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Abstract. Probabilistic symmetric encryption have already been widely
studied, from a theoretical point of view. Nevertheless, many applications
require length-preserving encryption, to be patched at a minimal cost to
include privacy without modifying the format (e.g. encrypted filesys-
tems). In this paper, we thus consider the security notions for length-
preserving, deterministic and symmetric encryption schemes, also termed
ciphers: semantic security under lunchtime and challenge-adaptive ad-
versaries. We furthermore provide some relations for this notion between
different models of adversaries, and the more classical security notions for
ciphers: pseudo-random permutations (PRP) and super pseudo-random
permutations (SPRP).

1 Introduction

The main goal for any encryption scheme is secrecy: ideally, such a notion means
that a ciphertext should not reveal any information about the plaintext, however
powerful is the adversary. This had been defined under “perfect secrecy” [11], but
also showed to be impossible, unless one uses one-time pad, which is a symmetric
encryption that uses a secret key as long as the messages to be encrypted. That
is, if one wants to use a small symmetric key in order to protect many plaintexts
or a long message, or asymmetric encryption, such perfect secrecy is impossible.

To overcome this theoretical impossibility, but which has no real practical
impact since adversaries are computationally limited, several security notions
have thereafter been defined, and namely the polynomial security [4], a.k.a.
indistinguishability of ciphertexts or semantic security. This intuitively means
that no polynomially bounded adversary can extract any information about the
plaintext, given the ciphertext.

However, in practice, an adversary is not only given the challenge ciphertext
about which plaintext it wants to learn some information. It may also have
access to extra information, such as plaintext-ciphertext pairs. According to the
way these pairs are obtained, several kinds of attacks may be mounted: known
pairs, chosen-plaintext or chosen-ciphertext attacks, in an adaptive way or not.
Furthermore, when considering semantic security, the choice of the plaintexts or
the ciphertexts may be allowed before the adversary has been given the challenge
ciphertext (lunchtime attacks [8]), or unlimited (challenge-adaptive attacks [10]).
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1.1 Some Wordings

In order to make things clear, let us note that all the adversaries considered in
this paper are implicitly adaptive, in the sense that their queries to any oracle
may depend on previous answers, but not necessarily on the challenge cipher-
text they want to break (when such a specific challenge exists, as in the semantic
security game, or the indistinguishability one). To make the distinction between
whether the challenge ciphertext may impact the queries or not, we will use
the terms “adaptive attacks” and “lunchtime attacks” respectively: in lunchtime
attacks the adversary has a full and adaptive access to oracles but before the
challenge ciphertext is known only, while in adaptive attacks this access is un-
limited in time.

1.2 Motivation

Relations between various security notions for symmetric encryption, under dif-
ferent kinds of attacks, have been deeply studied by Bellare et al. [1] and Katz
and Yung [6]. But they were mainly restricted to the probabilistic case. Never-
theless, many applications of encryption require length-preserving schemes. For
compatibility, one may indeed want the message format to be similar, whatever
it is in clear (no privacy) or encrypted (enhanced with privacy). Another famous
application of encryption is for encrypted filesystems [5], which need encryption
schemes able to encipher the sectors of a disk in-place, while sectors have a
fixed length. Length-preserving symmetric encryption thus means deterministic
encryption schemes. In the following we thus focus on length-preserving, deter-
ministic and symmetric encryption schemes, also termed ciphers. However, from
our knowledge, no analysis of ciphers has ever been done so far. The main reason
may be that, while the security goal is privacy, no semantic security definition fits
the deterministic case: it is clear that the straightforward extension of the usual
notion fails when considering deterministic encryption (probabilistic encryption
is a basic requirement for semantic security, when an oracle —encryption and
decryption— is available at least once). As a consequence, other notions are
used: pseudo-random permutation or super pseudo-random permutation prop-
erties [3, 7].

The security notion one usually requires from a block cipher is indeed to
look like perfectly random permutations for random keys (family of pseudo-
random permutations if one just considers chosen-plaintext attacks, or family
of super pseudo-random permutations if decryption queries are also possible).
This is a very strong security notion useful when the block cipher is seen as a all-
purpose primitive (for providing stream ciphers with encryption modes, message
authentication codes, etc.). But for confidentiality, the useful notion is secrecy
only: the view of the ciphertext does not leak any useful information about the
plaintext to a (polynomial) adversary. While the former notion of super pseudo-
random permutations is clearly stronger than the latter, the actual relations
have never been studied.
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1.3 Previous Work

Security notions for encryption have been defined a long time ago, namely with
the definition of polynomial security [4] (a.k.a. semantic security or indistin-
guishability). Bellare et al. [1] studied several variants of the latter, for symmetric
encryption, under the names of find-then-guess, left-or-right and real-or-random,
and relations in the concrete setting. Katz and Yung [6] studied the actual dif-
ference between these various kinds of attacks, against probabilistic symmetric
encryption. Indeed, whereas in the public-key setting chosen-plaintext attack
is the basic scenario for an adversary, since it can encrypt any plaintext of its
choice granted the public key, in the symmetric setting, simply some known
plaintext-ciphertext pairs may give extra information. However, they showed
that an adaptive chosen-plaintext attack (where queries are allowed even after
the challenge ciphertext is known) does not help more than a lunchtime attack
(where oracle accesses are limited up to the reception of the challenge cipher-
text.)

As already noted, the security notion usually required from a block cipher is
the (super) pseudo-randomness, which means to look like perfectly random per-
mutations, for randomly chosen keys. Depending on whether a decryption oracle
is available or not, one indeed considers either the super pseudo-randomness or
the pseudo-randomness only, respectively. The latter notion (the weakest) has
been recently studied by Desai and Miner [2]. They claimed the equivalence be-
tween this notion and the semantic security under lunchtime chosen-plaintext
attacks. Halevy and Rogaway [5] showed the equivalence between the super
pseudo-randomness and the left-or-right indistinguishability, with (almost) un-
limited oracle accesses, for tweakable ciphers.

1.4 Contributions

In this paper, we study the security notions of secrecy for ciphers, namely seman-
tic security (indistinguishability of ciphertext) and (super) pseudo-randomness,
with the existing relations between them.

We first show that the usual indistinguishability, modeled by the find-then-
guess game, (with some natural restrictions) is still equivalent to the natural
definition of semantic security (adapted for symmetric and deterministic en-
cryption).

We then show that some results relative to the probabilistic case remain true
for ciphers. Namely, adaptive chosen-plaintext attacks do not provide significant
advantage against lunchtime attacks. More interestingly, we also consider the
relation between adaptive and lunchtime chosen-ciphertext attacks, and prove
that an adaptive access does not help either in the case where the cipher and its
inverse are already both secure against lunchtime attacks.

Finally, for completeness, we provide relations between the above notions
and the notion of (super) pseudo-random permutations. We namely prove that
indistinguishability against lunchtime adversaries is equivalent to the notion of
super pseudo-random permutations, when the cipher and its inverse have the
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same security level against lunchtime attacks: challenge-adaptive security level
is not necessary. All the proofs and some additional relations, under various
assumptions, are provided in the full version [9].

We believe that these results have concrete applications for practical ciphers,
since the encryption and the decryption algorithms are often very similar, and
thus with a similar security level. For example, when considering DES possibly
using some mode of operation, under the conjecture that a slight modification of
the key schedule (replacement of the left rotation by a right rotation) does not
affect the security against at least lunchtime adversaries, we can show that the
above results hold without any additional assumption (see the full version [9] for
the application.)

2 Security Notions for Encryption

2.1 Symmetric Encryption Schemes

Let us first review the formal definition of a symmetric encryption scheme π =
(k, �, E ,D). It is defined by two algorithms, parameterized by a key k that is
assumed to be uniformly distributed in {0, 1}k. Note that the two main data in
practice are k, the bit-length of the keys, and � the bit-length of the block to be
encrypted:

– the encryption algorithm Ek, which on a message m from the set {0, 1}�, and
random coins r from {0, 1}µ, outputs a ciphertext c in {0, 1}ν ;

– the decryption algorithm Dk, which on a ciphertext c outputs the corre-
sponding plaintext m, or ⊥ if there is no corresponding plaintext.

2.2 Ciphers: Length-Preserving, Deterministic and Symmetric
Encryption Schemes

In the particular case of deterministic encryption, the encryption scheme does
not use any random coin, since it is furthermore length-preserving, any ciphertext
is valid: it is a permutation for each key (and thus µ = 0 and ν = �.) For a given
cipher π = (k, �, E ,D), we can denote the inverse cipher by:

π−1 = (k, �, E−1 = D,D−1 = E).

2.3 Semantic Security

The natural security notion for encryption is the computational variant of perfect
secrecy: the view of the ciphertext does not help to learn any information about
the plaintext. This has been formalized by the notion of semantic security [4],
for which a SEM-adversary A = (A1,A2) plays the following game, in two steps:

– a key k is first uniformly drawn from {0, 1}k;
– Stage 1: A1 outputs a samplable distribution D on the set {0, 1}�, together

with a state information s to be forwarded to the second step of the attack;
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– a message m is drawn from {0, 1}� according to the distribution D (denoted
m

D← {0, 1}�), and a random tape r is uniformly drawn from {0, 1}µ (denoted
r

R← {0, 1}µ) then one computes c = Ek(m; r);
– Stage 2: A2 is given the state information s and the ciphertext c. It outputs

a computable predicate f .

The adversary is said to be successful if f(m) is true. It means that it has
been able to learn at least one bit of information about m, from the ciphertext c.
However it is easy for an adversary to win all the time, by outputting a constant
predicate f . Then we say that A breaks the semantic security if the predicate
f holds on m with probability significantly greater than for another random
plaintext m′ (following the same “a priori” distribution D).

Therefore, we define the advantage Advsem
π (A) of an adversary A, against the

semantic security of an encryption scheme π, by Pr[f(m) = 1] − Pr[f(m′) = 1]
on the distribution space D = {k R← {0, 1}k; (D, s)← A1();m, m′ D← {0, 1}�; r R←
{0, 1}µ; c = Ek(m; r); f ← A2(s, c)}
Definition 1. An encryption scheme π is said to be (ε, t)-semantically secure
if for any adversary A, that runs within time t, Advsem

π (A) ≤ ε.

Adversaries. Adversary A may be given extra information than just the chal-
lenge ciphertext, such as plaintext-ciphertext pairs. According to the way these
pairs are defined, several kinds of attacks may be mounted: known pairs, chosen-
plaintext and/or chosen-ciphertext attacks. Furthermore, the choice of the plain-
texts or the ciphertexts may be allowed before the adversary has been given the
challenge ciphertext only, or unlimited.

Such additional information is modeled by (un)limited access to oracles that
compute encryptions or decryptions. A (t, e1, d1, e2, d2)-adversary A = (AEk,Dk

1 ,

AEk,Dk
2 ) is a 2-stage adversary A where A1 (resp. A2) can ask up to e1 and d1

(resp. e2 and d2) queries to the encryption and decryption oracles Ek and Dk,
with a running time bounded by t. We cover this way the passive adversary,
where e1 = e2 = d1 = d2 = 0 that is denoted P0-C0, or any active adversary
that is denoted PX-CY, according to the oracles access:

X = ’1’ – e1 > 0 but e2 = 0, lunchtime chosen-plaintext (P1-CY);
Y = ’1’ – d1 > 0 but d2 = 0, lunchtime chosen-ciphertext (PX-C1);
X = ’2’ – e2 > 0 whatever e1 is, adaptive chosen-plaintext (P2-CY);
Y = ’2’ – d2 > 0 whatever d1 is, adaptive chosen-ciphertext (PX-C2).

We remind that all the adversaries are adaptive w.r.t. the previous oracle an-
swers, and thus by “adaptive” we mean “challenge-adaptive”, while “lunchtime”
stands for “challenge-non-adaptive”.

Such a PX-CY adversary can play the attack game against semantic security,
but there are natural restrictions in case of oracle access. Let us denote by
ΛE (ΛD resp.) the lists of plaintext-ciphertext (m, c) pairs obtained from the
encryption oracle (and the decryption oracle resp.). The superscript m (resp.
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c) will be used to restrict these lists to the first coordinates (resp. the second
coordinates), which thus leads to two lists of plaintexts Λm

E and Λm
D , and two

lists of ciphertexts Λc
E and Λc

D. The restrictions are thus:

– if the adversary has access to the decryption oracle (that is C1 or C2), it is
restricted not to ask the challenge ciphertext c in the second stage;

– in the deterministic case, if the adversary has access to the encryption oracle
(that is P1 or P2), the support SD of D (the set of plaintexts that have a
non-zero probability in D) must be disjoint with the list of the plaintexts
asked to the encryption oracle at any time, or obtained from the decryption
oracle during the first stage.

The former restriction is the classical one, and the latter one is quite natural
for deterministic encryption. We show later (by proving equivalence with the
find-then-guess notion) that it is a minimal restriction.

Definition 2. An encryption scheme π is said to be (ε, t, e1, d1, e2, d2)-seman-
tically secure if for any (t, e1, d1, e2, d2)-SEM adversary A, that asks at most e1
and d1 (resp. e2 and d2) encryption and decryption queries in the first stage
(resp. in the second stage) within time t, Advsem

π (A) ≤ ε.

2.4 Indistinguishability: Find-Then-Guess

The indistinguishability security notion (also known as find-then-guess [1]) in-
volves a (t, e1, d1, e2, d2)-IND adversary A = (AEk,Dk

1 ,AEk,Dk
2 ) that plays the fol-

lowing game:

– a key k is first uniformly drawn from {0, 1}k;
– Stage 1 (find): AEk,Dk

1 outputs two plaintexts (m0, m1) together with a state
information s;

– a bit b is randomly drawn, and a random tape r is uniformly drawn from
{0, 1}µ then one computes c = Ek(mb; r);

– Stage 2 (guess): AEk,Dk
2 is given the state information s and the ciphertext c.

It outputs its guess b′ for b.

The adversary is said to be successful if b′ = b. It means that it has been
able to distinguish the encryption of m0 from the encryption of m1. However
it is easy for an adversary to win half the time, by simply flipping a random
coin. Then we say that A breaks the find-then-guess security if b′ = b with
probability significantly greater than 1/2. Therefore, we define the advantage of
an adversary A, against the find-then-guess security, or indistinguishability, of
an encryption scheme π, by the following formula:

Advind
π (A) = 2× Pr

[
k R← {0, 1}k; (m0, m1, s)← AEk,Dk

1 (); b R← {0, 1};
r

R← {0, 1}µ; c = Ek(mb; r); b′ ← AEk,Dk
2 (s, c) : b′ = b

]
− 1.

As above, there are also natural restrictions in case of oracle access:
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– if the adversary has access to the decryption oracle (that is C1 or C2), it is
restricted not to ask the challenge ciphertext c in the second stage;

– in the deterministic case, if the adversary has access to the encryption oracle
(that is P1 or P2) it is restricted not to ask m0 or m1 to the encryption oracle
at any time, or to have obtained m0 or m1 from the decryption oracle during
the first stage.

Since we focus this paper on the deterministic case, one can note that the
above restrictions sum up to

m0, m1 �∈ Λm
E c �∈ Λc

D.

Definition 3. An encryption scheme π is said to be (ε, t, e1, d1, e2, d2)-indistin-
guishable if for any (t, e1, d1, e2, d2)-IND adversary A, that asks at most e1 and
d1 (resp. e2 and d2) encryption and decryption queries in the first stage, a.k.a.
the find stage (resp. in the second stage, a.k.a. the guess stage) within time t,
Advind

π (A) ≤ ε.

2.5 Pseudo-Random and Super Pseudo-Random Permutations

Pseudo-Random Permutation. The usual security notion one requires from
a block cipher is to look like perfectly random permutations, for the keys uni-
formly drawn. This notion can be formalized as follows: any adversary accessing
an oracle Ob (O0 corresponds to the perfectly random permutation P —a per-
mutation randomly chosen in the set SP� of the permutations onto {0, 1}�— and
O1 corresponds to an encryption permutation Ek, for a random key k) cannot
guess b (i.e, it cannot distinguish if it accesses the perfectly random permutation
P or the actual encryption algorithm Ek, with a random key):

Advprp
π (A) = 2× Pr

[
k R← {0, 1}k;P R← SP�;O0 = P;O1 = Ek;
b

R← {0, 1}; b′ ← AOb() : b′ = b

]
− 1.

Definition 4. An encryption scheme π is said to be a (ε, t, n)-pseudo-random
permutation, denoted (ε, t, n)-PRP if for any (t, n)-PRP adversary A, that asks
at most n encryption queries within time t, Advprp

π (A) ≤ ε.

Super Pseudo-Random Permutation. The above notion does not take into
account the decryption oracle access. Hence the stronger notion: as above, one
requires that no adversary can distinguish if it accesses the perfectly random
permutation P or the actual cipher. But in this case, the adversary not only
accesses the permutation Ob itself, which is either P or Ek, but also its inverse
O−1

b , which is thus either P−1 or Dk:

Advsprp
π (A) = 2× Pr

⎡
⎢⎣k R← {0, 1}k;P R← SP�;

(O0,O−1
0 ) = (P,P−1); (O1,O−1

1 ) = (Ek,Dk);
b

R← {0, 1}; b′ ← AOb,O−1
b () : b′ = b

⎤
⎥⎦− 1.
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Definition 5. An encryption scheme π is said to be a (ε, t, n, m)-super pseudo-
random permutation, denoted (ε, t, n, m)-SPRP if for any (t, n, m)-SPRP adver-
sary A, that asks at most n encryption queries and m decryption queries within
time t, Advsprp

π (A) ≤ ε.

2.6 Equivalences

For completeness, let us briefly recall a well-known result: indistinguishability
and semantic security are equivalent security notions, if D is required to be
efficiently samplable, and the predicate f to be efficiently computable. From a
more concrete point of view, we can state the following theorem.

Theorem 6. For any encryption scheme π = (k, �, E ,D):

1
2
× Advind

π (t, e1, d1, e2, d2) ≤ Advsem
π (t, e1, d1, e2, d2) ≤ Advind

π (t′, e1, d1, e2, d2),

where t′ ≤ t + 2TD + Tf , if the sampling time for D is bounded by TD and the
time to evaluate predicate f is bounded by Tf .

3 About the Indistinguishability of Ciphers

First, as already remarked, contrary to the probabilistic case, restrictions do not
exist for the challenge only, which should not have been asked to the decryption
oracle, but also for m0 and m1: they should not have been asked to the encryption
oracle either, hence m0, m1 �∈ Λm

E and c �∈ Λc
D.

3.1 Normal Adversary

Moreover, in the following, we restrict any adversary to behave like a normal
adversary, which means that

– each query is asked at most once;
– if m has been asked as an encryption query (or to Ob), with answer c, the

query c will never be asked to the decryption oracle (or to O−1
b ) later;

– if c has been asked as a decryption query (or to O−1
b ), with answer m, the

query m will never be asked to the encryption oracle (or to Ob) later;
– for a (t, n)-PRP adversary (or (t, n, m)-SPRP adversary, respectively), the

adversary makes exactly n queries to Ob (n queries to Ob and m queries to
O−1

b , respectively) .

Proposition 7. Any adversary can be made normal (with just additional look
up in tables.)

3.2 Adaptive Adversaries

Since we consider general adversaries, with possible oracle access, according to
the values e1, d1, e2 and d2, for simpler notations we omit the oracle notation
A = (AEk,Dk

1 ,AEk,Dk
2 ) but simply use A = (A1,A2). Oracle access is now implicit.
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Adaptive Chosen-Plaintext Attacks. First, we review the property showed
by Katz and Yung [6] about probabilistic symmetric encryption schemes. By
the Corollary 10 below, we prove that it still holds for ciphers: an adaptive
access to the encryption oracle after the challenge ciphertext is known does
not significantly increase the power of an adversary which already had adaptive
access to this oracle in the first stage.

Theorem 8. For any cipher π:

Advind
π (t, e1, d1, e2, d2) ≤ (2e2 + 1)× Advind

π (t, e1 + e2, d1 + d2, 0, d2).

Proof. Let A be a (t, e1, e2, d1, d2)-normal adversary against indistinguishability.
We denote by A[ε2] the new adversary B we build using A, by restricting the
interactions A actually has with the world. We indeed filter the queries it asks:
all the queries asked by A1 are forwarded (as well as the answers); however,
only the first ε2 encryption queries are forwarded in the second stage, extra
encryption queries are answered at random, but different from any previously
involved ciphertext (the decryption queries, the ciphertext answers to encryption
queries, and the challenge ciphertext.) We easily see that A[ε2] is normal. Note
that A[e2] = A since in this case all the queries are forwarded, as well as the
answers, whereas A[0] is in fact an adversary who makes no encryption query in
the second stage, since the queries asked by A2 are answered at random, without
querying Ek.
Lemma 9. For any 1 ≤ ε2 ≤ e2:

Advind
π (A[ε2])− Advind

π (A[ε2 − 1]) ≤ 2× Advind
π (t, e1 + e2, d1 + d2, 0, d2).

The proof of this lemma is quite similar but simpler than the proof of the
Lemma 12 below. The full proof of the Lemma 12 is included below. By ap-
plying e2 times this lemma, using a classical hybrid argument, one gets

Advind
π (A) ≤ Advind

π (t, e1, d1, 0, d2) + 2e2 × Advind
π (t, e1 + e2, d1 + d2, 0, d2),

which implies the claimed result. ��
In the particular case where d2 = 0, one gets the following corollary which means
that adaptive chosen-plaintext attacks do not give any additional power to an
adversary.

Corollary 10. For any cipher π:

Advind
π (t, e1, d1, e2, 0) ≤ (2e2 + 1)× Advind

π (t, e1 + e2, d1, 0, 0).

Adaptive Chosen-Plaintext and Chosen-Ciphertext Attacks. This re-
sult was already known. But the particular case of deterministic encryption
admits improvements: under specific assumptions, an adaptive access to both
the encryption oracle and the decryption oracle after the challenge ciphertext
is known does not significantly increase the power of an adversary which al-
ready had access to these oracles in the first stage. Interestingly, the cost of the
reduction is only linear in the (total) number of queries.
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Theorem 11. For any cipher π: Advind
π (t, e1, d1, e2, d2) is upper-bounded by(

2(e2 + d2) + 1
) (

Advind
π (t, e1 + e2, d1 + d2, 0, 0)

+Advind
π−1(t, d1 + d2 − 1, e1 + e2 + 2, 0, 0)

)
.

Proof. Let A be a (t, e1, e2, d1, d2)-normal adversary against indistinguishability.
As above, we denote byA[n] the new adversary B we build usingA, by restricting
the interactions A actually has with the world: all the queries in the first stage
are forwarded, and the answers too, but only the first n queries are answered
correctly in the second stage, while extra queries are answered at random but
different from any message which previously appeared in the same category: if it
is an encryption query, the answer must be different from any previously involved
ciphertext (the decryption queries, the ciphertext answers to encryption queries,
and the challenge); if it is a decryption query, the answer must be different from
any previously involved plaintext (the encryption queries, the plaintext answers
to decryption queries, and the two plaintexts output of A1). We easily see that
A[n] is normal. Note that A[e2 + d2] = A, since there are at most e2 + d2 oracle
queries in the second stage. However, A[0] is a lunchtime adversary, since all
the queries in the second stage are answered at random, without querying any
oracle.

Lemma 12. For any n ≤ e2 +d2: the difference Advind
π (A[n])−Advind

π (A[n−1])
is upper-bounded by

2×
(

Advind
π (t, e1 + e2, d1 + d2, 0, 0) + Advind

π−1(t, d1 + d2 − 1, e1 + e2 + 2, 0, 0)
)

,

where t is the running time of A.

Proof. We construct two adversaries B and C, such that for each successful exe-
cution ofA, one of B or C is successful. The former is a (t, e1+e2, d1+d2, 0, 0)-IND
adversary against π, while the latter is a (t, d1 + d2 − 1, e1 + e2 + 2, 0, 0)-IND
adversary against π−1.

Description of B and C. Our adversaries B and C actually restrict the interac-
tions A has, the same way as A[n − 1] or A[n] would do: B1 and C1 run A1,
forwarding any query/answer to their corresponding encryption/decryption or-
acles1. When A1 outputs (m0, m1), B1 and C1 choose a random bit b and get
c = Ek(mb). This value requires one more encryption query to π for B1, while
it requires one more decryption query to π−1 for C1. Then B1 and C1 run A2(c)
up to the nth query q, still forwarding any query/answer to their correspond-
ing oracles, except that last q one (the nth query of A2). In the case that A2
makes less than n queries, B and C complete randomly their games by choosing
immediately two random plaintexts different from any previous plaintext and
outputting randomly the guesses. The advantages are thus exactly zero in this
case. We thus now turn to the case where such a query q exists:

1 Note that a query to Ek corresponds to an encryption query to π (for B1), while it
corresponds to a decryption query to π−1 (for C1), and similarly for a query to Dk.
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– If q is an encryption query, C completes randomly its game in the above sense
with a random answer since we do not care about it but only about B, which
attacks π as follows. B1 chooses a random plaintext q0 for π, different from
any previous plaintext (encryption queries and decryption answers), and
then outputs (q0, q1 = q). Thereafter, the challenge ciphertext a = Ek(qd)
is produced, for a random bit d. On input a, B2 resumes A2 using a for
answering the query q (note that B2 does not query on q). When A2 outputs
its guess b′ for the bit b, B2 outputs its guess d′, for the bit d, that is defined
by the boolean value of the test b′ = b (in other words, if b′ = b, then d′ = 1,
else d′ = 0).

– If q is a decryption query, B completes randomly its game in the above sense
with a random answer since we do not care about it but only about C, which
attacks π−1 as follows. C1 chooses a random plaintext q0 for π−1 (and thus a
ciphertext for π), different from any previous plaintext for π−1 (Dk queries
and Ek answers) but also from Ek(mb) (C1 must ask this further query —a
decryption query for π−1— to learn this value and avoid the collision), and
then outputs (q0, q1 = q). Thereafter, the challenge a = Dk(qd), a ciphertext
for π−1, is produced for a random bit d. On input a, C2 resumes A2 using
a for answering the query q. When A2 outputs its guess b′ for the bit b, C2
outputs its guess d′, for the bit d, that is defined by the boolean value of the
test b′ = b (in other words, if b′ = b, then d′ = 1, else d′ = 0).

Advantages of B and C. We first check that B and C satisfy the access restriction
to the oracles, which is easy. Indeed, in the case B1 and C1 choose a random
plaintext q0 (when A makes the nth query), they choose it different from any
previous plaintext. Then, we know that B2 and C2 do not ask any other query, the
access restriction to the decryption oracle is then satisfied. Let us now evaluate
the number of queries:

– Algorithm B1 makes at most e1 + e2 encryption queries (all the encryption
queries that A makes up to the nth query q excepted q itself and it must
make one more encryption query to get c = Ek(mb)), and d1 + d2 decryption
queries (all the decryption queries that A makes up to the nth query);

– Algorithm C1 makes at most d1+d2−1 encryption queries (all the decryption
queries that A makes up to the nth query q excepted the query q itself) and
e1 + e2 + 2 decryption queries (all the encryption queries that A makes up
to the nth query, one more query to get c = Ek(mb), and one more query to
learn the value Ek(mb)).

About the running time, no extra computation has to be perform by either B or
C. We thus get the following upper-bounds, where t is the running time of A:

Advind
π (B) ≤ Advind

π (t, e1 + e2, d1 + d2, 0, 0),
Advind

π−1(C) ≤ Advind
π−1(t, d1 + d2 − 1, e1 + e2 + 2, 0, 0).

Let us now analyze the relation between the advantages of B and C, and those
of A[n] and A[n− 1]. We denote by Encq the event in which q is an encryption



About the Security of Ciphers 193

query and we also denote by Advind
π (A |Encq) the conditional advantage of A

providing the event Encq holds, that is

Advind
π (A |Encq) = Pr[A() = 1 | b = 1 ∧ Encq]− Pr[A() = 1 | b = 0 ∧ Encq].

– if q is an encryption query, we have a non trivial adversary B:

Advind
π (B) = 2 Pr[d′ = d]− 1 = Pr[d′ = 1 | d = 1]− Pr[d′ = 1 | d = 0].

When d = 1, the distribution of b and b′ used by B is exactly the same as the
usual attack game for A[n], since a is the correct answer of q1 = q. When
d = 0, the answer of the encryption query q (w.r.t. π) is a, the encryption of
q0 (a random distinct message), and thus a random ciphertext different from
any previously involved ciphertext because of the permutation propriety of
the cipher. The last remark shows that B is identical to A[n−1]. Since d′ = 1
means b′ = b, we have2:

Advind
π (B |Encq) = Pr[d′ = 1 | d = 1 ∧ Encq]− Pr[d′ = 1 | d = 0 ∧ Encq]

=
1
2
·
(
Advind

π (A[n] |Encq)− Advind
π (A[n− 1] |Encq)

)
.

– if q is a decryption query, a similar argument can be provided for the adver-
sary C: when d = 1, C is identical to A[n] and when d = 0, C is identical to
A[n − 1] because the encryption of q0 (a random distinct message) for C is
a random plaintext different from any previous plaintext (included m0 and
m1.) Therefore, we have2:

Advind
π (C |Encq) = Pr[d′ = 1 | d = 1 ∧ Encq]− Pr[d′ = 1 | d = 0 ∧ Encq]

=
1
2
·
(
Advind

π (A[n] |Encq)− Advind
π (A[n− 1] |Encq)

)
.

In the above formula, Encq denotes the negation of event Encq. With the remark
that Advind

π (B |Encq) = 0 and Advind
π (C |Encq) = 0, we have:

Pr[Encq]× Advind
π (B |Encq) = Advind

π (B) ≤ Advind
π (e1 + e2, d1 + d2, 0, 0),

Pr[Encq]× Advind
π (C |Encq) = Advind

π (C) ≤ Advind
π−1(d1 + d2 − 1, e1 + e2 + 2, 0, 0).

Combined with the two above equations, this leads to the expected result. ��
Starting from A = A[e2 + d2], and applying e2 + d2 times the above relation,
one gets:

Advind
π (A) ≤ Advind

π (A[0])+2(e2+d2)
(

Advind
π (t, e1 + e2, d1 + d2, 0, 0)

+Advind
π−1(t, d1 + d2 − 1, e1 + e2 + 2, 0, 0)

)
.

Since A[0] is a (t, e1, d1, 0, 0)-IND adversary, and thus its advantage is bounded
by Advind

π (t, e1 + e2, d1 + d2, 0, 0), one gets the result. ��

2 We remind that Advind
π (A | E) denotes the conditional advantage of any adversary A

providing the event E holds.
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In many ciphers, the encryption algorithm and the decryption algorithm are
similar. Therefore, if the cipher is secure against any lunchtime adversary (IND-
P1-C1), its inverse achieves a similar security level. The above theorem implies
that the cipher is actually secure against any adaptive adversary (IND-P2-C2):
thus, adaptive attacks do not help against symmetric and deterministic encryp-
tion schemes.

4 Indistinguishability and Pseudo-Randomness

In this section, we give a relation between the notion of indistinguishability
defined above and the classical security notions for ciphers, namely to provide
a pseudo-random permutation family or a super pseudo-random permutation
family.

4.1 IND-P1-C0 is Equivalent to Pseudo-Randomness

In [2], Desai and Miner claimed that:

Proposition 13. For any cipher π:

1
2
× Advind

π (t, e1, 0, 0, 0) ≤ Advprp
π (t, e1 + 1) ≤ (e1 + 1)× Advind

π (t, e1 + 1, 0, 0, 0).

We prove this proposition (which has not been published anywhere) in the fol-
lowing two theorems whose results are more general. In fact, the left relation is
a particular case of Theorem 14 where d1 = e2 = d2 = 0, while the right relation
is a particular case of the proof of Theorem 15 where n = e1 + 1 and m = 0.
Since we know that the last query is always an encryption query, the second
term disappears. We just have to build the adversary B.

4.2 IND-P2-C2 is “Almost” Equivalent to Super
Pseudo-Randomness

The first theorem is the intuitive and easy direction:

Theorem 14. For any cipher π:

Advind
π (t, e1, d1, e2, d2) ≤ 2× Advsprp

π (t, e1 + e2 + 1, d1 + d2).

Proof. We are assuming that π is SPRP-secure. We then show that π is also
secure in the sense of IND-P2-C2. Let A to be a (t, e1, d1, e2, d2)-IND adversary
attacking π. We want to show that Advind

π (A) is negligible. To this end, we
describe a SPRP adversary B which attacks π by using A as a sub-program.

Description of BOb,O−1
b . Our adversary B runs A1 by answering its encryp-

tion/decryption queries, which are simply forwarded to the oracles Ob and O−1
b ,

respectively. When A1 outputs (m0, m1), B chooses a random bit d and gets
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yd = Ob(md). B then runs A2(yd), still forwarding all the encryption/decryption
queries of A to the oracles Ob and O−1

b , respectively. When A2 outputs its guess
d′ for the bit d, B outputs its guess b′, for the bit b, that is defined by the boolean
value of the test d′ = d (i.e, if d′ = d, then b′ = 1, else b′ = 0).

Advantage of B. We now consider the relation between the advantage of B and
the advantage of A.

– in the case b = 1, this game is exactly the game in which A plays against
π. The probability that B outputs b′ = 1 is therefore the probability that
d′ = d: (Advind

π (A) + 1)/2.
– in the case b = 0, because A queries a random permutation, and yd = P(md)

is perfectly independent with m0 and m1,A2 therefore gives an answer d′ = d
with probability 1/2. Consequently, B gives b′ = 1 with probability 1/2.

Combining these two cases, in which A is a (t, e1, d1, e2, d2)-IND adversary and
B is a (t, e1 + e2 + 1, d1 + d2)-SPRP adversary, we get the expected result. B
indeed asks e1 + e2 + 1 queries to Ob, because of the extra query to get yd. ��

The other direction is less natural, and much more surprising:

Theorem 15. For any cipher π:

Advsprp
π (t, n, m) ≤ (n + m)×

(
Advind

π (t, n, m, 0, 0) + Advind
π−1(t, m, n, 0, 0)

)
.

Proof. Let A be a (t, n, m)-SPRP normal adversary against π. We denote by
A[η] the hybrid adversary B, built using A by restricting its interactions: the
first η queries to the oracles are answered by Ek (for an encryption query – oracle
O) and by Dk (for a decryption query – oracle O−1), the following queries are
answered by P and P−1 respectively. The goal of the adversary is always to
output a bit b′. We define PI(B) to be the probability that any adversary B gives
the answer b′ = 1. We thus have:

Advsprp
π (A) = Pr[A() = 1 | b = 1]− Pr[A() = 1 | b = 0]

= PI[AEk,Dk() = 1]− Pr[AP,P−1
() = 1] = PI(A[n + m])− PI(A[0]).

Lemma 16. For any η ≤ n + m:

PI(A[η])− PI(A[η − 1]) ≤ Advind
π (n, m, 0, 0) + Advind

π−1(m, n, 0, 0).

This proof is similar to the one of the Lemma 12. The idea is that we con-
struct two adversaries, a (t, n, m, 0, 0)-adversary B against π and a (t, m, n, 0, 0)-
adversary C against π−1 such that one of their advantages is exactly equal to the
left-hand side. These two adversaries run A up to the ηth query of A[η] using Ek
for answering a query to Ob and using Dk for answering a query to Ob. Accord-
ing to the type of the ηth query of A[η] (an encryption query or a decryption
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query), B1 or C1 outputs this query as one of its two chosen messages (the other
is chosen randomly) and then B1 or C1 gives its received challenge as the answer
to the ηth query of A. B2 or C2 then outputs its guess according to the guess of
A without making any query.

Applying n + m times this lemma, we obtain the expected result. ��

From these two theorems, we see that a cipher is a super pseudo-random permu-
tation if and only if itself and its inverse achieve semantic security against any
lunchtime adversary (IND-P1-C1). In other words, under the conjecture that a ci-
pher and its inverse achieve a similar security level secure against any lunchtime
adversary, SPRP and IND-P1-C1 are equivalent with a linear-cost reduction.

The more intuitive equivalence, between IND-P2-C2 and SPRP, can be ob-
tained under a weaker condition: if π−1 is just IND-P1-C0. This result is given
in details in the full version [9].
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