
A Dynamic Task Scheduling Algorithm for
Grid Computing System

Yuanyuan Zhang1, Yasushi Inoguchi2, and Hong Shen1

1 Graduate School of Information Science,
2 Center for Information Science,

Japan Advanced Institute of Science and Technology,
1-1 Asahidai, Tatsunokuchi, Ishikawa, 923-1292, Japan

{yuanyuan, inoguchi, shen}@jaist.ac.jp

Abstract. In this paper, we propose a dynamic task scheduling algo-
rithm which assigns tasks with precedence constraints to processors in a
Grid computing system. The proposed scheduling algorithm bases on a
modified static scheduling algorithm and takes into account the hetero-
geneous and dynamic natures of resources in Grid.

1 Introduction

Grid computing[1], the internet-based infrastructure that aggregates geograph-
ically distributed and heterogeneous resources to solve large-scale problems, is
becoming increasingly popular. Heterogeneity, dynamicity, scalability and au-
tonomy are four key characteristics of Grid.

A critical issue for the performance of Grid is that of task scheduling. Task
scheduling problem is, in general, the problem of scheduling tasks to processors
so that all the tasks can finish their execution in the minimal time. Since this
problem is NP-complete in general, it is necessary to employ heuristics to arrive
at a near-optimal solution.

Many task scheduling heuristics have been proposed for heterogeneous system
[2, 3, 4], however, most of these algorithms can’t work for Grid directly because
resources in Grid are typically heterogeneous and the performance of the re-
sources dynamically fluctuates over time as the resources are not dedicated to
Grid.

In this paper, we propose a new scheduling algorithm which assigns
precedence-constrained tasks to the processors in a Grid computing system. Our
algorithm takes the dynamicity and heterogeneity of Grid into consideration so
that it can better deal with the dynamics of dynamically varying resource state
in Grid.

The rest of this paper is organized as follows: We formalize the problem
and describe the proposed algorithm in Section 2 and Section 3 concludes the
paper.

J. Cao et al. (Eds.): ISPA 2004, LNCS 3358, pp. 578–583, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



A Dynamic Task Scheduling Algorithm for Grid Computing System 579

2 The Proposed Algorithm

2.1 Problem Statement

An application to be executed on the Grid system consists of many precedence-
constrained tasks. The application is represented by a Directed Acyclic Graph
in which every node represents a task of the application, and each directed edge
represents a communication(comm. in short) link between two tasks. Edge ei,j

represents the dependence relationship between task Ti and task Tj that Ti must
finish before Tj can start.

For edge ei,j , we call Tj a successor of Ti, and Ti a predecessor of Tj . The size
of data communicated from Ti to Tj is datai,j . A task is called an entry task if it
has no predecessor, while a task is called an exit task if it has no successor. We
assume that there is only one entry task and one exit task in the application.

The communication cost between task Ti and Tj , denoted by Ci,j , is the
expected transfer time of the data for the communication given current network
conditions. For this purpose, Network Weather Service(NWS) can be used to
obtain an estimate of the current network latency and bandwidth. It is assumed
that the communication cost on a processor is neglectable.

Let τi denote the workload of Grid task Ti, and υm be the speed of processor
Pm, then τi/υm is the time to implement Ti on Pm when Pm is dedicated to
execute Ti. However, the actual speed of Pm delivered to Grid is less than υm

and varies over time since the resource owner also uses it and the local jobs
have higher priority over the Grid tasks. This may dramatically impact the
performance of Grid resources, and makes the problem more difficult.

The objective function is to schedule the tasks of the application to the
processors in Grid so that to minimize the total execution time.

2.2 The Proposed Task Scheduling Algorithm

Most static scheduling algorithms assume that task execution times and data
transfer times can be estimated accurately and are commonly used with dedi-
cated resources. However, the fact in Grid is that it is often difficult to obtain
such accurate estimation before execution. Therefore, dynamic scheduling algo-
rithms may have better performance on Grid because they are able to adapt to
environmental dynamicity. In this paper we propose a new dynamic algorithm
to deal with the dynamic and heterogeneous features of Grid.

First we must solve the nondedicated feature of Grid: during the implemen-
tation of a Grid task on a processor, the local jobs on the processor will arrive
and interrupt the implementation of the Grid task. We consider the execution
of the local jobs as non-preemptive, i.e., a local job must run until completion
once it starts. The execution of the local jobs follows the rule of first-come first-
serve. From the viewpoint of the Grid task, the state of the processor alternates
between available and unavailable: when the processor is executing its own jobs,
it’s unavailable for the Grid task, otherwise it’s available for the Grid task.

If we assume the arrival of the local jobs in processor Pm follows a Poisson
distribution with arrival rate λm, and their execution process follows an expo-



580 Y. Zhang, Y. Inoguchi, and H. Shen

nential distribution with service rate µm, then the local job process in Pm is an
M/M/1 queuing system.

The expected execution time ωe
i,m of task Ti on Pm can be expressed as:

ωe
i,m = Xm

1 + Y m
1 + Xm

2 + Y m
2 ... + Xm

Nm
+ Y m

Nm
, (1)

where Nm is the number of local jobs which arrive during the execution of
Ti, and Xm

j , Y m
j (j = 1, ..., Nm), are respectively the computing time of a section

of the Grid task and a local job. Y m
j (j = 1, 2, ..., Nm) are independent identical

distribution(i.i.d.) random variables. We have:

Xm
1 + Xm

2 + ... + Xm
Nm

= τi/υm. (2)

From the knowledge of queuing theory, we have:

E(Nm) = λmτi/υm, E(Y m
j ) = 1/(µm − λm). (3)

Since Nm and Yj are independent(j = 1, ..., Nm), we can derive:

E(ωe
i,m) = E(E(ωe

i,m|Nm)) = τi

υm(1−ρm) . (4)

where ρm = λm/µm, is the utilization rate of Pm.
For a processor Pm with utilization rate ρm, we can use τi

υm(1−ρm) as the
expected execution time of Ti on Pm. However, ρm is a value that reflects the
dynamicity of the Grid during a long time. It can not reflect the dynamicity
during the execution of the application, therefore we introduce the concept of
processor credibility which reflects the history of prediction accuracy for a pro-
cessor during the execution of a Grid application. We denote the credibility of
Pm as δm, which has the original value of 1 when we schedule the application.
After a task Ti finishes execution on Pm, we can obtain its actual execution time
ωa

i,m and so that δm is modified as:

δm = (1 − α)δm + α ∗ ωa
i,m/ωe

i,m, (5)

where α is a value between 0 and 1 and can be modified.
Therefore the expected execution time ωe

i,m of Ti on Pm is modified as:

ωe
i,m =

τiδm

υm(1 − ρm)
. (6)

The average execution time of Ti, which is denoted by ωi, is defined as:

ωi =
q∑

m=1

ωe
i,m/q =

q∑

m=1

τiδm

υmq(1 − ρm)
, (7)

where q is the number of processors in Grid.
The dynamic algorithm we propose bases on a static algorithm which is a

modified Heterogeneous Earliest Finish Time(HEFT) algorithm[3]. HEFT is a



A Dynamic Task Scheduling Algorithm for Grid Computing System 581

traditional task scheduling algorithm for precedence-constrained tasks in hetero-
geneous systems. The scheduling process of this algorithm includes two phases:
task selection and processor selection. In task selection phase, the tasks are
queued by non-increasing ranks. For task Ti, its rank ranku(Ti), is computed
as:

ranku(Ti) = ωi + max
Tj∈succ(Ti)

(Ci,j + ranku(Tj)). (8)

Here Ci,j = L + datai,j

B . (9)

In the above equation succ(Ti) is the set of the successors of Ti. L and B
are respectively the average communication startup time and average bandwidth
among all the processors. ranku of each task is computed by traversing all the
tasks upward, starting from the exit task whose ranku is defined as:

ranku(Texit) = ωexit. (10)

In processor selection phase, the first task in the list is selected and allocated
to the processor which gives it the minimal earliest finish time(EFT).

For task Ti, let EST(Ti,Pm) and EFT(Ti,Pm) denote its earliest start time
and earliest finish time on processor Pm. AFT(Ti) is its actual finish time.
avail[Pm] denotes the time when Pm is ready for executing new tasks. We also
denote the comm. finish time between Ti and its successor Tj as CFT(Ti,Tj).

In the HEFT algorithm, when computing EFT(Ti,Pm) of Ti on Pm, the al-
gorithm computes CFT(Tj ,Ti) between Ti and its predecessor Tj which has not
been scheduled to Pm, and determines EST(Ti,Pm) as the maximum value be-
tween CFT(Tj ,Ti) and avail[Pm]. If we have decided to schedule Ti on processor
Pm, and if avail[Pm] is less than CFT(Tj ,Ti), then Pm will remain idle when it
is waiting for the finish of communication between Tj and Ti. However, if we
adopt the idea of task duplication scheme in this algorithm, that is, when the
communication time is long compared with computation time, we duplicate Tj

which has been scheduled to other processors on Pm, thus the communication
time will be removed, so that the total execution time of the tasks will be prob-
ably shortened. We name this modified HEFT algorithm as Duplication-based
HEFT(DHEFT) algorithm.

The performance of DHEFT depends heavily on the granularity of commu-
nication between the tasks. For communication-intensive applications, it can
achieve much better performance than HEFT algorithm, otherwise its advantage
will be trivial. So we use DHEFT algorithm only for communication-intensive
Grid application, otherwise we use the original HEFT algorithm. In our future
work the threshold of comm.-comp. ratio for judging if an application should be
scheduled using DHEFT or not will be determined.

In our dynamic scheduling algorithm, at first we relate every task with a
level so that tasks with same level are independent. The level of a task is de-
fined as the length of the longest path from the entry task to the present task.
By the length of a path we mean the number of tasks on the path. The level of



582 Y. Zhang, Y. Inoguchi, and H. Shen

Tentry is 1. After we schedule Tentry to a processor, we begin its execution im-
mediately. Then when tasks with level i-1 start execution(i>1) we dynamically
schedule tasks with level i using DHEFT algorithm for communication-intensive
tasks or HEFT algorithm. When i>2, since tasks with level less than i-1 have
finished execution when we schedule tasks with level i , we use the estimation
error of the finished tasks to modify the credibility of every processor using
equation (6), so that to regulate the estimated execution time of the tasks in
level i .

The following pseudocode shows the implementation process of DHEFT al-
gorithm and the dynamic scheduling algorithm:

Duplication-based HEFT Algorithm Dynamic Task Scheduling
(DHEFT) Algorithm

Sort the tasks in list Q1 by decreasing ranku Compute the level of every task
While there are tasks remained in Q1 { EST(Tentry) = 0

Select the first task Ti from Q1 For every processor Pm

For processor Pk { t = avail[Pk] avail[Pm] = 0
If all the predecessors of Ti are on Pk or Q1 ← set of tasks whose level is 1

Ti is the entry task Compute ranku of every task in Q1

EFT(Ti, Pk) = t + ωe
i,k Schedule the tasks in Q1

Else Start the execution of tasks in Q1

EST(Ti, Pk) = t Q1 ← set of tasks with level 2
Sort predecessors of Ti which are not Compute ranku of tasks in Q1

on Pk in Q2 by decreasing ranku Schedule the tasks in Q1

Select the first task Tj from Q2 For i = 2; i < level(Texit); i++;
If EFT(Tj) + Cj,i ≤ t + ωe

j,k Wait until any task in level i begins
EST(Ti, Pk) = MAX(t, EFT(Tj) + Cj,i) execution
Else Refresh the credibility of every

t = t + ωe
j,k processor using actual execution

EST(Ti, Pk) =t times of tasks in level i-1
EFT(Ti, Pk) = EST(Ti, Pk) + ωe

i,k} Q1 ← set of tasks with level i+1
Allocate Ti to Pm which gives it the minimal Compute ranku of tasks in Q1

EFT(Ti, Pm) Schedule the tasks in Q1

avail[Pm] = EFT(Ti,Pm) }

3 Conclusion

In this paper, we propose a task scheduling algorithm for Grid computing system.
The proposed scheduling algorithm considers the dynamicity and heterogeneity
of Grid. It combines the list scheduling and task duplication scheme. It also uses
the execution results of the finished tasks to regulate the expected execution
times of the tasks to be scheduled, so that to obtain more accurate estimation
and arrive at better scheduling result.



A Dynamic Task Scheduling Algorithm for Grid Computing System 583

References

1. I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann Publishers, San Fransisco, CA, 1999.

2. C. Banino, O. Beaumont, A. Legrand, and Y. Robert, ”Scheduling strategies for
master-slave tasking on heterogeneous processor grids,” Applied Parallel Comput-
ing: Advanced Scientific Computing: 6th Int’l Conf., pp. 423-432, Jun. 2002.

3. H. Topcuoglu, S. Hariri, and M.-Y. Wu, ”Performance-Effective and Low-
Complexity Task Scheduling for Heterogeneous Computing,” IEEE Trans. Parallel
and Distributed Systems, vol. 13, no. 3, pp. 260-274, Mar. 2002.

4. J.-C. Liou and M.A. Palis, ”An Efficient Task Clustering Heuristic for Scheduling
DAGs on Multiprocessors,” Workshop on Resource Management, Symposium on
Parallel and Distributed Processing. 1996.


	Introduction
	The Proposed Algorithm
	Problem Statement
	The Proposed Task Scheduling Algorithm

	Conclusion



