
Design and Analysis
of Password-Based Key Derivation Functions

Frances F. Yao1 and Yiqun Lisa Yin2

1 Department of Computer Science,
City University of Hong Kong,

Kowloon, Hong Kong
csfyao@cityu.edu.hk

2 Princeton Architecture Laboratory for Multimedia and Security,
Princeton University,
Princeton, NJ 08544
yyin@princeton.edu

Abstract. A password-based key derivation function (KDF) – a func-
tion that derives cryptographic keys from a password – is necessary
in many security applications. Like any password-based schemes, such
KDFs are subject to key search attacks (often called dictionary attacks).
Salt and iteration count are used in practice to significantly increase
the workload of such attacks. These techniques have also been specified
in widely adopted industry standards such as PKCS and IETF. Despite
the importance and wide-spread usage, there has been no formal security
analysis on existing constructions. In this paper, we propose a general
security framework for password-based KDFs and introduce two security
definitions each capturing a different attacking scenario. We study the
most commonly used construction H(c)(p‖s) and prove that the iteration
count c, when fixed, does have an effect of stretching the password p by
log2 c bits. We then analyze the two standardized KDFs in PKCS#5.
We show that both are secure if the adversary cannot influence the pa-
rameters but subject to attacks otherwise. Finally, we propose a new
password-based KDF that is provably secure even when the adversary
has full control of the parameters.

1 Introduction

1.1 Background and Motivation

Cryptographic keys are essential in virtually all security application. In prac-
tice, however, inputs to an application are typically raw key materials, such as
passwords, that are not yet in the form to be used as keys. Therefore, a key
derivation function (KDF) – a function that derives cryptographic keys from
keying materials – is often a necessary component in all security applications.

There are many usage scenarios for key derivation functions depending on
the form of the input. For example, the input can be a user password, a random
seed value from some entropy source, or an output value from a cryptographic

A.J. Menezes (Ed.): CT-RSA 2005, LNCS 3376, pp. 245–261, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

246 Frances F. Yao and Yiqun Lisa Yin

operation such as Diffie-Hellman key agreement. The second scenario is typically
handled by a pseudorandom number generator (e.g., the FIPS PRNG in [6]), and
the third scenario is handled by hashing the long output down to the required
key length (e.g., the KDF1 in [8]). In both scenarios, there is usually enough
entropy in the key materials.

In this paper, we focus our study on password-based key derivation functions.
Unlike the other two scenarios mentioned above, passwords, in particular those
chosen by a user, often are short or have low entropy. Therefore, special treatment
is required in key derivation to defend against exhaustive key search attacks.

One basic approach for designing a password-based key derivation function
is to derive the key from the password p and a random known value s (called
salt), by applying a function H (such as hash, keyed hash, or block cipher) for
a number of iterations c (called iteration count). For example, the following is a
typical construction1:

key = H(c)(p‖s).
Intuitively, the salt s serves the purpose of creating a large set of possible

keys corresponding to a given password, among which one key is selected ac-
cording to the salt used in each execution of the KDF. The iteration count c
serves the purpose of increasing the cost of deriving each key, thereby signifi-
cantly increasing the workload of key search attacks. These two techniques have
been commonly used in practice and also specified in widely adopted industry
standards, including PKCS [13] and IETF [4].

In a more general setting, we can view a password-based KDF as a method
for stretching any short keys (not necessarily passwords) into longer keys. An
efficient key stretching method can be useful in strengthening security without
any architectural or policy changes for complex systems (e.g., a credit-card sys-
tem). In addition, password-based KDF can be used in a straightforward way to
define password-based encryption schemes and message authentication schemes.

Despite their importance and wide-spread usage, there has been no formal
security analysis of existing password-based KDFs. Furthermore, there has been
no general security framework for analyzing such KDFs. It is possible that the
above popular KDF construction is insecure against some sophisticated key-
search attacks even though the parameters are chosen large enough and the
underlying hash function H is sound (e.g., it can be considered as a random
oracle).

1.2 Our Framework

In this paper, we propose a general security framework for studying password-
based key derivation functions. Our framework aims at capturing various types
of key-search attacks and allowing concrete analysis of attacker’s success prob-
ability relating to its available computational resource for launching key-search
attacks. We also model salt and iteration count in a way as they are used in prac-
tice so that their impact on the overall security of the scheme can be quantified.
1 Throughout the paper, we use H(c) to denote that H is applied c times and use ‖

to denote the concatenation of two strings.

Design and Analysis of Password-Based Key Derivation Functions 247

Key search attacks on password-based KDFs can be quite sophisticated [10],
but they generally target at the construction of the key derivation function F and
treat the underlying function H as a black-box transformation. This motivates
us to model the underlying primitive H as a random oracle [2] and hence its
internal structure is ignored in the analysis.

We define two levels of security for the KDF depending on the capability
of the adversary A: – in the weak model A can only observe the output of F
while in the strong model A can query F on inputs of its choice. In both models,
A can make queries to H , and the maximum number of such queries captures
A’s available computational power to launch key search attacks. Roughly, the
construction of F is secure under each model if A with the given capability
cannot distinguish the output of F for an unknown password p from a random
string.

1.3 Main Results

Using the proposed framework, we first study the security of the iterative con-
struction. We prove that if an adversary A makes at most t queries to H , then the
success probability Adv that it can distinguish the derived key for an unknown
p from a random string of the same length n satisfies

�t/c�
|PW | < Adv <

�t/c�
|PW | +

t2

2n
.

The upper bound is dominated by the first term, since the second term is neg-
ligible in practical settings. The above result implies that, for a fixed iteration
count, there is no short-cut in the key search other than computing H iteratively
for each password. In other words, the iteration count c increases the workload
of exhaustive key search by a factor of c. So the iteration construction effectively
stretches a k-bit key to a (k + log2 c)-bit key.

We then focus our attention on practical password-based KDFs and analyze
the two KDFs in PKCS#5 [13] – the de facto standard for password-based
cryptography. Our analysis on the iterative construction implies that the two
KDFs are weakly secure as long as the computational resource available to the
attacker is much less than c|PW | (although it can be much larger than |PW |).
We also show that neither KDF is secure in the strong model and discuss how
such security weakness may be exploited to mount attacks in practical scenarios.

Based on the insight gained from our earlier analysis, we propose a new
password-based key derivation function with enhanced security. The main idea
in our construction is to include iteration count explicitly in the input to the
derivation function to prevent it from being manipulated by the attacker. We
show that the new KDF is secure in the strong model.

1.4 Related Work

Rigorous analysis of password-based key derivation schemes seems to have re-
ceived relatively little attention compared to other cryptographic schemes. In

248 Frances F. Yao and Yiqun Lisa Yin

[10], the term key-stretching is used for conversion of low-entropy keys into longer
keys by mechanisms such as iterated hash. A connection was made between the
cost of computing H(c) and the cost of finding a collision for H . Roughly speak-
ing, if H(c) could be computed on average with fewer than c/2 calls to H , then
this would lead to a collision search for H faster than the naive birthday attack.
Although it would be hard to translate the result into a standard concrete se-
curity model, it is certainly of practical interest. Our results on H(c) are well
quantified; moreover, the framework for KDF is rigorously defined and the effects
of salt and iteration are studied in a standard distinguish-from-random model
with respect to specific query types.

In [14], the UNIX password hashing algorithm is analyzed. The core of the
algorithm is roughly f(p) = DES

(25)
p (0), that is, to encrypt the value zero

25 times using the password p as the key. So the algorithm has an iterative
structure somewhat similar to the password-based KDFs considered here. It is
proved that the algorithm is a secure hashing function if DES is a secure block
cipher. However, as pointed out by the authors, their analysis only implies that
iteration does not harm security, but they are not able to show that iteration
actually enhances security as one would intuitively expect.

Key derivation functions in a general sense share some similarity in their
design, such as the use of hash functions to process the raw key materials. For
instance, the pseudorandom number generator (PRNG) defined in FIPS [6] is
hash-based and can derive long keys from a random seed. The exact construc-
tion, however, is quite different: in the password-based KDF the hash is applied
iteratively while in the PRNG the hash outputs are concatenated to produce
the key. Therefore, security analysis of PRNG type of key derivation [5] does not
directly apply to password-based key derivation.

Another related subject is password-based authentication and key exchange
protocols, and the goal of such protocols is to authenticate two parties who share
a common password. Existing protocols use various public-key techniques such
as RSA or Diffie-Hellman in a w ay that the messages exchanged between the
parties provide little or no help for an attacker to guess the password. A survey
of well-analyzed protocols can be found in [9].

2 Security Framework and Definitions

2.1 KDF Model

We denote a password-based key derivation function as

y = F (p, s, c)

where p is password, s is salt, c is iteration count, and y is derived key of length
n. Let the set of passwords, salts, and iteration counts be PW , S, and C. For a
fixed p ∈ PW , we can view y = Fp(s, c) as a function with input (s, c) and output
y. We interchangeably write F (p, s, c) or Fp(s, c) depending on the context.

Design and Analysis of Password-Based Key Derivation Functions 249

For ease of analysis, we make some assumptions on the sets PW , S, and C.
We assume that PW = {0, 1}l, S = {0, 1}s, and C = [c∗, c∗] for some integers
0 < c∗ < c∗. The upper limit ensures that the iteration count is not too large,
since otherwise the KDF becomes too slow and useless. In addition, we assume
that the length of p‖s‖c is at most n, although our analysis can be extended to
the more general case (see Section 4.3 for further discussions).

We denote the underlying primitive that is used to construct F as H . For
example, H can be instantiated using practical hash functions as building blocks.
Since key search attacks typically treats H as a black-box transformation without
exploiting its internal structure, we model H as a random function from Rn, the
set of all functions from {0, 1}n to {0, 1}n. That is, we focus our analysis on how
F is constructed based on H rather than the structure of H itself.

2.2 Attack Model

Consider a typical usage scenario of a password-based KDF in which two users
Alice and Bob share a password p. To encrypt a message, Alice sets s, c and
derives a key y = F (p, s, c). She then uses y to encrypt and obtain the ciphertext
z. Alice sends (z, s, c) in the clear to Bob. Bob derives the key y by computing
y = F (p, s, c) and uses y to decrypt z.

From the attacker’s point of view, the salt s and the count c are both known.
The attacker usually does not have control of s or c, but in certain scenarios
they can be chosen. The derived key y may be hidden from the attacker, but
it can become known for various reasons (e.g., it was leaked out due to system
security holes), in which case the attacker obtains a tuple (y, s, c) corresponding
to some unknown password p.

In our attack model, we assume that s and c can be either known or chosen,
and the derived key y is always known. An attacker A to a password-based KDF
is a polynomial-time algorithm that may use the following two types of oracle
queries:

– H Query: Query the underlying function H on input x and obtain H(x).
That is, A has access to oracle H(.).

– F Query: For an unknown password p, query the key derivation function F
on input (s, c) and obtain the derived key y = Fp(s, c). That is, A has access
to oracle Fp(., .) for some unknown p.

In practice, the number of H queries can be quite large, since it is determined
by the adversary’s available computational resource for performing an offline key
search attack. In contrast, the number of F queries is very limited, since it is
usually determined by the security design and policy of the system, not the
adversary.

2.3 Security Definition

We introduce two security definitions – weakly secure and strongly secure – de-
pending on attacker’s capability. In the weak model, we assume that the attacker

250 Frances F. Yao and Yiqun Lisa Yin

A can make only queries to H , while in the strong model, we assume that A can
make queries to both H and F . The goal of the attacker A is to distinguish the
derived key y = Fp(s, c) for p

r← PW from a random string of the same length2.

Definition 1. Weakly Secure KDF. Let y = Fp(s, c) be a password-based
KDF. Let b ∈ {0, 1}. We consider the following experiment depending on b:

Experiment Eb

p0
r← PW // password is generated at random

H
r←Rn // H is generated at random

s0 ← S, c0 ← C // salt and count are fixed and known
If b = 0, then y0 ← Fp0(s0, c0), else y0

r← {0, 1}n
i← 0
repeat

i← i + 1
A chooses xi and is given H(xi)

until A reaches the maximum number of queries
A outputs either 0 or 1

The success probability of A is defined as

AdvA(t) = PrE1 [A = 1]− PrE0 [A = 1].

where t denote the maximum number of queries to H. The maximum success
probability achievable by any adversary A is denoted by Adv(t).

Definition 2. Strongly Secure KDF. Let y = Fp(s, c) be a password-based
KDF. Let b ∈ {0, 1}. We consider the following experiment depending on b:

Experiment Eb

p0
r← PW // password is generated at random

H
r←Rn // H is generated at random

s0 ← S, c0 ← C // salt and count are fixed and known
If b = 0, then y0 ← Fp0(s0, c0), else y0

r← {0, 1}n
i← 0
repeat

i← i + 1
A first decides which type of queries
If H query, A chooses xi and is given H(xi)
If F query, A chooses (si, ci) �= (s0, c0)

and is given yi = Fp0(si, ci)
until A reaches the maximum number of queries
A outputs either 0 or 1

The success probability of A is defined as

AdvA(t, m) = PrE1 [A = 1]− PrE0 [A = 1],

2 If W is a set, than w
r←W denotes selecting w uniformly at random from W .

Design and Analysis of Password-Based Key Derivation Functions 251

where t and m denote the maximum number of H and F queries, respectively.
The maximum success probability achievable by any adversary A in is denoted
by Adv(t, m).

3 Password-Based KDFs in Practice

Password-based key derivation functions are commonly used in practice. They
are also specified in industry standards such as PKCS#5, PKCS#12, IETF, and
openPGP. Here we describe the KDFs in PKCS#5, which is considered as the
de facto standard for password-based cryptography. KDFs in other standards
mostly follow similar designs.

Two password-based KDFs are specified in PKCS#5 v2.0 [13]: PBKDF1
and PBKDF2. Some recommendations are given regarding the use of salt and
iteration count. For example, S should be at least 64 bits, and c should be at
least 1000.

The underlying function in PBKDF1 is a hash function H() such as MD2,
MD5, or SHA1. The derived key is defined as y = H(c)(p‖s). Most other stan-
dards or implementations use this construction.

PBKDF2 was intended to provide more security. The underlying function in
PBKDF2 is a keyed hash function Hk(), such as HMAC [1]. The password p
is used as the key k in each invocation of Hk(). The derived key is defined as
y = U1 ⊕ U2 ⊕ ... ⊕ Uc, where Ui = H

(i)
p (s) for i = 1, .., c. The exclusive-ors

adds an extra layer of protection, but at the core of the construction is still the
iterative application of Hp.

4 Effects of Iteration Count

In this section, we focus our analysis on iteration count and quantify its effect
on the security of KDF. A KDF function with an iterative structure is of the
form

y = H(c)(p, s) = H(c)(p‖s).
We will show that this construction is secure as long as the adversary only has
access to H and its computational resource is significantly less than c|PW |,
which is formally stated in the following theorem.

Theorem 1. In the weakly secure model for KDF, if the adversary makes at
most t H queries, then the maximum success probability Adv(t) satisfies

�t/c0�
|PW | < Adv(t) <

�t/c0�
|PW | +

t2

2n
.

Before going into the proof details, we first try to understand the result by
considering a practical scenario. Let

|PW | = 240, n = 128, c = 216, t = 244.

252 Frances F. Yao and Yiqun Lisa Yin

Setting c = 216 adds little overhead at the user end for deriving a single key3, but
the workload of a straightforward dictionary attack increases to c|PW | = 256

from 240 (when c = 1). With t = 244 queries to H , the attacker can certainly
correctly compute a fraction of t/c

|PW | = 2−12 of the derived keys. Our result shows
that this is indeed the best the attacker can do, since the probability for correctly
computing more than 2−12 of the derived keys is at most t2

2n = 2−40. Effectively,
the iteration count stretches a 40-bit password into a 40 + log2 c = 56-bit key.

4.1 Graph Representation of H

For the purpose of the proof, we set up a graph to represent a random function
H and the adversary’s query process for H . This graph-based approach allows
us to visualize the adversary’s knowledge gained in the query process, and makes
the proof more intuitive.

Let GH be a directed graph on the vertex set {0, 1}n; a directed edge (x, y)
exists in GH if and only if H(x) = y. Hence every vertex has out-degree 1 and GH

contains 2n edges. The adversary, by probing a sequence of t edge “H(x) =?”,
discovers a subgraph QH of GH which is referred to as the query graph. Since
the same query graph QH can arise from different functions H , it is sometimes
convenient to write Q without referring to a specific H .

4.2 Analysis of Probabilities

We start by defining two games R (for “random”) and K (for KDF) which
correspond to the two experiments E1 and E0, respectively. For each game, we
specify how to simulate the oracle H upon adversary’s queries. In the game
specification, there are some extra computing steps – they are hidden to A and
hence do not affect the behavior of A, but they will help our analysis.

We note that the two games are very similar, and the only difference is in
Step 4 which is shown by the underline. Two flags bad1 and bad2 are set when
certain “bad” event occurs. The set Y contains all distinct values of H(x) for
which x has been queried4.

In Game R, the answers seen by the adversary A are exactly the same as in
E1. The difference is that the game contains two extra steps – Step 2 for detecting
collisions and Step 3 for detecting whether H(c0)(p0‖s0) has been computed. So
the success probabilities of A in game R and experiment E1 are the same, which
is stated in the following lemma.

Lemma 1. PrR[A = 1] = PrE1 [A = 1].

In Game K, the answers seen by the adversary A are almost the same as in
experiment E0 with possible exception on queries H(ui). We will show in the
next lemma that this apparent difference will not affect A’s success probability.
3 On a Pentium 4 running at 2.1GHz, 216 SHA-1 operations take less than 0.02 second

according to the benchmarks for Wei Dai’s CRYPTO++ Library.
4 We also include u0 = p0‖s0 in Y is for detecting the event that u0 is not the first

vertex of a path. It is not necessary to do so, but makes later analysis easier.

Design and Analysis of Password-Based Key Derivation Functions 253

Initially, H(.) is undefined. Choose p0
r← PW and y0

r← {0, 1}n.
Set i← 0, u0 ← p0‖s0, Y ← {u0, y0}.
On oracle query H(x):

1. Choose y
r← {0, 1}n.

2. If y �∈ Y , set Y ← Y ∪ {y}.
Else if y ∈ Y , set bad1.

3. If x = ui and i < c0, set i← i + 1 and ui ← y.
Else if x = ui and i = c0, set bad2.

4. Define H(x) = y and return y.

Fig. 1. Game R.

Initially, H(.) is undefined. Choose p0
r← PW and y0

r← {0, 1}n.
Set i← 0, u0 ← p0‖s0, Y ← {u0, y0}.
On oracle query H(x):

1. Choose y
r← {0, 1}n.

2. If y �∈ Y , set Y ← Y ∪ {y}.
Else if y ∈ Y , set bad1.

3. If x = ui and i < c0, set i = i + 1 and ui ← y.
Else if x = ui and i = c0, set y ← y0. Set bad2.

4. Define H(x) = y and return y.

Fig. 2. Game K.

Lemma 2. PrK [A = 1] = PrE0 [A = 1].

Proof: In experiment E0, H is chosen randomly at the beginning and y0 is then
set to be y0 = H(c0)(u0). Therefore, for i = 0, 1, ...c0 − 1, each value H(ui) is
chosen at random before the experiment starts. In Game K, for i = 0, 1, ...c0−2,
each value H(ui) is chosen at random as the game proceeds. Only the last value
H(uc0−1) is chosen at random (to be y0) before the game starts.

Since all these values are chosen at random and they are all independent of
each other, there is no difference from the adversary’s point of view. Hence the
success probability of A is the same. QED

Using the above lemmas, we have AdvA(t) = PrR[A = 1]− PrK [A = 1]. So
we now consider the relation between Game R and Game K. Let BAD1 be the
event that flag bad1 gets set, and similarly for BAD2. Let BAD = BAD1∪BAD2.
It is easy to see that the answers seen by A are exactly the same if neither bad
event occurs. Furthermore, each bad event occurs with the same probability in
the two games.

254 Frances F. Yao and Yiqun Lisa Yin

Lemma 3. (1) PrR[A = 1|BAD] = PrK [A = 1|BAD].
(2) PrR[BAD] = PrK [BAD].

Following a standard probability argument (such as that in [11]), we have
AdvA(t) < PrR[BAD]. So we only need to derive an upper bound on PrR[BAD]
for proving the theorem.

Proof of Theorem 1. For simplicity, we omit the R in the subscript.

Pr[BAD] = Pr[BAD1 ∪ BAD2]
= Pr[BAD1] + Pr[BAD2|BAD1] · Pr[BAD1]
≤ Pr[BAD1] + Pr[BAD2|BAD1].

It is easy to see that Pr[BAD1] < (t2/2 + 2t)/2n, since the probability of a
collision within t queries is at most (t2/2)/2n, and the probability that any of
the t values of H collide with u0 or y0 is at most 2t/2n. Assuming t ≥ 4, we have
Pr[BAD1] < t2/2n.

We next bound the second term Pr[BAD2|BAD1]. If the event BAD1 doesn’t
occur, then the query graph consists of a set of disjoint paths on which u0 can
only appear as the first vertex. Note that BAD2 is the event that there is a path
of length at least c0 starting from vertex u0. With t edges, there are at most
�t/c0� such paths. For each path, with probability at most 1/|PW |, the first
vertex is u0 = p0‖s0. Hence Pr[BAD2|BAD1] < �t/c0�

|PW | . Combining the two upper

bounds, we obtain that Adv(t) < Pr[BAD] ≤ 2t2

2n + �t/c0�
|PW | .

The lower bound can be achieved easily by computing full paths of length c0

for �t/c0� passwords in PW . QED

4.3 Discussions on c-th Iterate of a Random Function

It may be helpful to review some mathematical background on the c-th iterate
of a random function. Although random functions have been studied extensively
in the literature, the c-th iterate function H(c) has received relatively little at-
tention. For example, it is well known that the image of a random function has
size (1 − e−1)2n. What about the image of H(c)? At what rate does the image
size decrease with c? In a 1990 paper by Flajolet and Odlyzko [7] they provided
answers to these questions by deriving the following recurrence.

Image Size of H(c). The image size of H(c) is (1 − τc)2n, where τc satisfies
the recurrence τ0 = 0, τc+1 = e−1+τc . Furthermore, asymptotically 1− τc = 2/c.

In other words, the image size of H(c) decreases arithmetically with c (not
geometrically as one might guess at first). This illustrates that H(c) is signifi-
cantly different from a random function as c gets larger, and its analysis is a
nontrivial matter. It is also interesting to note that, although the image size of
H(c) goes down by a factor of 2/c compared with that of H , yet Theorem 1
shows that the attacker’s workload must increase by a factor of c.

Design and Analysis of Password-Based Key Derivation Functions 255

Theorem 1 proves tight bounds for the password space. When t < c, the
lower bound on Adv(t) in the theorem becomes zero. Below, we derive a non-
trivial lower bound by describing a strategy of the attacker. Let d(x) denote the
number of divisors of x, and define d[x1, x2] = max d(x), x1 ≤ x ≤ x2.

Lemma 4. With t < c queries, the attacker can achieve AdvA(t) > t2

2n+1 +
(1− t2

2n+1)d[c,c−t]
2n .

Proof. The attacker simply computes u, H(u), H(2)(u), . . . iteratively and hopes
that the sequence becomes periodic, i.e., a repeated value occurs before H(t)(u)
so that H(c)(u) is determined. The probability for this to happen is t(t+1)/2n+1.
In the case the chain (u, H(u), . . . , H(t)(u)) is not periodic, the adversary will
select a vertex on the path v = H(δ)(u) where δ is chosen to maximize the
number of divisors d(c− δ) for 0 ≤ δ ≤ t. The probability of success in this case
is at least d[c, c− t]/2n as stated. QED

We note that, somewhat surprisingly, the lower bound gets better with larger
c, as the attacker may find a number c − δ in the range [c − t, c] with a large
number of divisors so that it is more likely to have H(c)(u) = H(δ)(u) through
periodicity.

In our modelling of the password space, we assumed that all passwords are of
the same length � and are chosen by users with equal probability. It is not difficult
to extend our analysis to obtain similar security bounds when these assumptions
are removed. For example, let a set of passwords of arbitrary length be added to
PW . After one iteration of H these points are distributed randomly in the do-
main {0, 1}n, and additional iterations (adjusting c to be c−1) would behave just
as analyzed before. Similarly, even if the passwords have different probabilities
originally, after one iteration this will have no effect on the collision probabilities
which depend only on the fact prob[H(x) = y] = 1

2n in the domain {0, 1}n.

5 Security Analysis of KDFs in PKCS#5

In the preceding section, we analyzed the basic iterative construction H(c). The
analysis implies that the two KDFs in PKCS#5 are weakly secure as long as the
adversary’s computational resource is far less than c|PW |, even though it can
be much larger than |PW |.

In what follows, we analyze the security of the two KDFs under the strongly
secure model – that is, the adversary is allowed a few queries to F . We show that
neither KDF is secure under this model and we also explore how such security
weakness can be exploited to launch attacks in practical settings.

5.1 PBKDF1
The attack on PBKDF1 is based on an obvious relation between keys derived
using the same salt. For any salt s and two iteration counts c0 < c1, let yi =
F (p, s, ci) = H(ci)(p‖s). Then, it is easy to see that y1 = H(c1−c0)(y0). This
relation allows an attacker to distinguish y0 from a random function with one F
query (s, c1) and (c1 − c0) H queries.

256 Frances F. Yao and Yiqun Lisa Yin

Note that if the key y0 = H(c0)(p‖s) were ever compromised for some reason,
then any key derived using the same salt s and an iteration count larger than
c0 would all be compromised. This might happen in practice if the user (or the
security administrator of the system) decides to increment the iteration count.
Therefore, it is a good practice in general to use different salt values in deriving
different keys.

5.2 PBKDF2

The derived keys in PBKDF2 also suffer from non-randomness, although the
relations among keys are slightly more complicated. Let s be any salt value
and let c1, c2, c3 be three consecutive iteration counts. For i = 1, 2, 3, define
yi = F (p, s, ci) = U1⊕ ...⊕Uci . Then, we have y1⊕ y2 = Uc2 and y2⊕ y3 = Uc3 .
This yields the following relation among the three keys: (y2⊕ y3) = Hp(y1⊕ y2),
where Hp() is the underlying function HMAC.

This relationship among keys opens the door to dictionary attacks. The at-
tacker simply computes the HMAC function Hp(Uc2) for all possible passwords
p, and the password that gives Hp(Uc2) = Uc3 is very likely to be the correct
password used in the scheme. Once p is known, it is easy to distinguish the
derived key from a random string. We remark that the workload of the above
attack is |PW |, no matter what c is. This implies the iteration count does not
add much (or any) protection in PBKDF2 against dictionary attacks.

6 Effects of Salt

A salt serves the purpose of creating a large set of possible long keys correspond-
ing to a password p. If the salt is s bits long, then the number of possible long
keys can be as large as 2s. Each time the KDF is executed with a salt, either
selected by the user or generated at random, one of the 2s long keys is selected.

One natural question is the following: Suppose that an adversary has com-
puted the long keys correspond to all the passwords p ∈ PW for a salt s1. That
is, the adversary has a table of size |PW | in which each entry contains the value
(p, H(c)(p‖s1)) for some p ∈ PW . Does this table provide the adversary some
shortcuts to derive long keys using a different salt s2 �= s1?

The answer is certainly “No”, which is well-known in practice. Using the
graph-based approach, we can show that the set of paths corresponding to s1

and the set of paths corresponding to s2 are all disjoint with high probability,
and hence the table for s1 provides essentially no information for derived keys
using s2. The detailed analysis is similar to that for Theorem 1 and thus omitted
here.

7 New Proposal for Strongly Secure KDF

In this section, we present a new proposal for strongly secure KDF based on
our study on the effects of iteration counts and salt, as well as the analysis on
existing KDFs.

Design and Analysis of Password-Based Key Derivation Functions 257

We first note that the graph-based analysis provides insights on the exact
way that each parameter contributes to the overall security: The computation
process for deriving a key corresponds to a path in the query graph. So choosing
a larger iteration count forces the attacker to traverse a longer path for deriving
each key, while choosing a different salt value forces the attacker to traverse
a different path in the computation. It is also easy to see why the KDFs in
PKCS#5 are not strongly secure using the query graph. For example, in the
case on PBKDF1, the F queries (s, c0) and (s, c1) correspond to two paths that
overlap. This extra information allows the attacker to distinguish the derived
key from a random string.

Based on the above discussion, we can see that a strongly secure KDF should
be constructed in a way that the values of y = F (p, s, c), for different p, s and
c, are nearly independent of each other. Certainly, there are various ways of
achieving this goal. Here we propose a simple construction that maintains the
same efficiency as the KDFs in PKCS#5. The idea is to include iteration count
explicitly as an input to the hash function H . More specifically, the new KDF is

y = F ∗(p, s, c) = H(c)(p‖s‖c).

In what follows, we prove that the above KDF is strongly secure – secure
even when the adversary can choose (s, c) and make F queries. We assume that
there are lower and upper limits to the ci acceptable in queries to F , that is,
c∗ < ci < c∗. Indeed, without a lower limit, the adversary can always set c = 1
in the F query and then perform an offline key search attack with complexity
O(|PW |).
Theorem 2. In the strongly secure model for KDF, if the adversary makes at
most t queries to H and at most m queries to F , then the maximum success
probability Adv(t, m) satisfies

max(�(t− c∗)/c∗�, m)
|PW | < Adv(t, m)

�t/c∗�+ 2m

|PW | +
(t + m)2

2n
.

Proof. We provide a sketch of the proof here, and the details are given in the
appendix. The upper bound proof uses the same type of arguments as that of
Theorem 1. More specifically, we define two games R′ and K ′ which the adversary
might play. Since there are now two types of queries to deal with, the simulator
needs to maintain some extra information during the course of the game to make
sure that its answers to oracle queries F ∗ and H are consistent. Then following
a similar analysis, we only need to bound the probability of some bad events to
obtain the upper bound in the theorem.

For the lower bound, we describe two strategies. In strategy A, the adversary
computes separate paths of length c∗ using queries to H and makes only one F
query. In strategy B, the adversary constructs a single path of length t and picks
m appropriate vertices to make m queries to F . The success probability is the
maximum of the two as stated in the theorem. QED

258 Frances F. Yao and Yiqun Lisa Yin

8 Conclusions

Password-based key derivation functions are necessary in many security appli-
cations. Despite their importance and wide-spread usage, rigorous analysis of
such functions seems to have received relatively little attention in the literature
compared with many other cryptographic schemes.

In this paper, we define a general security framework for password-based
key derivation functions where salt and iteration count are included as parame-
ters. Under this framework, we focus on the most commonly used construction
H(c)(p‖s) and prove that the iteration count c, when fixed, does have an effect
of stretching the password by log2 c bits. Our analysis is done using a random
functional graph representing H , conditioned upon a query graph representing
information revealed to the attacker. It provides insights on the exact way that
each parameter contributes to the overall security.

We then analyze two widely deployed KDFs defined in PKCS#5. We show
that both are secure the adversary cannot influence the parameters, but are
subject to attacks otherwise. We also consider how such security weaknesses can
be exploited in practice.

Finally, based on the insight gained from our earlier analysis, we propose a
new password-based key derivation that is provably secure even when the at-
tacker has full control of the salt and iteration count. The new proposal achieves
stronger security while preserving the same efficiency as existing KDFs. We ex-
pect that the new proposal will find its application in practical implementations.

Acknowledgements

We would like to thank the anonymous referees for many helpful comments.

References

1. M. Bellare, R. Canetti and H. Krawczyk. Keyed Hash Functions for Message
Authentication. In Advances in Cryptology – Crypto ’96, Springer-Verlag, 1996.
Crypto’96.

2. M. Bellare and P. Rogaway. Random Oracles are practical: A Paradigm For De-
signing Efficient Protocols. In First ACM Conference on Computer and Commu-
nications Security, 1993.

3. S. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Protocols
Secure Against Dictionary Attacks. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, 1992.

4. T. Dierks and C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246, Internet
Request for Comments, January 1999.

5. A. Hevia, A. Desai, and Y. L. Yin. A Practical-Oriented Treatment of Pseudoran-
dom Number Generators. In Advances in Cryptology – Eurocrypt ’02, Springer-
Verlag, 2002.

6. FIPS PUB 186-2. Digital Signature Standard. National Institute of Standards and
Technologies, 1994.

Design and Analysis of Password-Based Key Derivation Functions 259

7. P. Flajolet and A. M. Odlyzko. Random mapping statistics. In Advances in Cryp-
tology - EUROCRYPT ’89, Springer-Verlag, 1990.

8. IEEE Std 1363-2000: Standard Specifications for Public-Key Cryptography. IEEE
Computer Society, 2000.

9. IEEE P1363.2: Standard Specifications for Password-Based Public-Key Crypto-
graphic Techniques. Draft D15. May 2004.
http://grouper.ieee.org/groups/1363/passwdPK/draft.html.

10. J. Kelsey, B. Schneier, C. Hall, and D. Wagner. Secure Applications of Low-Entropy
Keys. In Proceedings of the First International Workshop ISW ’97, Springer-Verlag,
1998.

11. J. Killian and P. Rogaway. How To Protect DES Against Exhaustive Key Search
Attacks. In Advances in Cryptology - CRYPTO ’96, Springer-Verlag, 1996.

12. A. M. Odlyzko, private communication. 2003.
13. RSA Laboratories’ PKCS#5 v2.0: Password-Based Cryptography Standard. 1999.
14. D. Wagner and I. Goldberg. Proofs of Security For The UNIX Password Hashing

Algorithm. In Advances in Cryptology - Asiacrypt ’00, Springer-Verlag, 2000.

Proof of Theorem 2

Upper Bound

The upper bound proof uses the same type of arguments as that of Theorem 1.
We start by specifying two games R′ and K ′ (see Figures 3 and 4). Since there
are now both H and F ∗ queries to deal with, the simulator needs to maintain
some necessary information during the course of the game to make sure that its
answers to both types of oracle queries are consistent.

Before diving into the detailed descriptions of the two games, it is instruc-
tional to compare at a high level how oracle query H is handled in Game K ′

and Game K. The main difference is the additional Step 4 (marked as new) in
Game K ′, which is for updating the necessary information maintained by the
simulator.

In both games, the simulator keeps track of all the F ∗ queries as well as the
H queries starting at p0‖s‖c. More precisely, it maintains a set

L = {(sk, ck, yk, uk, ik)}
where each item in L is a 5-tuple such that either the query (sk, ck) has been
made to F ∗ or the query x = p0‖sk‖ck has been made to H . The other three
entries are defined as follows:

– If the query to F ∗ has been made, then yk = H(ck)(x) Otherwise, yk = ∗
meaning it is still undefined.

– If the query to H has been made, then ik is the number of consecutive queries
to H made thus far starting at x, and uk is the last answer.

It also maintains the set of all “starting points” in L, that is, a set X = {xk}
where xk = p0‖sk‖ck.

Following similar analysis as that of Theorem 1, we have that AdvA(t, m) <
Pr[BAD] ≤ Pr[BAD1] + Pr[BAD2|BAD1]. So we only need to derive an upper

260 Frances F. Yao and Yiqun Lisa Yin

Initially, H(.) and Fp0(., .) are both undefined.
Choose p0

r← PW and y0
r← {0, 1}n.

Set i0 ← 0, x0 ← p0‖s0‖c0, Y ← {y0}.
Set X ← {x0}, L← {(s0, c0, y0, u0, i0)}.
Set j ← 0.

On oracle query H(x):

1. Choose y
r← {0, 1}n.

2. If y �∈ Y , set Y ← Y ∪ {y}.
Else if y ∈ Y , set bad1.

3. If x = xk ∈ X and ik < ck, set ik ← ik + 1 and uk ← y.
Else if x = xk ∈ X and ik = ck, set y ← yk. Set bad2.

4. (new step compared with Game K)
If x �∈ X and x = p0‖s‖c, then X ← X ∪ x and add a new item in L:
j ← j + 1, sj ← s, cj ← c, yj ← ∗, uj ← x, ij ← 1

5. Define H(x) = y and return y.

On oracle query F ∗
p0(s, c):

1. Choose y
r← {0, 1}n.

2. If y �∈ Y , set Y ← Y ∪ {y}.
Else if y ∈ Y , set bad1.

3. Let x = p0‖s‖c.
If x = xk ∈ X and ik < ck, set yk ← y.
Else if x = xk ∈ X and ik = ck, set y ← yk. Set bad2.

4. If x �∈ X, then X = X ∪ x and add a new item in L:
j ← j + 1, sj ← s, cj ← c, yj ← y, uj ← x, ij ← 0

5. Define F ∗
p0(s, c) = y and return y.

Fig. 3. Game K′.

Game R′ is the same as Game K′, except that the execution of
the underlined step (y ← yk) is removed.

Fig. 4. Game R′.

bound on the probability of each bad event. Analyzing the first term is straight-
forward. Since there are t + m queries in total, Pr[BAD1] < (t + m)2/2n.

Analyzing the second term Pr[BAD2|BAD1] is somewhat more complex.
First, let Q1 be the query graph corresponding to the t H queries. If the at-
tacker uses only Q1, its success probability is bounded by �t/c∗�

|PW | as shown in
Theorem 1, except that c0 is replaced with its lower limit c∗. Next, we consider
the effect of F ∗ queries. We observe that (unlike in the proof of Theorem 1)
xj = p0‖sj‖cj doesn’t have to be the first vertex of a path, since the adversary

Design and Analysis of Password-Based Key Derivation Functions 261

is allowed to choose (sk, ck) and make a query to F ∗, and this provides the
adversary more chances of success. To quantify this advantage, we consider the
number of vertices of the form {p‖si‖ci, 1 ≤ i ≤ m}, denoted by m′. The success
probability using F ∗ queries is bounded by m′/|PW |. Note that m′ = m + q
where q is the expected number of collisions in s‖c among all the vertices p‖s‖c
in Q1. Since the expected value of q is t|PW |/2n << 1, it can be shown that
the probability that m′ = m + q ≥ m + m = 2m is negligible.

Combining all the probabilities, we prove that Adv(t, m) is bounded by
�t/c∗�+2m

|PW | + (t+m)2)
2n) as stated.

Lower Bound

For the lower bound, we describe two strategies from which the adversary can
pick the one yielding better success probability depending on the parameters. In
strategy A, the adversary computes separate paths of length c∗ for �(t− c∗)/c∗�
passwords pi‖s‖c∗ using t−c∗ queries to H . He then makes a F query asking for
y = F ∗

p (s, c∗). With probability �(t− c∗)/c∗�/|PW |, vertex y coincides with the
endpoint of one of the paths, thus revealing the password p0. In such an event
the adversary then makes c0 more H queries to compute y′

0 = H(c0)(p0‖s0‖c0)
and answers 1 if y′

0 = y0. All together the adversary used at most t queries to
H and one F queries to achieve success probability of �(t− c∗)/c∗�/|PW |.

In strategy B, the adversary constructs Q1 to be a single path of length t
starting from an arbitrary p‖s‖c. With probability 1−O(t2/2n), the path will be
cycle-free. Its first t−c∗ vertices pi‖si‖ci have their full paths Tpi‖si‖ci

completely
contained in Q1. Assuming m to be much smaller than t− c∗, the adversary can
pick m vertices pi‖si‖ci along the path with distinct pi and make at most m
queries to F with the corresponding (si, ci)’s. With probability m/|PW |, it can
identify the password. This completes the proof of Theorem 2. QED

	1 Introduction
	1.1 Background and Motivation
	1.2 Our Framework
	1.3 Main Results
	1.4 Related Work

	2 Security Framework and De.nitions
	2.1 KDF Model
	2.2 Attack Model
	2.3 Security Definition

	3 Password-Based KDFs in Practice
	4 Effects of Iteration Count
	4.1 Graph Representation of H
	4.2 Analysis of Probabilities
	4.3 Discussions on c-th Iterate of a Random Function

	5 Security Analysis of KDFs in PKCS#5
	5.1 PBKDF1
	5.2 PBKDF2

	6 Effects of Salt
	7 New Proposal for Strongly Secure KDF
	8 Conclusions
	References
	Proof of Theorem 2
	Upper Bound
	Lower Bound

