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Abstract. This paper investigates the security of Proactive Secret Shar-
ing Schemes. We start with revision of the mobile adversary model of
Herzberg’s et al. imposing less restriction to the adversary. We first in-
vestigate the approach of using commitment to 0 in the renewal phase
in order to renew the player’s shares. In the considered model some well
known computationally secure protocols (which use this approach) turns
out to be vulnerable to a specific attack. We show that this type of attack
is applicable also in the unconditional case. Then we extend the attack
of D’Arco and Stinson to non-symmetric polynomials, which is appli-
cable even in the mobile adversary model of Herzberg et al. Next the
conditions for the security of a proactive scheme using this approach are
shown. We also investigate another approach to add proactivity, namely
using re-sharing instead of commitment to 0. Two protocols using this
approach are described and it is shown that both are not secure against a
mobile adversary. The main contribution of the paper is to show specific
weaknesses, when a mobile adversary is considered.

1 Introduction

Verifiable secret sharing (VSS) schemes are secret sharing schemes (SSSs) deal-
ing with possible misbehaving of the participants. Proactive security was first
suggested by Ostrovsky and Yung in [14]. This concept was applied to the se-
cret sharing schemes by Herzberg et al. in [9]. Basically the idea is that, if the
information stored by the servers in order to share a given secret stays the same
for all lifetime of the system, then an adversary can eventually break into a suf-
ficient number of servers, to learn and destroy the secret. On the other hand,
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let the time is divided into periods. At the beginning of each period the infor-
mation stored by the servers in a given time period changes, while the shared
secret stays the same. Then the adversary probably does not have enough time
to break into necessary number of servers. Moreover, the information he learns
during the period ¢ is useless during the period ¢ + i, for i = 1,2,.... So, he has
to start a new attack from scratch during each time period.

We revise the mobile adversary model from [9], imposing less restriction to
the adversary. In the model of Herzberg’s et al. the players corrupted during an
update phase were considered corrupt for both (adjacent) periods. We propose
a model in which these corrupt players are considered corrupt only in one of the
adjacent periods. As a result in the new model some well known computationally
secure protocols e.g. [9LI0L[8] became vulnerable to a specific attack, which we
call attacks of first type.

The first unconditionally secure proactive VSS was proposed by Stinson and
Wei [16]. In [12] a generalization of the scheme has been given, but D’Arco and
Stinson [2L[3] showed that these two proactive schemes can be broken. We refer to
their attack as of second type. The authors also proposed two new variations of
the schemes to add proactive security to VSS, based on two different approaches,
one using symmetric polynomials and another one using non-symmetric poly-
nomials. However, in [12] an attack on the scheme with symmetric polynomials
were described and slightly modified solution were proposed.

We next show that the first type attack is applicable also in the unconditional
case in the considered model. Then we extend the second type of attack to the
non-symmetric case. Note that the second type attack is successful even in the
mobile adversary model of Herzberg’s et al. We point out that a specific problem
arises in the renewal phase, namely we need a distributed commitment protocol
in which the committer is committed to 0 and the players are able to check that
the commitment is indeed 0 without revealing their auxiliary shares. In order
for this protocol to be secure against a mobile adversary we need to reduce the
number of cheating players. The necessary and sufficient condition for security
are consequently given in Theorem

Last we investigate another approach [5L6] to make an SSS proactively se-
cure, namely using re-sharing protocol instead of commitment to 0 in order to
renew and re-randomize the player’s shares. We describe two protocols using this
approach and show that both are subject to a modification of the second type
attack. Our goal is to show specific weaknesses when mobile adversary is con-
sidered. Note that all unconditionally secure protocols we describe in this paper
remain secure if the adversary is not mobile. Our aim throughout the paper is
to learn more from the systems that fail in order to build systems that succeed.

2  Preliminary

2.1 Notations

Denote the participants (players) of the scheme by P;, 1 <i < n, and the set of
all players by P = {Py,..., P,}. Denote the dealer of the scheme by D. The role
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of the dealer is to share a secret s to all participants in the scheme. For the sake
of simplicity we will consider only the threshold case in this paper. The simplest
access structure I is called (k,n)-threshold if all subsets of players P with at
least k + 1 participants are qualified to reconstruct the secret and any subset
of up to k players are forbidden of doing it. Accordingly we will call a Secret
Sharing Scheme (SSS) (k, n)-threshold if the access structure I" associated with
it is (k, n)-threshold.

2.2  Verifiable Secret Sharing Schemes

Verifiable Secret Sharing (VSS) schemes guarantee the robustness of the sharing
and the detection of corrupt players. Informally, there are n players, some of them
may be corrupt and deviate from the protocol. One of the players, the dealer,
possesses a value s as a secret input. In the first stage, the dealer commits to
a unique value § (no matter what corrupt players may do); moreover, s = s
whenever the dealer is not corrupt. In the second stage, the already committed
value § will be recovered by all good players (no matter what the corrupt players
may do).

It is common to model cheating by considering an adversary A who may cor-
rupt some of the players (up to k players). One can distinguish between passive
and active corruption. Passive corruption means that the adversary obtains the
complete information held by the corrupt players, but the players execute the
protocol correctly. Active corruption means that the adversary takes full con-
trol of the corrupt players. Active corruption is strictly stronger than passive
corruption. Both passive and active adversaries may be static, meaning that the
set of corrupt players is chosen once and for all before the protocol starts, or
adaptive meaning that the adversary can at any time during the protocol choose
to corrupt a new player based on all the information he has at the time, as long
as the total number of corrupt players is less or equal to k.

In the Appendix certain VSS schemes are given. Most of the used computa-
tionally secure schemes are based on Feldman’s or Pedersen’s VSS. We chose to
consider only Feldman’s scheme since it is simpler, but our attacks work against
all these schemes. Also in the Appendix we present unconditionally secure VSS
protocols, one based on symmetric and one based on asymmetric bivariate poly-
nomials. We will refer to the unconditional secure sub-protocols described in the
Detection phase also as “pair-wise” checking, for obvious reasons. These proto-
cols ensure the consistency of the shares. We will refer to h,(0) and g¢,(0) as
“true parts” of the shares since they are used to reconstruct the secret. The
following result is classic for VSS theory.

Theorem 1. A computationally secure (k,n)-threshold VSS exists if and only
if 2k < n. An unconditional secure (k,n)-threshold VSS exists if and only if
3k < n.
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3 Computational Secure Proactive VSS Schemes

The concept of proactive security was introduced by Ostrovsky and Yung in [14]
and applied by Herzberg et al. in [9] to secret sharing schemes. Proactive security
refers to security and availability in the presence of a so-called mobile adversary.
Herzberg et al. [9] have further specialized this notion to robust secret sharing
schemes and have given a detailed efficient proactive secret sharing scheme.

Consider the following problem: if the information stored by the players in
order to share a given secret stays the same for a long period of time (e.g. the
lifetime of the system), then an adversary may gradually break into a sufficient
number of players, to learn and destroy the secret. A way to address this problem
is to divide the time into periods. At the beginning of each period the information
stored by the players in that period changes, while the shared secret stays the
same. The system is set up in such a way that the adversary does not have enough
time to break into a required set of players. Moreover, the information that the
adversary learns during a particular period is useless during later periods. So,
he has to start a new attack from scratch during each time period.

Proactive security provides enhanced protection to long-lived secrets against
a mobile adversary, i.e. the adversary which is allowed to potentially move among
players over time with the limitation that it can only control some subset of play-
ers at a time unit. In fact, proactive security adds protection by “time diffusion”.
Namely, all shares are periodically refreshed. This renders useless the knowledge
obtained by the mobile adversary in the past. Proactive systems also use robust-
ness techniques to enhance availability by tolerating (detecting and correcting)
malicious players. Moreover, it also allows recoveries of the previously corrupt
players, by “removing” the adversary influence and restoring their (correct) in-
formation. This gives the system a self-healing nature. As a result, the system
can tolerate a mobile adversary.

We will follow the settings of the schemes in [I4L[0]. In general they coincide
with the settings of the VSS except that we consider a more powerful adversary
- a mobile one. In situations when the secret value needs to be maintained for a
long period of time, in order to protect the secret against a mobile adversary, the
life time is divided into time periods which are determined by the global clock. At
the end of each time period the players engage in an interactive update protocol.
The update protocol will not reveal the value of the secret. At the beginning of
the next period the players hold new shares of the secret.

We assume that the adversary intruding player P; is “removable”, through
a “reboot” procedure, when the adversary influence is detected. By “rebooting”
the player we mean that the adversary’s influence over this player is stopped and
all player’s information is erased. That is why after this procedure the correct
share should be recovered. It is important to note that in proactive protocols
some information (e.g. the check values, the old share, etc.) should be “erased”.
This operation, to be performed by honest players, is essential for the proactive
security. Not doing so would provide an adversary that attacks a player at a given
time period with information from a previous period that later could enable the
adversary to break the system.
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The following new phases Recovery and Renewal can be distinguished [9],
compare to a VSS scheme. In [9] the update phase (also called update protocol)
is separated from the time frames in a sense that if a player is corrupt during
an update phase the authors consider it corrupt during both (adjacent) periods
to that update phase. We consider the following

MOBILE ADVERSARY MODEL

At the beginning and at the end of the life time of the system we have Share-
Detection respectively Reconstruction. At the end of each time period we have
Detection followed by Recovery after that the next period begins with Renewal.
Together Detection, Recovery and Renewal form an update phase, but we do
not restrict additionally the adversary to corrupt players in this phase as in [9].
In fact the “rebooting” of the corrupt players finishes the current time frame
and new time period begins.

The shares computed in period t for player P, are denoted by using super-
script (t), i.e. s,(f), hgf)(x) or gi(f)( ), t = 0,1,.... Dealer’s polynomials corre-
sponding to these shares are denoted by f®)(z) and f®(x,y). Let us describe
the Recovery and Renewal protocols given in [9].

We first briefly describe the idea how the player’s shares are renewed at
period t = 1,2,.... When the secret s is distributed as a value f*=D(0) = s
of a k degree polynomial £~ (z), we can update this polynomial by adding
it to a k degree random polynomial ¢~V (z), where §¢=1(0) = 0, so that
f®0) = fE(0) + 6¢~Y(0) = s. Thus we can renew the shares f®)(a,) =
FE () + 6% (a,) thanks to the linearity.

Renewal Phase:
1. Each player P, plays the role of the dealer.

2. P, runs the Share-Detection Phase of Feldman's VSS with a random polynomial
bu(z) = Z;?:O 8u,jx? subject to 6,(0) = 0. The following broadcast values are
used A, ; = glui.

3. As a result of this Share-Detection Phase every player P, has a temporary share
6u () if the player P, is not blamed as a corrupt dealer.

4. Let A be the set of uncorrupt players.

5. Each player P, updates its own share by performing

sg,t> = sg,tfl) + Z bu (o).

u€A

6. The new verification values are set A(t) A(t 2 [Tica Au

Note that §¢—V(z) = > wea Ou(r) and that A;t) corresponds to the j-th
coefficient in f®)(z).

Now we describe the idea how the player’s shares are recovered at period
t = 1,2,.... Let the players in a set B are detected as corrupt and thus their
shares should be recovered. Set A = P\ B to be the set of uncorrupt players.
In general an analogous way to that used for re-randomization in the renewal
phase is applied. First all corrupt players P, € B are “rebooted”. In order to
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recover the share of player P, € B every player P, € A share a random k-degree
polynomial &, (x), such that &,(a,) = 0. By adding 6, () to f® () (for u € A)
a new random polynomial §(z) is obtained. Now the players P, € A send their
temporary shares 6(a,) to P,, which allow him to recover the whole polynomial
6(x) and to compute his share 6(ay,).

Theorem 2. [J] A computationally secure (k,n)-threshold proactive VSS exists
if and only if 2k <n.

3.1 The First Type of Attack

Proactive secret sharing [9] and proactive signature schemes [10] were introduced
to cope with mobile adversary who may corrupt more than k servers during the
life time of the secret. In both papers the proactive scheme is build on top of
Feldman’s VSS scheme []. In [§] the authors showed a specific attack against
Feldman’s VSS scheme and proposed a distributed key generation protocol build
on top of Pedersen’s VSS scheme [I5]. The authors in [§] then claimed that their
protocol is secure against a mobile adversary which can corrupt up to k players
in given time frame.

In this section we will illustrate an attack against the renewal phase, in the
schemes of Feldman, Pedersen and Genarro et al. We will show that even a
passive, but mobile adversary can break these schemes in the considered model.
For the sake of simplicity we will illustrate the attack only for Feldman’s scheme.

Suppose that the attacker has corrupted a set B of players in some time frame
t — 1, i.e. he knows their shares f*~1)(a,) for u € B. All players P, € B being
detected as corrupt are “rebooted” and the new period ¢ starts with the renewal
phase, when all shares are updated. Now let the adversary corrupt k players
(not in B) in this period and note that any k corrupt players can uniquely
reconstruct the polynomial §(x) since they have the additional information that
6(0) = 0. Thus the adversary which gets information from k corrupt players
in this period is able to compute the new player’s shares f(t)(au) for u € B.
Note that in this period the players P, € B are no more corrupt. Therefore,
incrementally breaking different sets of players the attacker is able to compute
the secret. Actually the attacker needs to know only one share from the previous
period which together with k player’s shares from the current time frame will
allow him to reconstruct the secret.

Note that the proposed attack applies if the renewal phase is considered as
the beginning of the next period. However a slightly modified attack can be
applied if we consider the renewal phase as the end of the previous period.

Therefore the first solution of Herzberg et al. allows even a passive, mobile
adversary to break the scheme in the considered adversary model. Also most of
the consecutive schemes, we will cite only some of them [9}[7L[T0,[8], are subject
to this kind of attack in the considered adversary model.
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4 Unconditionally Secure Proactive VSS Schemes

The first unconditionally secure proactive VSS was proposed by Stinson and
Wei [16]. A generalization of this scheme to general access structures has later
been given in [T1]. Recently D’Arco and Stinson [2,[3] showed that some existing
unconditionally secure proactive schemes [ITL[16] can be broken.

In [16,2,[3] the authors consider different model in which all subsets of players
with at least k 4+ 1 participants are qualified, but any subset of up to b (b < k)
players is forbidden, where the restriction is due to the fact that some information
is broadcast. So, we will consider (k,n) access structure where up to b (b < k)
players are corrupt and will denote it by (b, k,n). Again we will present only
Recovery and Renewal Phases. Recall that as a result of the previous phases
all players maintain a set A of honest (not corrupt) players and possess shares
Kt )(x) The shares ' (z) are derived from a symmetric polynomial f®(z,v)
by setting y = . Set B =P \ A to be the set of corrupt players.

Recovery Phase:
1. Every corrupt player P, € B is “rebooted”.
2. Every good player P, computes and sends to every corrupt player P, € B a check-
value Cy v = th)(ozv).
3. Upon receiving the data, P, computes hgt)(:c), such that hg,t)(au) = Cu,» holds
for certain subset of honest, qualified players P, € g A C A
4. Player P, sets hq(f)(m) as his share.

) Renewal Phase:
1. In this phase each player P, plays the role of the dealer.

2. Each player P, selects a random symmetric polynomial 6, (z,y) of degree k, subject

to 6.(0,0) = 0.
3. Player P, sends 6y, (z) = 6u(x, ap) to P, for 1 < v < n and broadcasts 6,;0(z) =
bu(z,0).

4. Player P, checks whether 8,,,(0) = 0u;0(cy) and whether 8,,0(0) = 0.

5. If these relations are satisfied, then P, computes and sends to P,, the usual check
value Clyjv,w = dujo (). Otherwise P, broadcasts an accusation to P,,.

6. All players perform the (usual) pair-wise checking with accusations protocol. At
the end they update the set of good players A.

7. Each player P, updates his share by putting

WO (@) =m0 (@) + ) Su (@)

u€A

Set 6(2,y) = Y. ,ca0ul(z,y), then fO(z,y) = fE=V(z,y) + 6(z,y) holds.
Note that in Step 2 of the renewal phase additional information is broadcast,
that we do not have in the standard Share-Detection phase. This information
allows the players (in Step 4) to check that the value committed by P, in Renewal
phase is indeed 0. The latter ensures that the secret will not be changed.



On Proactive Secret Sharing Schemes 315

4.1  The Second Type of Attack

Notice that the attack proposed in the previous section (the first type) is not
applicable in this setting, since this attack is successfully mounted only when the
number of corrupt players b = k. Obviously any k players using their temporary
shares 6, (z) together with the broadcast value 6o(z) are able to compute 6(z, y).
Therefore in case b = k the first type of attack is applicable to the unconditional
model.

But, it turns out that the broadcast information in the renewal phase allows
the attacker to break the system even when b < k. We will demonstrate briefly
the attack against the proactivity, proposed by D’Arco and Stinson [2], which
we call second type attack.

Note that 6,.,(0) = 64:0(,) holds. Suppose that the attacker has corrupted

player P, in some time frame ¢t — 1, i.e. he knows his share hgt_l)(:v). Then
P, being detected as corrupt is “rebooted”. In the renewal phase his share is
updated by

WP (x) = bV (@) + D Su(@)-

u€A

But since 6,,0(x) is public the attacker is able to compute . 4 64:0(0) =
> wea Ouo(aw). Thus he knows the “true part” of the P,’s new share, namely

hg,t)(O) =pii=Y (0) +>_uca Ouw(0). Recall that the knowledge of the “true part”
of the shares is enough for reconstructing the secret. Therefore, incrementally
breaking different sets of players the attacker is able to compute the secret.

4.2  Patching Stinson and Wei’s Scheme

D’Arco and Stinson [2LB] proposed two new variations of the unconditional
schemes to add proactive security to VSS, based on two different approaches, one
using symmetric polynomials and another one using asymmetric polynomials.

However, in [12] an attack on the proactive scheme with symmetric polyno-
mials from [2] were described and a slightly modified scheme was proposed that
solves this problem (see also [3]). For the sake of completeness we will provide
here the solution for the symmetric case. The Recovery Phase is the same as in
Stinson and Wei scheme.

Renewal Phase:
Each player P, plays the role of the dealer.

Each player P, selects a random symmetric polynomial 6, (z,y) of degree k — 1.
Player P, sends 6y, () = 6u(x, ) to P, for 1 < v < n.

Then P, computes and sends to P, the usual check value Cy.p,u0 = Ouso ().
All players perform the (usual) pair-wise checking with accusations protocol. At
the end they update the set of good players A.

6. Each player P, updates his share by putting

ARE I

h (@) = BV (@) + (@ + a) D Sus ().
u€A
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Note that 6(x,y) = >, c4 0u(z,y) is a polynomial of degree k — 1, but since
at most b (b < k) players are corrupt the adversary can not compute 6(x,y).

4.3 D’Arco and Stinson’s Scheme - The Asymmetric Case

In this section we will consider the second solution of D’Arco and Stinson (using

asymmetric polynomials) proposed in [2L[3]. As in the previous section, we will

consider (b, k,n) access structure where up to b (b < k) players are corrupt.
Recall that as a result of the previous phases all players maintain a set A of

“good” (not corrupt) players and have shares hgf)(x) and gl(f)(y). The shares are

derived from an asymmetric polynomial f(*)(z,y) by setting y = a,, for RY) (x)

and by setting = «,, for gi(f) (y). Let B =P \ A be the set of corrupt players.

Recovery Phase:

1. Every corrupt player P, € B is “rebooted”.

2. Every good player P, € A computes and sends to every corrupt player P, € B the
values Cy,» = gq(f)(oeu) and Dy, = hgf)(av).

3. Upon receiving the data, P, computes hgf)(x) and gq(ﬁ(y), such that hq(f)(au) =
Cuv, gf,t)(au) = D, and th)(aq,) = gf,t)(av) hold for certain subset of honest,
qualified players P, € Aand AC A.

4. Player P, sets hq(f)(x) and gét)(y) as his shares.

Renewal Phase:
1. Each player P, plays the role of the dealer.

2. Each player P, selects a random polynomial 6,(z,y) of degree k, subject to
6.4(0,0) = 0.

3. Player P, sends hy;»(z) = 6u(z, @) and gu:v (y) = bu(aw,y) to P, for 1 <v <n
and broadcasts hyo(x) = 6u(z,0).

4. Player P, checks whether gy, (0) = hys0(@w) and hy,0(0) = 0.

5. If the conditions are satisfied, then P, computes and sends to P,, the (usual) check
value Cujv,w = Guso(w ). Otherwise P, broadcasts an accusation to P,,.

6. All players perform the usual pair-wise checking with accusations protocol and
update the set of good players A.

7. Each player P, updates his shares by putting

h (@) = bV (@) + Y hu (@)

u€A

97 W) =gt VW) + D gun(y).
ueA

4.4  The Second Type of Attack - Asymmetric Case

We will show now that the above described protocol has a flaw. The idea is to
apply a similar attack as described in [2,[3] for [I6] (see also the previous section)

but now applied to gq(f)(y) instead of hq(f)(x).
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Suppose that the attacker has corrupted player P, at some time frame ¢ — 1,

i.e. he knows his shares h{/ ™" (z) and g 1)( ). Then P, being detected as
corrupt is “rebooted”. In the renewal phase his share is updated by

hgjt)( ) t 1) +Zhuv gf}t)( ) t 1) +Zgu1)

u€A u€A

Note that gy.,(0) = hy,0(ay) holds. But since hy,o(z) is public the attacker
is able to compute » 4 gu;w(0) = > ,c 4 huo(@y). Thus he knows the “true

part” of the P,’s new share, namely g( )(O) = g,()t_l)(O) + D uea Juw(0). Note
that the knowledge of the “true part” of the share of either g,(y) or h,(z) is
enough for reconstructing the secret (see Remark [ in the Appendix). Also it
does not matter whether hy.o(x) = 6,(2,0) or gu.0(y) = 6,(0,y) is broadcast
since the attack is symmetric. Therefore incrementally breaking different set of
players the attacker is able to compute the secret.

4.5 Conditions for Security of Proactive VSS

Now we are ready to refine the conditions for security of proactive VSS (Theorem
), based on the considered approach to renew player’s shares by sharing 0.

Theorem 3. A computationally secure (b, k,n) (for b < k) proactive VSS exists
if and only if k+b < n. An unconditionally secure (b,k,n) (for b < k) proactive
VSS exists if and only if k + 2b < n.

The first proactive protocols [0L[I0] were applied to threshold access structures
in the cryptographic setting. Since it was quite easy in that case to add the
functionality of proactivity it was a common expectation that it would also be
easy to add this functionality to all existing distributed protocols like VSS. But
it turns out that a specific problem arises, namely in the renewal phase we need a
distributed commitment protocol in which the committer is committed to 0 and
the players are able to check that the commitment is indeed 0 without revealing
their auxiliary shares. As a result of this specific problem several attacks against
the Renewal phase that break the proactive security have been found. Thus the
approach to refresh the shares by sharing 0 as a secret in the renewal phase
seems to have a drawback, i.e. in order for the protocols to be secure against b
cheating players we need to use polynomials of degree k — 1 (instead of k) and
hence we impose the requirement b < k.

Remark 1. The Renewal phase protocol in which 0 is shared as a secret is used
as a stand alone sub-protocol in several other distributed protocols. Note that
the weaknesses we pointed out here to these protocols arise only when mobile
adversary is considered.

For the unconditional case all described attacks work even in the Herzberg
et al. mobile adversary model.
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5 Another Approach to Add Proactivity

Another approach to refresh (renew) the shares of the players is to re-share each
share amongst the participants and then to combine the auxiliary shares in a
special way. This approach was first applied to proactive SSS in [BL[6] divided
there in two sub-protocols called sum-to-poly and poly-to-sum. These two sub-
protocols together achieve the re-sharing goal. In general, every player first shares
his own share (re-sharing) and then computes his new share as a certain linear
combination of the auxiliary shares he receives from the other players, in such a
way that at the end the players have new shares for the same secret as required
in the renewal phase.

The approach of re-sharing the players shares is well known is SSS and it
could be applied to change dynamically the access structure associated with the
scheme. For example let f(x) be k-degree polynomial such that f(0) = s and
let every player P, has a share s, = f(a,,). Then every player P, chooses an (-
degree polynomial g, () such that g, (0) = s, i.e. he re-shares his share sending
auxiliary shares g, () to player P,. A set A of at least k + 1 good players is
determined. For such a set A there exist constants r,, (which depends only on
A, but not on player’s shares) such that > _, 745, = s. Now every player
P, combines the auxiliary shares he has received to compute his new share, i.e.
Su = D owea Twiw(aw). It is easy to check that the new shares correspond to
the same secret s and that the access structure is changed from (k,n) to (¢,n).
Nearly the same protocol works in the computational secure VSS setting, e.g.
Feldman’s VSS.

On the other hand in the unconditionally secure VSS setting re-sharing and
especially changing the access structure is more subtle. We will consider two
protocols, which do not allow changing the access structure, since it is out of
scope. Our goal is to show that the usual ways of doing re-sharing are not secure
against a mobile adversary. First we will describe the straightforward way to
re-share the shares. Then we will show that this protocol is not secure against a
mobile adversary. Second we will describe another (more complex) protocol and
will show that it is also not secure.

5.1 A Simple Re-sharing Protocol

Let us consider the protocol on Fig. [l proposed in [I3]. Every player P, holds
a share hy(x). The shares are derived from a symmetric polynomial f(z,y) by
setting y = . In the renewal phase the new shares are computed by B (x) =
> wea Tu Ouw (). It is not difficult to verify that indeed A. We have new sharing
for the same secret and B. The “symmetry” is not destroyed, i.e. the pair-wise
check A" (o) = hY (cvy) still holds for every u,v. The latter implies that there
exists a symmetric polynomial f*)(z,y) such that f®)(0,0) = s and A (x) =
FO(z, o).

Suppose now that the attacker has corrupted player P, in some time frame
t — 1, i.e. he knows his share hq()tfl)(x). Then P, being detected as corrupt is
“rebooted” and in the renewal phase his share is updated. Note that §,.,(0) =
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Re-sharing Phase:
1. Each player P, re-shares the “true part” of his share, i.e. h,(0), by choosing a

symmetric polynomial 8, (z,y) of degree k such that 6,(x,0) = hy(z).

2. Player P, sends to P, (1 < v < n) temporary shares 8, (x) = 6u(z, ).

3. Each pair of players P, and P,, exchange and then performs the usual pairwise-
check: du;w(tw) = Suzw ().

4. In addition, each P, checks his “true part” of the temporary share

Ouzw(0) = 6u(0, o) = hu(aw) = hy(aw).

The last equality is the pair-wise check in the VSS used to distribute the secret s.
Note that this additional check ensures that player P, really re-shares his share,
i.e., he is an honest “dealer”, and that player P, has a consistent “true part” of
the temporary share.

5. All players agree on a set of “good” players A € I', which were not accused as
corrupt dealers. Let 7, be the constants which correspond to players P, € A.

6. Each player P, computes his new-share as follows:

hy(z) — Z Ty Suzo ().

ucA

Fig. 1. A Simple Re-sharing Protocol [13]

hy () holds. But since the attacker is able to compute ) 47y 0uw(0) =

Y oweaTu pit—Y (), thus he knows the “true part” of the P,’s new share, namely

th’(o) = > ueaTu Ouw(0). Recall that the knowledge of the “true part” of the
shares is enough for reconstructing the secret. Therefore, again incrementally
breaking different sets of players the attacker is able to compute the secret.

5.2 Re-sharing Protocol with Randomization

Another drawback of the protocol described in the previous section (on Fig. [I)
is that the “true parts” of the shares are not re-randomized. That is why in
this section we will avoid this drawback using a commitment transfer protocol
[1] and proposing a kind of commitment sharing protocol [1] (see Fig. ). As in
the previous section we consider the following scenario. Every player P, holds
a share h,(x). The shares are derived from a symmetric polynomial f(z,y) by
setting y = a,,. The protocol is on Fig. [2l Note that again the new shares are
computed by AS” () = > ucaTu Ouw(x). In the same way it is not difficult to
verify that the conditions A and B are satisfied.

Suppose now that the attacker has corrupted player P, in some time frame
t — 1, i.e. he knows his share hq(f_l)(x). Then P, being detected as corrupt is
“rebooted” and in the renewal phase his share is updated. Note that §,.,(0) =

R (o) —gu () and that g, (x) is public. Thus the attacker is able to compute

Y owea Tubuw(0) =D catu (hg,tfl)(ozu) — gu(ay)). He knows the “true part” of
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the P,’s new share, namely hg,t)(O) = D ueaTu Ouw(0). Therefore, again incre-
mentally breaking different sets of players the attacker is able to compute the
secret.

On the negative side we do not know secure perfect proactive VSS protocols,
based on the considered approach to re-share the player’s shares. On the positive
side we can improve the conditions for security of proactive VSS (Theorem []).

Re-sharing Phase:
1. Each player P, re-shares the “true part” of his share, i.e. h,(0), by choosing a

symmetric polynomial 8, (z,y) of degree k.

2. Player P, plays the role of the dealer executing Share-Detection phase.

3. As a result every player P, posses a share 6,.,(z) polynomial of degree k, if P, is
not blamed as a corrupt dealer.

4. In order to prove that the shared secret is indeed h,,(0), P, broadcasts a k-degree
polynomial g, (z) = hu(x)—b6u(z,0). Note that if P, is honest dealer then g, (0) =
0 holds.

5. Each player P, verifies that g, (0) = 0 and that

gu(av) = hu(av) - 5u(av: 0) = hv(au) - 6%“(0)

If these relations are satisfied he accepts his auxiliary share, otherwise an accusation
against P, is broadcast.

6. Let A be the set of uncorrupt players. Let 7, be the constants which correspond
to players P, € A.

7. Each player P, computes his new-share as follows:

ho(2) = D Tu Susw(@).

u€A

Fig. 2. Re-sharing Protocol with Randomization

Theorem 4. A computationally secure (k,n) proactive VSS exists if and only
if 2k < n.

6 A Remark on the General Access Structure Case

We first want to point out that all threshold protocols and attacks described in
this paper can be easily generalized for the general access structure case using
Monotone Span Programs (see [ITL[12]). We choose not to do it just for the sake
of simplicity, now we will only state the corresponding result to Theorem
Denote the set of all subsets of P (i.e. the power set of P) by P(P). The set of
qualified groups is denoted by I" and the set of forbidden groups by A. The set I
is called monotone increasing if for each set A in I also each set containing A is
in I'. Similarly, A is called monotone decreasing, if for each set B in A also each
subset of B is in A. A monotone increasing set I can be efficiently described by
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the set I'™ consisting of the minimal elements (sets) in I, i.e. the elements in
I' for which no proper subset is also in I". Similarly, the set A" consists of the
mazimal elements (sets)in A, i.e. the elements in A for which no proper superset
is also in A. The tuple (I, A) is called an access structure if ' A = (). If the
union of I" and A is equal to P(P) (so, I' is equal to A, the complement of A),
then we say that access structure (I, A) is complete and we denote it just by I
The adversary is characterized by a particular subset A4 of A, which is itself
monotone decreasing structure. The set A, is called adversary structure while
the set A is called privacy structure The players which belong to A are also called
curious and the players which belong to A4 are called corrupt. An (A, Aa)-
adversary is an adversary who can (adaptively) corrupt some players passively
and some players actively, as long as the set A of actively corrupt players and
the set B of passively corrupt players satisfy both A € A4 and (AU B) € A.
For any two monotone decreasing sets Ay, As operation element-wise union @
is defined as follows: Ay W Ay = {A = A; U Ay; Ay € Ay, Ay € Ao}
Now we give a formal definition of a Monotone Span Program.

Definition 1. A Monotone Span Program (MSP) M is a quadruple (F, M, e, ),
where F is a finite field, M is a matriz (with m rows and d < m columns) over F,
Y {1,...,m} — {1,...,n} is a surjective function and € = (1,0,...,0)T € F¢
is called target vector. The size of M is the number m of rows and is denoted

as size(M).

As 1) labels each row with a number ¢ from [1,...,m] that corresponds to player
Pyiy, we can think of each player as being the “owner” of one or more rows.
Let M4 denote the restriction of M to the rows ¢ with i € A. An MSP is said
to compute a (complete) access structure I" when € € im(M?%) if and only if A
is a member of I'. We denote such an access structure by I'(M). We say that
A is accepted by M if and only if A € I', otherwise we say A is rejected by M.
In other words, the players in A can reconstruct the secret precisely if the rows
they own contain in their linear span the target vector of M, and otherwise they
get no information about the secret.

Theorem 5. Let M = (F, M, e,v) be an MSP and M be an m x d matriz. Let
A¢ =T (M) and let A 2 A. Then there exist a perfect proactive VSS scheme
secure against (A, Ax)-adversary if the following conditions are satisfied:

1. rank(Mya) = d, for any group A € I'(M)~; (Recovery)

2. rank(Mp) S d — 1, for any group B € A*; (Renewal)

3. PEA WA WA (VSS)

Note that the Vandermonde matrix is the matrix for MSP in the threshold

case. Hence conditions 1. and 2. imply that A 2 A, i.e. b < k.

7 Conclusions

In this paper we have revised the mobile adversary model of Herzberg et al. and
showed that the first scheme as well as most of the consecutive computationally
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secure schemes are subject to a kind of attack in the new adversary model. We
have shown that several unconditionally secure schemes can be broken when
mobile adversary is considered (even in the Herzberg et al. adversary model),
while the same protocols remain secure in case the adversary is not mobile. In
conclusion we have shown several specific weaknesses. It is an open question
whether we can do better than Theorem Bl (and Theorem (), using for example
the re-sharing approach instead of commitment to 0.
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A Appendix

We first present Feldman’s computational secure VSS protocol.

Sharing Phase:
Let s be a secret from a finite field F = Zp and g is primitive element in F.

Each player P, is associated publicly with different non-zero element o, € F.

1. Dealer D chooses a random polynomial f(z) over F of degree k subject
to the condition f(0) = s.

2. Each share s, is computed by D as s, = f(a,) and then transmitted
secretly to participant P,.

3. Let f(x) = Z?:o ajz?. The dealer broadcasts the values A; = g% for
j=0,1,... k.

Detection Phase:
1. Each player P, verifies his own share by checking the following equation:

g = Hl;:o A?’J“. If the equation does not hold the player broadcasts an
accusation to the dealer.

2. If there are more than k accusations to the dealer then D is blamed
corrupt, and the protocol is stopped.

Reconstruction Phase:
1. Each player P, broadcasts f(a,).

2. Take k + 1 broadcast values for which gf(®) = H?:o A?{" holds.

3. Determine f(z) of degree at most k that passes through these points and
output f(0).
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Next we present two unconditional secure VSS protocols. The first one is
based on symmetric bivariate polynomials.

Sharing Phase:
Let s be a secret from some finite field F. Each player P, is associated publicly

with different non-zero element «,, € F.

1. D chooses a random symmetric polynomial f(x,y) = Z?:o Z?:o a; ;jxtyl
over IF, where ago = s and a; ; = a;;.

2. Then, for each player P,, D sends h,(x) = f(z,a,) to P, through a
private channel.

Detection Phase:
1. Player P, sends a check-value C\, , = hy () to P, for 1 < v <mn, (v # u).

2. Each player P, checks whether h,(ay,) = Cy, for 1 <v <n, (v # u). If
P, finds that this is not true, then P, broadcasts an accusation to P, in
the form (v;u).

3. For each player P,,, who has been accused by a qualified group of play-
ers, the dealer must broadcast his share h,,(x). Then each player again
performs all relevant verifications on the values broadcast by the dealer
and those known to him and accuses D if there is an inconsistency. The
dealer defends himself by broadcasting back the share of the accusing
player. This process continues until no new accusations are made.

4. Each player P, computes the minimum subset A C P, such that any
ordered pair (v;u) € A x A is not broadcast (i.e. is consistent). If |A| >
n — k, then P, accepts his share. Otherwise, P,, accuses the dealer.

5. If there are more than k accusations to the dealer then D is blamed
corrupt, and the protocol is stopped.

Reconstruction Phase:
1. Each player P, € A sends h,(z) to each P, € A.

2. After having received the polynomials h,(z), each P, € A again applies
non-interactive pair-wise checking for all received polynomials, namely:
filling the consistency matrix with a 1 on position (v,w) if h,(ay,) =
ha(ay) holds and with a 0 otherwise. Then P, computes a subset of
consistent shares A C A, Aerl.

3. Next, player P, computes a polynomial f,(0,y), such that f,(0,c,) =
h,(0), for those v with P, € A. Finally, the player P, computes and
outputs s = f,(0,0).
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The second protocol is based on non-symmetric bivariate polynomials.

Sharing Phase:
Let s be a secret from some finite field F. Each player P; is associated publicly

with different non-zero element «; € F.

1. D chooses a random polynomial f(z,y) = Zf:o Z?:o a; jz'y’, where
a;; € Fand app = s.

2. Then, for each player P,, D sends h,(z) = f(x, ) and g, (y) = f(@w,y)
to P, through a private channel.

Detection Phase:
1. Player P, checks whether h,(a,,) = gu(cv,). If this condition is not satis-

fied he broadcasts an accusation on the dealer.

2. Next, player P, sends a check value C,,, = gu(w) to P, for 1 < v < n,
(v #u).

3. Each player P, checks whether h, (o) = Cy, for 1 < v <mn, (v #u). If
P, finds that this is not true, then P, broadcasts an accusation to P, in
the form (v;u).

4. For each player P,, who has been accused by a qualified group of play-
ers, the dealer must broadcast his share h,,(x). Then each player again
performs all relevant verifications on the values broadcast by the dealer
and those known to him and accuses D if there is an inconsistency. The
dealer defends himself by broadcasting back the share of the accusing
player. This process continues until no new accusations are made.

5. Each player P, computes the minimum subset A C P, such that any
ordered pair (v;u) € A x A is not broadcast (i.e. is consistent). If |A| >
n — k, then P, accepts his share. Otherwise, P,, accuses the dealer.

6. If there are more than k accusations to the dealer then D is blamed
corrupt, and the protocol is stopped.

Reconstruction Phase:
1. Each player P, € A sends h,(z) and g,(y) to each P, € A.

2. After having received the polynomials h,(z) and g,(y), each P, € A
again applies non-interactive pair-wise checking for all received polyno-
mials, namely: filling the consistency matrix with a 1 on position (v, w)
if hy(aw) = gw(ay) holds and with a 0 otherwise. Then P, computes a
subset of consistent shares A C A, Aer.

3. Next, P, computes a polynomial f,(0,y), such that f,(0,a,) = h,(0),
for those v with P, € A. Finally, P, computes and outputs s’ = f,(0,0).

Remark 2. Notice that the roles of the polynomials h,(x) and g,(y) are sym-
metric. Indeed, in the reconstruction phase a player P, can also compute a
polynomial f,(x,0), such that f,(co,,0) = ¢,(0) for those v with P, € A and
then he can again compute s’ = f,(0,0).
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