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Abstract. In two previous papers we have investigates the problem of
computing the least common subsumer (lcs) and the most specific con-
cept (msc) for the description logic EL in the presence of terminological
cycles that are interpreted with descriptive semantics, which is the usual
first-order semantics for description logics. In this setting, neither the lcs
nor the msc needs to exist. We were able to characterize the cases in
which the lcs/msc exists, but it was not clear whether this characteriza-
tion yields decidability of the existence problem.
In the present paper, we develop a common graph-theoretic generaliza-
tion of these characterizations, and show that the resulting property is
indeed decidable, thus yielding decidability of the existence of the lcs
and the msc. This is achieved by expressing the property in monadic
second-order logic on infinite trees. We also show that, if it exists, then
the lcs/msc can be computed in polynomial time.

1 Introduction

Description Logics (DLs) [6] are a class of knowledge representation formalisms
in the tradition of semantic networks and frames, which can be used to rep-
resent the terminological knowledge of an application domain in a structured
and formally well-understood way. DL systems provide their users with stan-
dard inference services (like subsumption and instance checking) that deduce
implicit knowledge from the explicitly represented knowledge. More recently,
non-standard inferences [8] were introduced to support building and maintain-
ing large DL knowledge bases. For example, computing the most specific concept
(msc) of an individual and the least common subsumer (lcs) of concepts can be
used in the bottom-up construction of description logic knowledge bases. In-
stead of defining the relevant concepts of an application domain from scratch,
this methodology allows the user to give typical examples of individuals belong-
ing to the concept to be defined. These individuals are then generalized to a
concept by first computing the most specific concept of each individual (i.e.,
the least concept description in the available description language that has this
individual as an instance), and then computing the least common subsumer of
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these concepts (i.e., the least concept description in the available description
language that subsumes all these concepts). The knowledge engineer can then
use the computed concept as a starting point for the concept definition.

The motivation for the graph-theoretic problem solved in the present paper
comes from non-standard inferences in the DL EL, which is rather inexpres-
sive, but nevertheless has significant applications. For example, SNOMED, the
Systematized Nomenclature of Medicine [11, 10] employs EL. Unfortunately, the
most specific concept of a given individual need not exist in EL. For other DLs,
this problem had been overcome by allowing for cyclic concept definitions [7]. In
order to adapt this approach also to EL, the impact on both standard and non-
standard inferences of cyclic definitions in this DL had to be investigated first.
This investigation was carried out in a series of papers [4, 3, 1, 2] that gives an
almost complete picture of the computational properties of the above mentioned
standard and non-standard inferences in EL with cyclic concept definitions1. Re-
garding standard inferences, the subsumption and the instance problem turned
out to be polynomial for both types of semantics. Regarding non-standard infer-
ences, w.r.t. gfp-semantics the lcs and the msc always exist and can be computed
in polynomial time. Descriptive semantics is less well-behaved. In [1] it was shown
that, in general, the lcs need not exist. The paper gave a characterization for the
existence of the lcs, but the question of how to decide this condition remained
open. In [2], analogous results were shown for the msc.

The present paper introduces a common graph-theoretic generalization of
these open problems: the problem whether a so-called two-level graph is of
bounded cycle depth. Then it shows that this problem is decidable by reduc-
ing it to monadic second-order logic on infinite trees [9]. Finally, it shows that, if
a two-level graph is of bounded cycle depth, then its cycle depth is polynomially
bounded by the size of the graph. This implies that the lcs/msc can be computed
in polynomial time, provided that it exists.

Because of the space constraints, we concentrate on the graph-theoretic prob-
lems. The reader is referred to [6] for more information on DLs in general, to
[4, 3, 1, 2] for previous results on EL with cyclic definitions, and to [5] for a long
version of this paper containing full proofs and the connection to the lcs/msc.

2 The Cycle Depth of Two-Level Graphs

In this section, we define the relevant graph-theoretic notions, and relate them
to the problem of computing the lcs and the msc in EL.

For the purpose of this paper, a graph is of the form (V,E, L), where V is a
finite set of nodes, E ⊆ V ×Ne × V is a set of edges labeled by elements of the
finite set Ne, and L is a labelling function that assigns to every node v ∈ V a
subset L(v) of the finite set Nn.

Simulations are binary relations on the nodes of a graph that respect node
labels and edges in the sense defined below.
1 Cyclic definitions in EL can either be interpreted with greatest fixpoint (gfp) or with

descriptive semantics, which is the usual first-order semantics for DLs.
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p1 : u = u0
r1→ u1

r2→ u2
r3→ u3

r4→ · · ·
Z↓ Z↓ Z↓ Z↓

p2 : v = v0
r1→ v1

r2→ v2
r3→ v3

r4→ · · ·

Fig. 1. An infinite (u, v)-simulation chain.

u = u0
r1→ u1

r2→ · · · rn−1→ un−1
rn→ un

Z↓ Z↓ Z↓
v = v0

r1→ v1
r2→ · · · rn−1→ vn−1

Fig. 2. A partial (u, v)-simulation chain.

Definition 1. Let G = (V,E, L) be a graph. The binary relation Z ⊆ V × V is
a simulation on G iff

(S1) (v1, v2) ∈ Z implies L(v1) ⊆ L(v2); and
(S2) if (v1, v2) ∈ Z and (v1, r, v′1) ∈ E, then there exists a node v′2 ∈ V such

that (v′1, v
′
2) ∈ Z and (v2, r, v′2) ∈ E.

Here, we are not interested in arbitrary simulations containing a given pair of
nodes, but in ones that are synchronized in the sense defined below. If (u, v) ∈ Z,
then any infinite path p1 starting with u can be simulated by an infinite path p2

starting with v. We call the pair p1, p2 a (u, v)-simulation chain (see Figure 1).
Given an infinite path p1 starting with u, we construct a simulating path p2 step
by step. The main point is, however, that the decision which node vn to take in
step n should depend only on the partial simulation chain already constructed,
and not on the parts of the path p1 not yet considered.

Definition 2. Let G be a graph, Z a simulation on G, and (u, v) ∈ Z.

(1) A partial (u, v)-simulation chain is of the form depicted in Figure 2. A se-
lection function S for u, v and Z assigns to each partial (u, v)-simulation chain
of this form a node vn such that (vn−1, rn, vn) is an edge in G and (un, vn) ∈ Z.

(2) Given an infinite path u = u0
r1→ u1

r2→ u2
r3→ u3

r4→ · · ·, one can use the
selection function S to construct a simulating path. In this case we say that the
resulting infinite (u, v)-simulation chain is S-selected.

(3) The simulation Z is called (u, v)-synchronized iff there exists a selection
function S for Z such that the following holds: for every infinite S-selected (u, v)-
simulation chain of the form depicted in Figure 1 there exists an i ≥ 0 such that
ui = vi.

As shown in [4, 2], the subsumption and the instance problem in EL can be re-
duced to the problem of deciding whether there exists a synchronized simulation
on a given graph (which is a problem decidable in polynomial time [4]).
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To define the main graph-theoretic problem addressed in this paper, we must
first introduce two-level graphs.

Definition 3. The graph G = (V,E, L) is called two-level graph iff V can be
partitioned into disjoint sets V = V1 ∪ V2 such that (v, r, v′) ∈ E implies v ∈ V1

or v′ ∈ V2. To make this partition explicit, we write two-level graphs as G =
(V1 ∪ V2, E, L).

Intuitively, a two-level graph G = (V1∪V2, E, L) consists of a subgraph G1 on V1,
a subgraph G2 on V2, and possibly additional edges from nodes of G1 to nodes
of G2. Next, we consider graphs obtained from G by unraveling cycles in G1 up
to a certain length.

Definition 4. Let G = (V1 ∪ V2, E, L) be a two-level graph and u ∈ V1. The
k-unraveling of G w.r.t. u is the two-level graph G(k)

u := (V (k)
1 ∪ V2, E

(k), L(k)),
where

V
(k)
1 := {u(k)

0 } ∪ {v(k)
i | v ∈ V1 and 1 ≤ i ≤ k};

E(k) := {(v, r, w) | (v, r, w) ∈ E and v, w ∈ V2} ∪
{(v(k)

i , r, w
(k)
i+1) | (v, r, w) ∈ E and v(k)

i , w
(k)
i+1 ∈ V

(k)
1 } ∪

{(v(k)
i , r, w) | (v, r, w) ∈ E and v(k)

i ∈ V
(k)
1 , w ∈ V2};

L(k)(v) := L(v) if v ∈ V2,

L(k)(v(k)
i ) := L(v) if v(k)

i ∈ V
(k)
1 .

Given two different such unravelings G(k)
u = (V (k)

1 ∪V2, E
(k), L(k)) and G(�)

u =
(V (�)

1 ∪ V2, E
(�), L(�)) of G = (V1 ∪ V2, E, L), their union G(k)

u ∪ G(�)
u is defined in

the obvious way by building the union of the node sets, the edge sets, and the
labeling functions2.

Definition 5. Let G = (V1 ∪ V2, E, L) be a two-level graph, u ∈ V1, and k �=
�. We say that G(�)

u subsumes G(k)
u (G(k)

u � G(�)
u ) iff there is a (u(�)

0 , u
(k)
0 )-

synchronized simulation Z on G(k)
u ∪ G(�)

u such that (u(�)
0 , u

(k)
0 ) ∈ Z.

It is easy to see that � > k implies G(�)
u � G(k)

u (see also Lemma 3 in [2]).
Given a node u ∈ V1 of a two-level graph G = (V1 ∪ V2, E, L), we are interested
in finding an index k such that the subsumption relationship also holds in the
other direction.

Definition 6. Let G = (V1 ∪ V2, E, L) be a two-level graph and u ∈ V1. We say
that G is of bounded cycle depth w.r.t. u iff there is a k ≥ 0 such that G(k)

u � G(�)
u

holds for all � > k. In this case, the minimal such k is called the cycle depth of
G w.r.t. u.

The main decision problem considered in this paper is the following:

2 Note that the two labeling functions agree on V2, shared by G(k)
u and G(�)

u .
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Given: A two-level graph G = (V1 ∪ V2, E, L) and a node u ∈ V1.
Question: Is G of bounded cycle depth w.r.t. u?

Before stating the connection of this problem to the problem of deciding the
existence of the lcs and the msc in EL w.r.t. descriptive semantics, let us consider
three examples.

First, consider the two-level graph G1 on the left-hand side of Figure 3 (where
V1 := {u} and V2 := {v}). This graph is of bounded cycle depth w.r.t. u. In fact,
already k = 0 satisfies Definition 6 since any infinite path starting with u(�)

0 will
eventually lead to v, and thus can be simulated by the path u(0)

0
r→ v

r→ v
r→ · · ·.

Second, consider the two-level graph G2 on the right-hand side of Figure 3
(where V1 := {u} and V2 := {v1, v2}). Though this graph looks quite similar to
G1, it is not of bounded cycle depth. In fact, G(k)

2,u �� G(k+1)
2,u for all k ≥ 0. To see

this, consider the path p1 : u
(k+1)
0

r→ · · · r→ u
(k+1)
k

r→ u
(k+1)
k+1 of length k + 1 in

G(k+1)
2,u . If this path is simulated by a path p2 of length k + 1 in G(k)

2,u, then the
last node of p2 is either v1 or v2. Assume without loss of generality that it is v1.
If we continue the path p1 by an infinite loop through v2, then this infinite path
p′1 can only be simulated in G(k)

2,u by continuing to go through the node v1. Thus,
no synchronization occurs.

Third, the two-level graph G3 depicted in Figure 4 (where V1 = {u1, u2}
and V2 = {v}) is not of bounded cycle depth w.r.t. u1, but shows a somewhat
surprising phenomenon. Here we have G(k)

3,u1
� G(k+1)

3,u1
for all odd numbers k,

but G(k)
3,u1

�� G(k+1)
3,u1

if k is even. First, assume that k is odd. Then there are no

infinite paths in G(k+1)
3,u1

that use the node u(k+1)
1,k+1 since this node does not have

a successor node. As an easy consequence, every infinite path in G(k+1)
3,u1

can be

simulated by “the same” path in G(k)
3,u1

. In addition, the finite path to u(k+1)
1,k+1 can

r
r r

u r
∅∅
v

G1 : u r
∅G2 :

r

v1

∅

v2

∅
r

r

Fig. 3. Two two-level graphs, one of bounded and one of unbounded cycle depth.

r1u1

∅∅
u2

G3 :

r2

r2
v

∅
r2

Fig. 4. Another two-level graph of unbounded cycle depth.
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be simulated by a path in G(k)
3,u1

that ends with v. Consequently, G(k)
3,u1

� G(k+1)
3,u1

for odd k. In contrast, if k is even, then u
(k+1)
1,k has a successor node in G(k+1)

3,u1

(namely u(k+1)
2,k+1) reached by an edge with label r1. Any node reachable from u

(k)
1,0

in G(k)
3,u1

by a path of length k (i.e., u(k)
1,k or v) does not have a successor w.r.t.

r1. Thus, there is a path in G(k+1)
3,u1

that cannot be simulated by a path in G(k)
3,u1

,

which shows that G(k)
3,u1

�� G(k+1)
3,u1

for even k.
The last example shows that, in order to find the number k required by

Definition 6, one cannot simply test subsumption between G(i+1)
u and G(i)

u for
i = 0, 1, 2, . . . until G(i)

u � G(i+1)
u , and then stop with output k = i.

The characterization of the lcs and the msc given in [1] and [2], respectively,
can easily be reformulated in terms of the notions introduced above. As an easy
consequence, the existence problem can be reduced to the main decision problem
introduced in this paper (see [5] for detail).
Proposition 1. The problems of deciding the existence of the lcs (msc) in EL
with descriptive semantics can be reduced in polynomial time to the problem of
deciding whether a two-level graph G is of bounded cycle depth. In addition, if
the cycle depth of G is polynomial in the size of G, then the lcs (msc) can be
computed in polynomial time.

3 Deciding if a Graph Is of Bounded Cycle Depth

Let G = (V1∪V2, E, L) be a two-level graph, and u ∈ V1. We reduce the problem
of deciding whether G is of bounded cycle depth w.r.t. u to the problem of
deciding whether a certain formula φu

G of monadic second-order logic (MSO) on
infinite trees is satisfiable. As shown by Rabin [9], the satisfiability problem for
MSO is decidable. In the following, we assume that the reader is familiar with
MSO on infinite trees (see, e.g., [12] for an introduction). Before we define the
formula φu

G , we describe the intuition underlying this reduction.

Encoding Synchronized Simulations by Infinite Trees. The main idea underlying
our reduction is that all simulation chains starting with a given pair of nodes
of a graph G = (V,E, L) and selected by some selection function (see Defini-
tion 2) can be represented by an infinite tree t. Basically, the nodes of this tree
are labeled with pairs of nodes of G. Assume that the node n of t has label
(u, v). If (u, r1, u1), . . . , (u, rp, up) are all the edges in G starting with u, then
the node n has p successor nodes n1, . . . , np that are respectively labeled with
(u1, v1), . . . , (up, vp), where vi is the result of applying the selection function to
the partial simulation chain determined by the path in t leading to the node n
and the edge (u, ri, ui). Since in MSO one considers trees with a fixed branch-
ing factor, the node n may have some additional dummy successor nodes labeled
with the dummy label �. Note that the simulation relation Z itself is also encoded
in the tree t: it consists of all tuples (u, v) such that (u, v) ∈ V ×V is the label of
a node n of t. Because of the definition of the successor nodes of the nodes in t,
property (S2) in the definition of a simulation relation (Definition 1) is satisfied.
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To ensure that Z also satisfies (S1), it is enough to require L(u) ⊆ L(v) for all
labels (u, v) ∈ V ×V of nodes in t. Given two nodes u, v of G, how can we ensure
that the simulation relation Z encoded by such a tree t contains (u, v) and is
(u, v)-synchronized? To ensure that (u, v) ∈ Z, we require that (u, v) is the label
of the root of t. To ensure synchronization, we must require that on all infinite
paths in the tree t, we encounter a label of the form (v′, v′) or �. This can easily
be expressed in MSO.

What we have said until now can be used to show that the following problem
is decidable: given a graph G and nodes u, v in G, is there a (u, v)-synchronized
simulation Z such that (u, v) ∈ Z. However, decidability of this problem (in poly-
nomial time) was already shown directly in [4] without the need for a reduction
to the (complex) logic MSO.

What we actually want to decide here is whether a given two-level graph
G = (V1 ∪ V2, E, L) is of bounded cycle depth w.r.t. a node u ∈ V1. For this, we
must consider not G itself but rather unravelings G(k)

u and G(�)
u of G. In addition,

we need to express the quantification on the numbers k and � (“there exists a k
such that for all �”) by (second-order) quantifiers in MSO.

Encoding Unravelings G(k)
u and G(�)

u and the Quantification on k and �. Assume
that we have an infinite tree t encoding a (u, u)-synchronized simulation Z on
the two-level graph G, as described above. If (v1, v2) is the label of a node n on
some level i of t, then there are paths of length i in G from u to v1 and from u

to v2, respectively. The first (second) path corresponds to a path in G(�)
u (G(k)

u )
iff i ≤ � or v1 ∈ V2 (i ≤ k or v2 ∈ V2). Thus, the idea could be to introduce two
second-order variables X and Y (with the appropriate quantifier prefix ∃Y.∀X.),
and then ensure that X contains exactly the nodes of t up to some level �, and
Y contains exactly the nodes of t up to some level k. In order to ensure that the
paths in G encoded in the tree t really belong to G(�)

u (when considering the first
component of the node labels) and G(k)

u (when considering the second component
of the node labels), we must require that, for a node n labeled with (v1, v2), we
have X(n) or v1 ∈ V2, and Y (n) or v2 ∈ V2. Unfortunately, sets containing
exactly the nodes of an infinite tree up to some depth bound are not expressible
in MSO3. However, for our purposes it turns out to be sufficient to ensure that
X and Y are finite prefix-closed sets (i.e., if a node n that is not the root node
belongs to one of them, then its predecessor also does). Both “prefix-closed” and
“finite” can easily be expressed in MSO.

The Formal Definition. Let G = (V1 ∪ V2, E, L) be a two-level graph, u ∈ V1,
and assume that b is the maximal number of successors of the nodes in G. To
define the formula φu

G , we consider the infinite tree with branching factor b (i.e.,
we have b successor functions s1, . . . , sb in the signature of MSO). As usual,
we will denote second-order variables (standing for sets of nodes) by upper-case
letters, and first-order variables (standing for nodes) by lower-case letters. The
second-order variables used in the following are
3 Since then one could also express that two nodes are on the same level, which is

know to be inexpressible in MSO [12].
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– the variables X and Y whose function was already explained above;
– variables Q(u1,u2) for (u1, u2) ∈ (V1 ∪ V2) × (V1 ∪ V2) and Q�. The values

of these variables encode the selection function S by encoding all S-selected
simulation chains. Intuitively, a node n of the tree belongs to Q(u1,u2) (Q�)
iff it is labeled with (u1, u2) (�);

– the variable P standing for an infinite path in the tree, which is used to
express the synchronization property.

The formula φu
G is defined as

∃Y.(PrefixClosed(Y ) ∧ Finite(Y ) ∧ ∀X.(PrefixClosed(X) ∧ Finite(X) ⇒ ψu
G)),

where PrefixClosed(.) and Finite(.) are the well-known MSO-formulae expressing
that a set of nodes is prefix-closed and finite, respectively4, and ψu

G consists of
an existential quantifier prefix on the variables Q(u1,u2) for (u1, u2) ∈ (V1∪V2)×
(V1 ∪ V2) and Q�, followed by the conjunction ϑu

G of the following formulae:

– A formula expressing that any node has exactly one label.

∀x.
∨

l1∈(V1∪V2)×(V1∪V2)∪{�}




Ql1(x) ∧

∧

l2∈(V1∪V2)×(V1∪V2)∪{�}
l2 �=l1

¬Ql2(x)





– A formula expressing that the root has label (u, u).

Q(u,u)(root)

– Formulae expressing the function of the sets X and Y . For all (u′, u′′) ∈
V1 × (V1 ∪ V2) the formula

∀x.Q(u′,u′′)(x) ⇒ X(x)

and for all (u′, u′′) ∈ (V1 ∪ V2) × V1 the formula

∀x.Q(u′,u′′)(x) ⇒ Y (x)

– Formulae encoding the requirements on the selection function. Let (u′, u′′) ∈
(V1 ∪ V2) × (V1 ∪ V2), and let (u′, r1, v′1), . . . , (u

′, rp, v′p) be all the edges in
E with source u′. First, for each i, 1 ≤ i ≤ p, we have one formula in the
conjunction. If v′i ∈ V2, then we take the formula

∀x.Q(u′,u′′)(x) ⇒




∨

(u′′,ri,v′′)∈E∧L(v′
i
)⊆L(v′′)

Q(v′
i
,v′′)(si(x))





4 Defining PrefixClosed(.) is a simple exercise. A definition of Finite(.) can be found
in [12].
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Otherwise (i.e., if v′i ∈ V1), then we take the formula

∀x.
(
Q(u′,u′′)(x) ∧X(si(x))

)
⇒




∨

(u′′,ri,v′′)∈E∧L(v′
i
)⊆L(v′′)

Q(v′
i
,v′′)(si(x))





Second, we need formulae that fill in the appropriate dummy nodes:

∀x.Q(u′,u′′)(x) ⇒




j=b∧

j=p+1

Q�(sj(x))





and for all i, 1 ≤ i ≤ p, such that v′i ∈ V1

∀x.
(
Q(u′,u′′)(x) ∧ ¬X(si(x))

)
⇒ Q�(si(x))

– A formula expressing that dummy nodes have only dummy successors.

∀x.Q�(x) ⇒




j=b∧

j=1

Q�(sj(x))





– A formula expressing the synchronization property.

∀P.Path(P ) ⇒ ∃x.P (x) ∧
(
Q�(x) ∨

∨

v∈V2

Q(v,v)(x)

)

where Path(.) is the well-known MSO-formula expressing that a set of nodes
consists of the nodes on an infinite path starting with the root (see [12]).

Lemma 1. Let G = (V1 ∪ V2, E, L) be a two-level graph, and u ∈ V1. Then G is
of bounded cycle depth w.r.t. u iff the MSO-formula φu

G is satisfiable.

Since satisfiability in MSO on infinite trees is decidable, the lemma (whose
proof can be found in [5]) implies decidability of bounded cycle depth.

Theorem 1. The problem of deciding whether a two-level graph is of bounded
cycle depth w.r.t. one of its nodes is decidable.

Unfortunately, the reduction does not give us a polynomial (or even a singly
exponential) complexity bound for this decision problem. This is due to the fact
that the formula φu

G contains several quantifier changes5.
Together with Propositions 1, this theorem implies:

Corollary 1. The existence of the lcs and the msc is decidable in EL with de-
scriptive semantics.
5 In Rabin’s decidability proof based on automata, every negation requires a worst-

case exponential complementation operation, and expressing a universal quantifier
by an existential one (as required by Rabin’s decision procedure) introduces two
negation signs.
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4 A Polynomial Bound on the Cycle Depth

A given two-level graph need not be of bounded cycle depth, but if it is then we
can show that its cycle depth is actually polynomial in the size of the graph.

Theorem 2. Let G = (V1 ∪ V2, E, L) be a two-level graph, u ∈ V1, and let m be
the cardinality of V1 ∪V2. Then G is of bounded cycle depth iff G has cycle depth
d w.r.t. u for some d ≤ m2.

The “if” direction of this theorem is trivial. To prove the “only-if” direction,
assume that k > m2 is such that G(k)

u � G(�)
u for all � > k. To show that the cycle

depth of G w.r.t. u is at most m2, it is sufficient to show that G(m2)
u � G(�)

u holds
for all � > m2. To show this, it is in turn enough to show that G(m2)

u � G(k)
u . The

fact that is enough is a consequence of the following two facts:

1. G(k)
u � G(�)

u is trivially true for all � < k and it holds for all � > k by our
assumption on k.

2. The subsumption relation � is transitive (see [5]).

Thus, the above theorem is proved once we have shown the following lemma.

Lemma 2. Let G = (V1 ∪ V2, E, L) be a two-level graph containing the node
u ∈ V1, let m be the cardinality of V1∪V2, and let k > m2 be such that G(k)

u � G(�)
u

for all � > k. Then we have G(m2)
u � G(k)

u .

Proof. By our assumption on k we know that G(k)
u � G(2k)

u , i.e., there is a
(u(2k)

0 , u
(k)
0 )-synchronized simulation Z such that (u(2k)

0 , u
(k)
0 ) ∈ Z. Let S be

the corresponding selection function. As sketched in the previous section, the
S-selected (u(2k)

0 , u
(k)
0 )-simulation chains can be encoded into an infinite tree.

To be more precise, let b be the maximal number of successors of a node in
G, and let L2k (Lk) be the set of all nodes up to level 2k (level k) of the infinite
tree with branching factor b. Now, G(k)

u � G(2k)
u implies that the formula ψu

G is
satisfiable with X replaced by L2k and Y replaced by Lk. We can use the sets
assigned to the variables Ql for l ∈ (V1∪V2)×(V1∪V2)∪{�} to label the nodes of
the infinite tree with branching factor b by elements of (V1∪V2)×(V1∪V2)∪{�}.
Let t denote the labeled tree obtained this way. Our goal is to transform t into
a new tree t′ that encodes a (u(k)

0 , u
(m2)
0 )-synchronized simulation containing

(u(k)
0 , u

(m2)
0 ). The main properties that this new tree must satisfy are:

1. If the node n of t′ is labeled with an element of (V1 ∪ V2) × V1, then n is of
depth at most m2.

2. If the node n of t′ is labeled with (u′, v′) ∈ V1 × (V1 ∪ V2) and is of depth
smaller than k, then its successor nodes must cover all the successors in G
of u′, i.e., not only the ones in V2, but also the ones in V1.

3. The synchronization property is satisfied, i.e., any infinite path in t′ contains
a node whose label is � or of the form (v′, v′) for some node v′ ∈ V2.
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In order to satisfy the first property, we modify the tree t as follows. Assume
that n is a node of t with label (u′, v′) ∈ (V1 ∪ V2) × V1 that is on a level above
m2. By the definition of t, v′ ∈ V1 implies that n is at most at level k (since all
such nodes must belong to Lk). Now, consider the path in t from the root to
n. Since this path is longer than m2, there are two distinct nodes n1, n2 on this
path such that their labels agree. Assume that n1 comes before n2 on this path.
Then we replace the subtree at node n1 by the subtree at node n2.

We continue this replacement process until all nodes with a label in (V1 ∪
V2) × V1 are on depth at most m2. This process terminates since there were
only finitely many such nodes in t (all of them have depth at most k), and the
replacements do not increase the depth of a node, but strictly decrease the depth
of at least one node with a label in (V1 ∪ V2) × V1. In addition, since all nodes
with a label in (V1 ∪ V2) × V1 are of depth at most k in t, the depth of a given
node can decrease by at most k over the whole replacement process.

Let t′ denote the labeled tree obtained this way. Then we can show that t′

satisfies the properties 1, 2, 3 mentioned above, and thus encodes a (u(k)
0 , u

(m2)
0 )-

synchronized simulation that contains (u(k)
0 , u

(m2)
0 ) (see [5] for details).

One might think that this polynomial bound on the cycle depth of a two-level
graph can be used to show that the problem of deciding whether a graph is of
bounded cycle depth or not can also be decided in polynomial time. However,
this does not appear to be the case. In fact, assume that G = (V1 ∪V2, E, L) is a
two-level graph withm nodes, and let u ∈ V1. Then we know that G is of bounded
cycle depth iff G(m2)

u � G(�)
u for all � > m2. However, testing this directly is still

not possible since we would need to check infinitely many subsumption relation-
ships. We could, of course, also try to use Theorem 2 to modify the reduction
given in Section 3. However, all we would gain by this is that we could avoid the
existential quantification over Y ; the (expensive) universal quantification over
X would still remain.

Together with Propositions 1, Theorem 2 implies:

Corollary 2. The lcs (msc) in EL with descriptive semantics can be computed
in polynomial time, provided that it exists.

5 Conclusion

We have introduced the notion “bounded cycle depth” of so-called two-level
graphs, and have shown that the corresponding decision problem (i.e.: Given
a two-level graph, is it of bounded cycle depth?) is decidable. In addition, we
have shown that the cycle depth of a two-level graph of bounded cycle depth is
polynomial in the size of the graph. These results solve the two main problems
that were left open in the previous papers [1, 2] on the lcs and the msc in EL
with descriptive semantics: the existence of the lcs (msc) is decidable, and if it
exists, then it can be computed in polynomial time.

What remains open is the exact complexity of the decision problems. Though
this may seem unsatisfactory from a theoretical point of view, it is probably not
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very relevant in practice. In fact, independent of whether the lcs of the concepts
A,B defined in a terminology T exists or not, the results in [1] show how to
compute common subsumers Pi (i ≥ 0) of A,B in T . The results of Section 4
imply that we can compute a number k that is polynomial in the size of T such
that A,B in T have an lcs w.r.t. descriptive semantics iff Pk is the lcs. Thus, we
may just dispense with deciding whether the lcs exists, and return Pk. If the lcs
exits, then Pk is the lcs. Otherwise, Pk is a common subsumer, and we can take
it as an approximation of the lcs. The same is true for the msc.

Another interesting question is whether two-level graphs and the problem of
deciding whether they are of bounded cycle depth also has applications in other
areas. Is the cycle depth of a two-level graph an artifact of the characterization
of the lcs and the msc in EL with descriptive semantics given in [1, 2], or is it a
natural notion that is of interest in its own right?

References

1. F. Baader. Computing the least common subsumer in the description logic EL w.r.t.
terminological cycles with descriptive semantics. In Proc. ICCS 2003, Springer
LNAI 2746, 2003.

2. F. Baader. The instance problem and the most specific concept in the description
logic EL w.r.t. terminological cycles with descriptive semantics. In Proc. KI 2003,
Springer LNAI 2821, 2003.

3. F. Baader. Least common subsumers and most specific concepts in a description
logic with existential restrictions and terminological cycles. In Proc. IJCAI 2003,
Morgan Kaufmann, 2003.

4. F. Baader. Terminological cycles in a description logic with existential restrictions.
In Proc. IJCAI 2003, Morgan Kaufmann, 2003.

5. F. Baader. A graph-theoretic generalization of the least common subsumer and
the most specific concept in the description logic EL. LTCS-Report 04-02, TU
Dresden, Germany, 2004. See http://lat.inf.tu-dresden.de/research/reports.html.

6. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P.F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.
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