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Abstract. This paper presents a new simple distinguishing attack that
can be applied on stream ciphers constructed from filter generators or
similar structures. We demonstrate the effectiveness by describing key
recovery attacks on the stream cipher LILI-128. One attack on LILI-128
requires 247 bits of keystream and a computational complexity of roughly
253. This is a significant improvement compared to other known attacks.

1 Introduction

Much work has been put into trying to understand the security of stream ciphers.
Stream ciphers can be made very efficient in software and in hardware, but their
security has not been as widely studied as for example block ciphers. In this
paper we investigate filter generators, a linear feedback shift register (LFSR)
from which the output is filtered by a nonlinear filter function. This output is
added modulo two to the plaintext. See for example [18] for more details on filter
generators.

Several different kinds of attacks can be considered on stream ciphers. We
usually consider the plaintext to be known, i.e. the keystream is known and we
try to recover the key. A popular technique is to exploit some correlation in the
keystream. This idea was introduced by Siegenthaler [23] in 1984, a consequence
of this attack is that designers of nonlinear functions must use functions with
high nonlinearity. This attack was later followed by the fast correlation attack by
Meier and Staffelbach [17]. Since then many improvements have been introduced
on this topic, see [1, 2, 14, 13, 15]. In a fast correlation attack one first try to find
a low weight parity check polynomial of the LFSR and then apply some iterative
decoding procedure.

Algebraic attacks have received much interest lately. These attacks try to
reduce the key recovery problem to the problem of solving a large system of
algebraic equations [6, 5].

Another class of key recovery attacks on filter generators was proposed by
Golić, the so-called inversion attacks, see [10, 11, 12]. In an inversion attack one
tries to “invert” the nonlinear function and recover the initial state.

A distinguishing attack is a different type of attack. Here we try to distinguish
the output of the cipher from a truly random source. In some specific cases these
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attacks can be used to create a key recovery attack. Distinguishing attacks have
received a lot of attention recently, see for example [8, 4].

In this paper we present a very simple distinguishing attack that can be
applied on stream ciphers using a filter generator or a similar structure as a part
of the cipher.

Recently, Leveiller et. al. [16] proposed methods involving iterative decoding
and the use of vectors instead of the binary symmetric channel. We use a similar
idea, but much simpler in its form and more powerful in its performance, to
mount a distinguishing attack. In the basic algorithm we first find a low weight
multiple of the LFSR. We then consider the entries of the parity check equation
as a vector. Such vectors, regarded as random variables, are non-uniformly dis-
tributed due to the parity check, and this is the key observation that we use to
perform a distinguishing attack. This allows us to detect statistical deviations
in the output sequence, creating the distinguishing attack. We can also present
ideas on how to improve the performance by using slightly more complex algo-
rithms.

In order to demonstrate the effectiveness of the proposed ideas, we apply them
on a recently proposed cipher called LILI-128. The attack is a key recovery attack.
LILI-128 has one LFSR controlling the clock of another LFSR. Our approach
is to guess the first 39 bits of the key, those bits that are used in the LFSR
that controls the clocking. If our guess is correct we will be able to detect some
bias in the output sequence through the proposed distinguishing attacks. The
complexity for one of the proposed attacks is roughly 253 binary operations and
it needs about 247 keystream bits, a significant improvement compared to other
known attacks.

The paper is organized as follows. In Section 2 we give a basic description
of filter generators. In Section 3 we present some theory on hypothesis testing.
After this we describe our new distinguishing attack in Section 4, here we also
present some ideas on how to improve this distinguishing attack. In Section 5
we turn this attack into a key recovery attack on LILI-128. Finally in Section 6
some future work and conclusions are discussed.

2 Preliminaries

In this paper we consider binary stream ciphers where the output from a LFSR
is filtered by a nonlinear function. The keystream generator is divided into two
parts, one linear, i.e., the LFSR, and one nonlinear function. LFSRs are known
to produce long pseudo-random data sequences and can be made very efficient
in both hardware and software. Usually the feedback polynomial of the shift
register is primitive and the LFSR sequence will have maximum period. Since
the initial state of an LFSR is very simple to recreate from the output stream
we need to destroy the linearity in the keystream. This is the purpose of the
nonlinear function. Much work on nonlinear functions has been done, see for
example [21].
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Fig. 1. Description of a filter generator

A filter generator can be described as follows. Let ut, ut+1, . . . denote the
output sequence from a length r LFSR with feedback polynomial g(x). Let f
denote the nonlinear function as can be seen in Figure 1. At each time t this
function takes d input values from the LFSR register and produces on output
bit zt. The variables used as inputs to f at time t are the entries in the vec-
tor Ut = (ut+t1 , ut+t2 , . . . , ut+td

)T . We denote the output sequence from the
Boolean function, i.e., the keystream, by zt, zt+1, . . .. We thus have zt = f(Ut).
This is modeled in Figure 1.

3 Hypothesis Testing

In a distinguishing attack we try to decide whether the data origins from the con-
sidered cipher or from a random source. To make this decision we use hypothesis
testing. The problem stated above can be reformulated. We have two hypotheses,
where H0 denotes the hypothesis that the observed data comes from our cipher
and H1 that the data origins from a random source. We will now shortly explain
how the decision is made and how we can calculate the number of samples we
need to make a correct decision. For a more thorough description of hypothesis
testing, see [7].

Assume that we have a sequence of m independent and identically distributed
(i.i.d.) random variables X1, X2, . . . , Xm taken from the alphabet X . The distri-
bution of the random variables, Xi, are denoted P (x) = Pr(Xi = x), 1 ≤ i ≤ m,
where x1, x2, . . . , xm denotes observed values. If we denote the distribution of
Xi under hypothesis H0 with P0 and the uniform distribution by P1, we can
write our hypothesizes as H0 : P = P0 and H1 : P = P1. To perform the actual
hypothesis test we use the Neyman-Pearson lemma.

Lemma 1. (Neyman-Pearson lemma) Let X1, X2, . . . , Xm be drawn i.i.d. ac-
cording to mass function P . Consider the decision problem corresponding to the
hypotheses P = P0 vs. P = P1. For T ≥ 0 define a region.
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Am(T ) =
{

(x1, x2, . . . , xm) :
P0(x1, x2, . . . , xm)
P1(x1, x2, . . . , xm)

> T

}
.

Let α = P0(Ac
m(T )) and β = P1(Am(T )) be the error probabilities corresponding

to the decision region Am, (Ac
m denotes the complement of the region Am). Let

Bm be any other decision region with associated error probabilities α∗ and β∗. If
α∗ ≤ α, then β∗ ≥ β.

The region Am(T ) minimizes α and β. In our case we set α and β to be equal and
hence T = 1. As all xn are assumed independent we can rewrite the Newman-
Pearson as a log-likelihood test,

I =
m∑

n=1

(
log2

P0(xn)
P1(xn)

)
> 0 ? (1)

We also need to know how many keystream bits we need to observe in order
to make a correct decision. In [4] the statistical distance is used. The statistical
distance, denoted ε, between two distributions P0, P1 defined over the finite
alphabet X , is defined as

ε = |P0 − P1| =
∑
x∈X

|P0(x) − P1(x)|, (2)

where x is an element of X . Since 0 ≤ ε ≤ 2 we use the more natural ε = ε/2. If
the distributions are smooth, the number of variables N we need to observe is
N ≈ 1/ε2, see [4]. Note that the error probabilities are decreasing exponentially
with N .

4 Description of the New Attack

In this section we will give a description of the different steps of our attack. If
the feedback polynomial of the LFSR is of low weight from the beginning, we
can apply our attack directly. Usually this is not the case, and our first step is
then to try to find a low weight multiple of the feedback polynomial.

4.1 Finding a Low Weight Multiple

There exist many methods for finding low weight multiples (of weight w) of
a feedback polynomial g(x). Because the degree of the multiple gives a lower
bound of the number of samples we need to observe, we wish to minimize this
degree. In [9] it is stated that the critical degree when the polynomial multiples of
weight w starts to appear is (w−1)!1/(w−1)2r/(w−1), where r is the degree of the
original feedback polynomial. In [9] an algorithm to find multiples is described.
First one calculates the residues xi mod g(x), then one computes the residues
xi1 + . . . xik mod g(x) for all

(
n
k

)
combinations 1 ≤ i1 ≤ . . . ≤ ik ≤ n, with n
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being the maximum degree of the multiples. Use fast sorting to find all of the zero
and one matches of the residues from the second step. The complexity of this
algorithm is approximately O(S log S) with S = (2k)!1/2

k! 2r/2 for odd multiples of

weight w = 2k +1, and S = (2k−1)!k/(2k−1)

k! 2rk/(2k−1) for even multiples of weight
w = 2k .

Wagner [24] presented a generalization of the birthday problem, i.e., given k
lists of r-bit values, find a way to choose one element from each list, so that these
k values XOR to zero. This algorithm finds a multiple of weight w = k + 1 with
lower complexity, k ·2r/(1+�log k�), than [9] but with higher degrees, 2r/(1+�log k�),
on the multiples. Since the number of samples is of high concern to us we have
chosen to work with the method described in [9]. Continuing, we now assume
that the LFSR sequence is described by a low weight recursion.

4.2 Building a Distinguisher

The technique we use for building a distinguisher is inspired by the work in [16].
However in [16] the authors describe a key recovery attack and use iterative
decoding methods, etc. We construct instead a very simple distinguisher. A
usual description of a stream cipher is to model it as a binary symmetric channel
(BSC), using linear approximations. But we proceed differently. Instead we write
the terms in the weight w parity check equation as a length w vector. This way
we use our knowledge of the nonlinear function better than in the BSC model.
Assume that we have a LFSR of weight w with the parity check equation

ut + ut+τ1 + . . . + ut+τw−1 = 0. (3)

We write the terms in this relation as a vector, and by noticing that ut+τw−1 is
fully determined by the sum of the other components we get (τ0 = 0),

(ut, ut+τ1 , . . . , ut+τw−1) = (ut, ut+τ1 , . . . ,

w−2∑
i=0

ut+τi). (4)

From the LFSR, d different positions are taken as input to the nonlinear function
f . For each of these positions, where t1, t2, . . . , td denotes its position relative to
time t, we can write a vector similar to (4). If we consider the following matrix,

At =

⎛
⎜⎜⎜⎝

ut+t1 ut+t1+τ1 . . .
∑w−2

i=0 ut+t1+τi

ut+t2 ut+t2+τ1 . . .
∑w−2

i=0 ut+t2+τi

...
...

...
ut+td

ut+td+τ1 . . .
∑w−2

i=0 ut+td+τi

⎞
⎟⎟⎟⎠ ,

then by writing Ut+τl
= (ut+t1+τl

, ut+t2+τl
, . . . , ut+td+τl

)T we get

At = (Ut,Ut+τ1 , . . . ,

w−2∑
i=0

Ut+τi). (5)
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In the attack we will not have access to the LFSR output, instead we have
access to the output bits from the nonlinear function f . The output values
(zt, zt+τ1 , . . . , zt+τw−1), denoted by Zt, can be described as

Zt = (zt, zt+τ1 , . . . , zt+τw−1) = (f(Ut), f(Ut+τ1), . . . , f(
w−2∑
i=0

Ut+τi)). (6)

As we run through Ut,Ut+τ1 , . . . ,Ut+τw−1 in a nonuniform manner (not all
values of Ut,Ut+τ1 , . . . ,Ut+τw−1 are possible), we will (in general) generate a
nonuniform distribution of (zt, zt+τ1 , . . . , zt+τw−1). In [16] it is shown that the dis-
tribution of these vectors only depends on the parity. If the number of output bits
is large enough, we can perform a hypothesis test according to Section 3. In this
hypothesis test we need the probability distribution P0(Zt). This distribution can
be calculated by running through all different values of Ut,Ut+τ1 , . . . ,Ut+τw−1 .
If d and w are large, the complexity for such a direct approach is too high. Then
we can use slightly more advanced techniques based on building a trellis, that
have much lower complexity.

The new basic distinguishing attack is summarized in Figure 2.

1. Find a weight w multiple of g(x).
2. Calculate the distribution P0(Zt).
3. Calculate the length N we need to observe.
4. for t = 0 . . . N

Zt = (zt, zt+τ1 , . . . , zt+τw−1)
end for

5. Calculate I =
∑N

t=0

(
log2

P0(Zt)
1/2w

)
.

6. if (I > 0)
output “cipher” otherwise “random”.

Fig. 2. Summary of the new basic distinguishing attack

4.3 Example of the Attack Applied on a Filter Generator

To really show the simplicity of the attack we will demonstrate with an example.
We use an example from [16] in which we consider a three weight multiple from
which the output is filtered by an 8-input, 2-resilient plateaued function.

f(x) = x1 + x4 + x5 + x6 + x7 + x1(x2 + x7) + x2x6 + x3(x6 + x8)+
+x1x2(x4 + x6 + x7 + x8) + x1x3(x2 + x6) + x1x2x3(x4 + x5 + x8).

For a parity of weight three and using the notation from Section 4.2 we can
write the vectors as

(zt, zt+τ1 , zt+τ2) = (f(Ut), f(Ut+τ1), f(Ut + Ut+τ1)).

If we try all possible inputs to this function and determine the distribution
P0(zt, zt+τ1 , zt+τ2) we get Table 1. Since we know that the probability only
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Table 1. The probability distribution P0(zt, zt+τ1 , zt+τ2)

zt, zt+τ1 , zt+τ2 P0(zt, zt+τ1 , zt+τ2)
000 8320/216

001 8064/216

010 8064/216

011 8320/216

100 8064/216

101 8320/216

110 8320/216

111 8064/216

depends on the parity of these vectors we translate these probabilities into
binary probabilities. Using the binary probabilities we can calculate the bias,
ε = P (zt + zt+τ1 + zt+τ2 = 0) = 4 · 8320

216 − 1
2 = 7.8125 · 10−3. As described before

we use the thumb rule, N ≈ 1/ε2, for the number of output bits we need to ob-
serve in order to make a correct decision in the hypothesis test. This means that
we need approximately 16384 bits to distinguish the cipher from a truly random
source. Of course, we can use several weight three recursions (using squaring
technique) and decrease the number of required bits. However, there are more
powerful possibilities, as we will show in the next section.

4.4 Using More Than One Parity Check Equation

The distinguishing attack described in the previous section is in a very simple
form. We can improve the performance by using a slightly more advanced tech-
nique. If we can find more than one low weight parity check equation, we can use
them simultaneously to improve performance. Assume that we have the two par-
ity check equations, ut+ut+τ1+. . .+ut+τw−1 = 0 and ut+ut+τw +. . .+ut+τ2w−2 =
0, giving rise to

Ut + Ut+τ1 + . . . +
∑w−2

i=0 Ut+τi = 0,

Ut + Ut+τw
+ . . . +

∑2w−3
i=w Ut+τi

= 0.
(7)

We introduce in this case

Zt = (zt, zt+τ1 , . . . , zt+τ2w−2).

In this case two of the variables are totally determined by the other variables,

Zt = (f(Ut), . . . , f(
w−2∑
i=0

Ut+τi), f(Ut+τw), . . . , f(Ut +
2w−3∑
i=w

Ut+τi)). (8)

In a similar manner we can use more than two parity checks in the vectors.
Assume that we have N parity check equations. Then we have N positions in
the vector that are fully determined by other positions. This means a more skew
distribution of the output vector in (8). For the particular case of two parity
check equations, the algorithm is described in Figure 3.



46 H. Englund and T. Johansson

1. Find two weight w multiples of g(x).
2. Calculate the distribution P0(Zt).
3. Calculate the length, N we need to observe.
4. for t = 0 . . . N

Zt = (ztt , zt+τ1 , . . . , zt+τ2w−2)
end for

5. Calculate I =
∑N

t=0

(
log2

P0(Zt)
1/2w

)
.

6. if (I > 0)
output “cipher” otherwise “random”.

Fig. 3. Summary of the new distinguishing attack using two parity check equations

4.5 Example of the Attack Applied on a Filter Generator, Cont’d

In this section we consider the same example as in Section 4.3, but we use two
recursions as described in Section 4.4. Hence we observe the keystream vectors

(zt, zt+τ1 , . . . , zt+τ4) = (f(Ut), f(Ut+τ1), f(Ut + Ut+τ1), f(Ut+τ3), f(Ut + Ut+τ3)),

when (Ut,Ut+τ1 ,Ut+τ3) runs through all values. In this case we use statistical
distance, as defined in Section 3, in order to determine the number of vectors
N we need to make a correct decision. The statistical distance is approximately
ε = 0.01172 and hence we need N ≈ 1/ε2 = 7282 vectors to distinguish the key
stream. We see that the result is a significant improvement. If we extend the
reasoning and use three weight three recursions we get ε = 0.01276 and hence
we need N ≈ 1/ε2 = 6145 vectors. The gain of using three recursions instead of
two is smaller.

4.6 The Weight Three Attack

If we can find many multiples of weight three of a feedback polynomial we can
simplify the description of our attack. With a d-input nonlinear function we
write one parity check as

Ut + Ut+τ1 + Ut+τ2 = 0.

If Ut = 0 we notice that Ut+τ1 = Ut+τ2 . If this is the case, then obviously
zt+τ1 = zt+τ2 (we assume that f(0) = 0). Now, we have m weight three parity
checks, say

Ut + Ut+τ1 + Ut+τ2 = 0,

Ut + Ut+τ3 + Ut+τ4 = 0,

...
Ut + Ut+τ2m−1 + Ut+τ2m = 0.

Again assuming Ut = 0 we see that we must have zt+τ1 = zt+τ2 , zt+τ3 =
zt+τ4 , . . . , zt+τ2m−1 = zt+τ2m

. So, since P (Ut = 0) = 2−d we will have

P (zt+τ1 = zt+τ2 , zt+τ3 = zt+τ4 , . . . , zt+τ2m−1 = zt+τ2m) > 2−d. (9)
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For a purely random sequence, however, this probability is 2−m. It is impor-
tant to note that when (9) holds for some t, it is very probable that Ut = 0,
i.e., we have recovered a part of the key. Since all output bits from the LFSR can
be written as a linear combination of the initial state, ut+ti =

∑r−1
i=0 aiui, i =

1 . . . d where ai ∈ {0, 1} are constants, we get d equations of the kind ut+ti
=∑r−1

i=0 aiui = 0 for each Ut = 0. Finding another value of t for which (9) holds
gives more expressions describing the key. Since a full rank of the system of
equations would only lead to the all zero solution, we need to guess at least
one bit of the key. Then simple Gauss elimination can be applied to the system
to deduce the other key bits. So we have described a key recovery attack. This
attack has major consequences for any filter generator, as well as for nonlinear
combining generators, and possibly also others. Basically, any filter generator of
length r where the number of inputs d is smaller than r/2 can be broken very
easily if we have access to a bit more than 2r/2 output symbols.

This leads to an attack as described in Figure 4.

1. Find m weight three multiples of g(x).
2. Calculate the length N we need to observe.
3. for t = 0 . . . N

if zt = 0 and
zt+τ1 = zt+τ2

zt+τ3 = zt+τ4

...
zt+τ2m−1 = zt+τ2m

then assign Ut = 0.
4. Guess at least one ut and then recover u1, u2, . . . by linear algebra.

Fig. 4. Summary of the weight three key recovery attack

5 A Key Recovery Attack on LILI-128

In 2000 a project called NESSIE was initialized. The aim of this project was
to collect a strong portfolio of cryptographic primitives. After a open call for
proposals the submissions were thoroughly evaluated. One proposed candidate
in the stream cipher category was called LILI-128 [3]. The cipher is very simple
and its design is shift register based and uses a key of length 128 bits.

5.1 Description of LILI-128

LILI-128 has the structure of a filter generator. The only difference is that LILI-
128 use an irregular clocking. LILI-128 consists of a first LFSR, called LFSRc,
that via a nonlinear function clocks a second LFSR, called LFSRd, irregularly.
The structured can be viewed in Figure 5. LILI-128 use a key length of 128 bits,
the key is used directly to initialize the two binary LFSRs from left to right. Since
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Fig. 5. Overview of LILI keystream generator

the the first shift register, LFSRc is a polynomial of length 39, the leftmost 39
bits of the key is used to initialize LFSRc. The remaining 89 bits are used in
the same manner to initialize LFSRd. The feedback polynomial for LFSRc is
given by

x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1 .

The Boolean function fc takes two input bits from LFSRc, namely the bit in
stage 12 and the bit in stage 20 of the LFSR. The Boolean function fc is chosen
to be

fc(x12, x20) = 2 · x12 + x20 + 1 . (10)

The output of this function is used to clock LFSRd irregularly. The reason for
using irregular clocking [3], was that regularly clocked LFSRs are vulnerable to
correlation and fast correlation attacks. The output sequence from fc is denoted
c(t) and c(t) ∈ {1, 2, 3, 4}, i.e., LFSRd is clocked at least once and at most four
times between consecutive outputs. On average, LFSRd is clocked c̄ = 2.5 times.

LFSRd is chosen to have a primitive polynomial of length 89 which pro-
duces a maximal-length sequence with a period of Pd = 289 − 1. The feedback
polynomial for LFSRd is

x89 + x83 + x80 + x55 + x53 + x42 + x39 + x + 1 .

Ten bits are taken from LFSRd as input to the the function fd, these bits are
taken from the positions (0,1,2,7,12,20,30,44,65,80) of the LFSR. The function
fd is given as a truth table, see [3].

5.2 The Attack Applied on LILI-128

In this chapter we will give a description of how we turn our new ideas described
in Section 4 into a key recovery attack on LILI-128. The different steps of our
attack can be summarized as follows:
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– First we find a multiple of low weight of the LFSRd, see Section 4.1.
– Secondly, we guess the content of LFSRc. For each guess we perform a

distinguishing attack on the output keystream. If the guessed key is the
correct, we will detect a certain a bias in the output.

– When we have found the correct starting state of LFSRc, we recover the
initial state of LFSRd by just applying some well known attack, e.g. a time-
memory tradeoff attack, or the weight three attack described in this paper.

After calculation of one (or several) multiple(s) of the feedback polynomial
of LFSRd, our first step is to guess the initial state of LFSRc. If we guess the
correct key the clocking of LFSRd is correct and we should be able to detect
some bias in the keystream. To detect this bias we apply our distinguishing attack
on the keystream. If we instead made an incorrect guess, the output sequence
will have properties like a random source. For each guess of LFSRc we need to
make a decision whether this is the correct key or not. LILI-128 uses 10 bits as
input to the Boolean function fd. For a w-weight multiple we get

(zt, zt+τ1 , . . . , zt+τw−1) = (fd(Ut), fd(Ut+τ1), . . . , fd(
w−2∑
i=0

Ut+τi)), (11)

where Ut+τl
is a column vector including the ten inputs to fd. If we consider the

fact that we have an irregularly clocked LFSR, not all of the terms in (4) will
be used to produce an output bit. If so, we cannot use this relation. Thus we
will need more keystream to be able to get the required number of valid vectors
Zt we want. As LFSRd is clocked on average 2.5 times between consecutive
outputs we can expect that we need to increase the keystream by roughly a
factor (2/5)w−1. (This is valid for the case of one weight w parity check. If we
would consider all weight w parity checks up to a certain length, we do not need
to increase the keystream length at all in the case of irregular clocking.)

5.3 Results with Weight Three Multiple

We first use the method described in Section 4.1 on LILI-128 to find a multiple of
weight three. In this case we have the degree of the original feedback r = 89 and
w = 3, hence the degree of the multiple is approximately 244.5. The complexity
to find one multiple of weight three according to [9] is approximately 250. If we
use the distinguishing attack described above on a regularly clocked LFSRd, the
bias is ε = 1.953·10−3 which is greater than we would usually expect. This means
that we will need approximately 1/ε2 = 218 keystream bits to distinguish it from
a stream of random data. We thus need about slightly more than 244.5/2.5 bits
of received sequence. The complexity for the attack is 238 · 218 · 2.52 since we
search through the initial states of LFSRc, each of these states takes 218 bits
to distinguish. To get 218 sample values, we need to use 218 ∗ 2.52 ≈ 221 parity
checks in the case of irregular clocking. The total complexity is about 260.
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5.4 Results with Weight Four Multiple

To find a multiple of weight four we use the same method as before. In this case
we have the degree of the original feedback r = 89 and k = 4, hence the degree
of the multiple is approximately 229.67. The complexity to find this multiple is
265. The bias is calculated to ε = 1.862 · 10−3, see [20] for an explanations on
why weight three and weight four multiples give almost the same bias. We will
need approximately 1/ε2 = 218.14 keystream bits in the case when all parities are
available. We use the same argument as in the 3-weight case for the uncertainty
of positions actually appearing in the output stream and we get that we in total
need 222 bits. Since the degree of the polynomial is 230 we will need about 230/2.5
bits to detect the bias. The complexity for the attack is about 261.

5.5 Results with Weight Five Multiple

To find a multiple of weight five we need a degree of the multiple of approximately
217.8 and it takes about 250 time. With a multiple of weight five the bias decreases
significantly to ε = 7.182 ·10−6 and hence we will need approximately 1/ε2 = 234

available checks. We need in total 240 bits to perform the distinguishing attack.
The complexity for the attack is around 279.

5.6 The Weight Three Attack

We can improve the results above by using several low weight parity checks as
described in Section 4.4. We do not present the results here, but consider only
the modified attack described in Section 4.6. In earlier sections we have stated
that the multiples of weight three start to appear at degree 244.5. If we use about
15 valid parity equations in the weight three attack, the probability that we make
an incorrect decision is low. The total complexity for this attack is roughly 253

since we still guess the contents of LFSRc 238 times on average, and for each
guess we need to test whether the set of equalities zt+τ1 = zt+τ2 , . . . is true. Since
the probability of such an event occurring for the correct key is > 2−10 we run
through a bit more, say 212 such t values. As all but one test correspond to the
random case, the equalities will hold with probability 1/2. Hence we need very
few comparisons on average (say 2). We also need to include the fact that not
all positions are present, a factor 2.52. The required keystream length to find 15
valid weight three parity checks is roughly 247.

5.7 Summary

In Table 2 we summarize our result. Note that the work to synchronize positions
for each guessed LFSRc state was not considered in previous work, but can be
done without increasing the overall complexity by choosing states in the order
they appear in the LFSRc cycle, see also [19].

We compare with the best attacks so far, summarized in Table 3. Here we
have recalculated the complexity of [22] to bit operations.
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Table 2. The sequence length and the complexity for different weights, the basic attack
is described in Section 5.2, and the weight three attack is described in Section 5.6

Sequence length Complexity

Weight three attack 247 253

3 243 260

Basic attack with weight 4 229 261

5 234 279

Table 3. Comparison of our attack with the best known attacks

Attack by Our [6] [22] [5]

Sequence length in bits 247 218 246 260

Attack complexity 253 296 260 “

6 Conclusions and Future Work

We have presented a new simple attack philosophy on filter generators and re-
lated ciphers. We demonstrated the efficiency by attacking LILI-128. We can
recover the key using 247 keystream bits with complexity around 253, an im-
provement compared to previous attacks. The weight three attack is a very
powerful key recovery attack on any filter generator, if enough output symbols
are available. It also applies to any filter generator with a weight three feedback
polynomial, by the squaring method.

It is an open problem to examine whether these techniques can be applied
on stronger designs like LILI-II and word-oriented stream ciphers.

Finally, we mention that related work has independently been done by Mol-
land and Helleseth [20].

References

1. A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-
check equations of weight 4 and 5. In Advances in Cryptology—EUROCRYPT
2000, volume 1807 of Lecture Notes in Computer Science, pages 573–588. Springer-
Verlag, 2000.

2. V. Chepyzhov, T. Johansson, and B. Smeets. A simple algorithm for fast correlation
attacks on stream ciphers. In Fast Software Encryption 2000, volume 1978 of
Lecture Notes in Computer Science, pages 181–195. Springer-Verlag, 2001.



52 H. Englund and T. Johansson

3. A. Clark, E. Dawson, J. Fuller, J. Golic, H-J. Lee, William Millan, S-J. Moon,
and L. Simpson. The LILI-128 keystream generator. In Selected Areas in
Cryptography—SAC 2000, volume 2012 of Lecture Notes in Computer Science.
Springer-Verlag, 2000.

4. D. Coppersmith, S. Halevi, and C.S. Jutla. Cryptanalysis of stream ciphers with
linear masking. In M. Yung, editor, Advances in Cryptology—CRYPTO 2002, vol-
ume 2442 of Lecture Notes in Computer Science, pages 515–532. Springer-Verlag,
2002.

5. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
D. Boneh, editor, Advances in Cryptology—CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 176–194. Springer-Verlag, 2003.

6. N. Courtois and W. Meier. Algebraic attack on strem ciphers with linear feedback.
In E. Biham, editor, Advances in Cryptology—EUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 345–359. Springer-Verlag, 2003.

7. T. Cover and J.A. Thomas. Elements of Information Theory. Wiley series in
Telecommunication. Wiley, 1991.

8. P. Ekdahl and T. Johansson. Distinguishing attacks on SOBER-t16 and SOBER-
t32. In J. Daemen and V. Rijmen, editors, Fast Software Encryption 2002, volume
2365 of Lecture Notes in Computer Science, pages 210–224. Springer-Verlag, 2002.
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10. J.D. Golić. On the security of nonlinear filter generators. In D. Gollman, editor,
Fast Software Encryption’96, volume 1039 of Lecture Notes in Computer Science,
pages 173–188. Springer-Verlag, 1996.
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