 53-Round Characteristic
	7 Conclusions
	References
	A Some Low-Weight Codewords



