
Communication Abstractions for Distributed
Systems�

Antoine Beugnard1, Ludger Fiege2, Robert Filman3, Eric Jul4, Salah Sadou5,
and Eiko Yoneki6

1 ENST-Bretagne, Brest, France
antoine.beugnard@enst-bretagne.fr

2 University of Technology, Darmstadt, Germany
fiege@gkec.tu-darmstadt.de

3 RIACS/NASA Ames Research Center, USA
rfilman@mail.arc.nasa.gov

4 University of Copenhagen, Copenhagen, Denmark
eric@diku.dk

5 Université de Bretagne Sud, Vannes, France
sadou@iu-vannes.fr

6 University of Cambridge, UK
eiko.yoneki@cl.cam.ac.uk

Abstract. Communication is the foundation of many systems. Under-
standing communication is a key to building a better understanding of
the interaction of software entities such as objects, components, and as-
pects. This workshop was an opportunity to exchange points of view
on many facets of communication and interaction. The workshop was
divided in two parts: the first dedicated to the presentation of eight po-
sition papers, and the second to the selection and discussion of three
critical topics in the communication abstraction domain.

1 Introduction

Applications have become increasingly distributed. Distribution complicates sys-
tems building and exacerbates problems such as dealing with failure, and pro-
viding security, quality of service, reliability, and manageability.

System development is eased by abstraction and modeling. How should we
model distributed systems? Distributed systems can be understood as communi-
cating objects. To tackle the problems of building distributed systems, it is useful
to focus on the abstract issues of inter-component communication. Examples of
distributed communication mechanisms include messaging systems, remote pro-
cedure calls, distributed objects, peer-to-peer and publish-and-subscribe. Within
any such paradigm, there are many opportunities for specialized and detailed en-
gineering decisions. While mechanisms such as these are a good foundation for

� The title of this report should be referenced as “Report from the ECOOP 2004
Workshop on Communication Abstractions for Distributed Systems”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 67–75, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

mailto:antoine.beugnard@enst-bretagne.fr
mailto:fiege@gkec.tu-darmstadt.de
mailto:rfilman@mail.arc.nasa.gov
mailto:eric@diku.dk
mailto:sadou@iu-vannes.fr
mailto:eiko.yoneki@cl.cam.ac.uk


68 A. Beugnard et al.

dealing with the problems of distribution, there remain many issues about how
to mold these ideas to deal with the problems of real systems.

At the previous ECOOP workshops, we identified some problems (security,
privacy, partial failure, guaranteeing quality of service, run-time evolution, meta-
object protocols, and ordering of events) that are important concerns of any com-
munication abstraction. The goal of this workshop was to contrast and compare
communication abstractions for distributed systems. Participants were asked
to submit a position paper on some aspect of communication abstractions for
distributed systems. To focus the groups discussion, this year we considered
the distributed aerospace information problem, described in the call-for-papers.
Prospective participants were requested to relate their contribution to some facet
of that that problem. The workshop itself consisted of short presentations, dis-
cussion of those presentations, and division into smaller topic study groups.

We received 8 positions papers. All were reviewed by at least two members
of the program committee and 6 were considered bringing an interesting point
of view and deserving a chance to be discussed. We organized the workshop as
follows:

– The morning was dedicated to short, 15 minute presentations of selected pa-
pers. The paper authors entertained questions from the workshop attendees
and provided clarifying responses.

– In the afternoon, we formed two working groups for deeper discussion of
particular issues in communication abstractions. The group reported their
conclusions to the collected workshop at the end of the day. This year, the
chosen topics were “Events” and “Dealing with Errors”

2 Position Papers Abstracts and Discussions

2.1 Communication Abstraction and Verification in Distributed
Scenario Integration [1]

Paper written by Aziz Salah, Rabeb Mizouni and Rachida Dssouli and presented
by A. Salah from the department of C.S. University of Quebec, Montreal (Email:
salah.aziz@uqam.ca)

Successfully modeling and analysing requirements are among the main chal-
lenges to face up when it is time to produce a formal specification for distributed
systems. Scenario approaches are proposed as an alternative to make this pro-
cess easier. They are based on the decomposition of the system behaviour into
intuitive pieces that are distributed scenarios. In this paper, we propose an ap-
proach to detect the unspecified reception errors by the integration of scenarios.
The decision about such property is made possible according to an architectural
communication model, which states the communication abstraction level we are
considering. We synthesize from message sequence char a set of automata, one
per object. Then, we give decision procedure for unspecified reception faults.



Communication Abstractions for Distributed Systems 69

2.2 Realizing Large Scale Distributed Event Style Interactions [2]

Paper written by A Vijay Srinivas, Raghavendra Koti, A Uday Kumar and D
Janakiram and presented by D Janakiram from the Distributed & Object Sys-
tems Lab, Dept. of Computer Science & Engg., Indian Institute of Technology,
Madras, India (Email: fdjram@cs.iitm.ernet.in).

Interactions in distributed object middleware that are based on Remote Pro-
cedure Call (RPC) or Remote Method Invocation (RMI) are fundamentally syn-
chronous in nature. However, asynchronous interactions are better suited for
large scale distributed systems. This paper presents the design and implemen-
tation of an asynchronous event based communication paradigm. Typed events,
fully distributed hierarchical event dispatching as well as causal delivery of events
are the key features that are supported. The paradigm has been realized over
Virat, a wide area shared object space that we have built. Virat uses replica-
tion, caching and distributed services as the main concepts and provides a well
published interface, as well as various relaxed consistency models. This commu-
nication abstraction is especially beneficial to applications such as modernizing
Airspace Systems, where scalable asynchronous event notification is a critical
issue.

2.3 Event Brokering Over Distributed Peer-to-Peer
Environments [3]

Paper written and presented by Eiko Yoneki from University of Cambridge Com-
puterLaboratoryCambridge,UnitedKingdom(Email:eiko.yonekig@cl.cam.ac.uk).

R 

Subscriber 

C 

B 

B: Broker Node 

C: Relay Broker Node 

R: Router (Broker) Node 

C 

Sensor Network 

R B 

 

B 

 

B 

B 

B 
B 

 

Subscriber 

Publisher 

Internet 

Wireless Ad Hoc 

Publisher 

MP2P 

P2P 

R 

Alert 

Event Correlation Service 

Fig. 1. Event Broker Grids over P2P and MP2P Networks

Peer-to-peer (P2P) networks offer a promising paradigm for developing effi-
cient distributed systems. Event-based middleware (EBM) is becoming a core
architectural element in such systems. EBM is based on publish/subscribe com-
munication paradigms that became popular providing asynchronous and multi-
point communication. Most distributed EBM contains three main elements: a
producer who publishes events, a consumer who subscribes his interests to the
system, and an event broker with responsibility to deliver the matching events
to the corresponding consumers. The first event-based middleware systems were



70 A. Beugnard et al.

based on the concept of channel or topic communication. In an attempt to over-
come the limitation on subscription declarations, the content-based model has
been introduced, which allows subscribers to use flexible querying languages to
declare their interests with respect to event contents.

There are diverse network environments from Internet-scale P2P systems
to sensor networks. Event broker grids need to communicate over wired P2P
networks, wireless ad hoc networks (WAHN) or even Web services. In WAHN,
the combination of mobile devices and ad-hoc networks are best managed by
the creation of highly dynamic, self-organizing, mobile P2P systems (MP2P).
Mobile hosts continuously change their physical location and establish peering
relationships with each other based on proximity. Asynchronous communication
is essential to support anonymous coordination of communication in such ubiq-
uitous environments. We previously introduced publish/subscribe semantics in
WAHN [4]. Note that when publish/subscribe becomes powerful in WAHN en-
vironments, all the nodes may not be in pure ad hoc topology, and some nodes
must be connected to the Internet backbone or relay nodes from different net-
work environments. For example, a broker node can act as a gateway from sensor
networks operating data aggregation and distributes them to the other mobile
networks based on its contents (see Fig. 1). Broker nodes that offer event correla-
tion services can coordinate data flow efficiently. Thus, the way publish/subscribe
systems can be constructed based on the data contents, which triggers related
chained actions. Unusual events will be detected by the embedded sensors trig-
gering distribution of subsequent events to the entire system.

This paper presents a vision of an event brokering system over mixed P2P
networks in a multi event broker model. In addition, an event condition action
engine will be integrated that is required to perform event correlation services
within brokers. Event correlation service combines the information collected by
individual resources into higher level information or knowledge. Events reflect
the movement and flow of information. Combining event-condition-action-rules,
complex event composition, data aggregation, and detection with event-based
systems will provide a way to construct large distributed systems providing ab-
straction of communication over mixed network environments.

2.4 Homogenization: A Mechanism for Distributed Processing
Across a Local Area Network [5]

Paper written by Mahmud Shahriar Hossain, M. Muztaba Fuad, Debzani Deb,
Kazi Muhammad Najmul Hasan Khan, and Dr. Md. Mahbubul Alam Joarder.
(Email: shahriar-cse@sust.edu)

Distributed processing across a networked environment suffers from unpre-
dictable behavior of speedup due to heterogeneous nature of the hardware and
software in the remote machines. It is challenging to get a better performance
from a distributed system by distributing task in an intelligent manner such that
the heterogeneous nature of the system do not have any effect on the speedup
ratio. This paper introduces homogenization, a technique that distributes and
balances the workload in such a manner that the user gets the highest speedup



Communication Abstractions for Distributed Systems 71

possible from a distributed environment. Along with providing better perfor-
mance, homogenization is totally transparent to the user and requires no inter-
action with the system.

2.5 Modelling a Distributed Network Security Systems Using
Multi-agents Systems Engineering [6]

Paper written by Gustavo A. Santana Torrellas from Instituto Mexicano del
Petrleo Mantenimiento y Perforacin de Pozos (Email: gasantan@imp.mx)

Recent developments have made it possible to interoperate complex business
applications at much lower costs. Application interoperation, along with busi-
ness process reengineering can result in significant savings by eliminating work
created by disconnected business processes due to isolated business applications.
However, we believe much greater productivity benefits can be achieved by fa-
cilitating timely decision-making, utilizing information from multiple entreprise
perspectives. To stay competitive in this current scenario, it is crucial for organi-
zations to react quickly to changing security factors, such as virus attack, active
intrusion, new technologies, and cost of disaster recovery. Such information se-
curity changes often encourage the creation of new security schemas or security
improvements. Accommodating frequent systems information changes requires
a network security system be more flexible than currently prevalent systems.
Consequently, there has recently been an increasing interest in flexible network
security and disaster recovery systems.

2.6 But What If Things Go Wrong? [7]

Paper written and presented by Johan Fabry from Vrije Universiteit Brussel
(Email: Johan.Fabry@vub.ac.be)

Nowadays, building distributed systems is said to be easy: just use one of the
many distribution frameworks out there, and all the hard stuff will be taken care
of for you. However, when we focus on what to do when things go wrong, i.e.
consider partial failure, we see that examples in the literature will either ignore
these kinds of exceptions, or stop the program, which is clearly inadequate.

A generic and useful failure-handling mechanism for distributed systems ex-
ists in the from of transactions, however a significant issue with transactions is
that they may be rolled back by the transaction manager to break deadlocks.
Again, looking at the literature, we see no thorough treatment of this extra
kind of failure, except for the proposal of a number of Advanced Transaction
Mechanisms (ATM) that handle this. A large number of ATMS can be found in
the literature, and two books have been published about the subject. So, while
ATMS exist to solve these problem, we still see no use of them in commercial
systems, even although this is research from the 80s and 90s. Indeed, we cannot
even find the most well-known model: nested transactions, commercially.

It is our position that the problem with ATMS lies in the difficulty for the
application programmer to specify how to use these mechanisms. Given their
nature, an ATMS needs more information about the transaction than a classical



72 A. Beugnard et al.

system. We think that, since letting the developer specify error-handling code is
already troublesome, going the extra mile to use a ATMS is nigh-on impossible.

Therefore, we should support the application programmer when specifying
these advanced transactions. The programmer should reason about this extra
information at a higher level of abstraction, and can specify the required trans-
actional properties at this higher level, e.g. by using a Domain Specific Language.

We have implemented a first prototype tool, outlined at the workshop, as a
first step toward this goal. Notable functionality is the ability to provide generic
deadlock- or exception-handling strategies for a transaction such as simply retry-
ing the transaction. The question to attendees was what generic deadlock- or
exception-handling strategies that are worthwhile to offer the programmer.

Questions and Answers. A first question was how our generic error-handling
strategies interact with possible recovery work already done by the transaction
monitor. The answer is that we do not really see any interaction, we consider
our work more as a ’second line of defense’ for when the transaction monitor
fails to recover.

The remainder of the discussion was more related to the depth of general-
ized error-handling strategies: we can go very deep, e.g. do investigations of the
program history, and apply AI techniques, which is done by NASA. We do not
aim to cover such complex situations, and imagine everything that can possibly
go wrong. Instead we are looking for general and simple ways in which things
get fixed when something goes wrong, and providing programmer abstractions
for these fixes.

3 Discussions

The second part of the workshop was dedicated to discussions and working
groups. After a brainstorming session where attendees suggested several subjects
of discussion, we selected two of them for further exploration: dealing with errors
and event based communication in distributed systems.

3.1 Dealing with Errors

We started with the point that usually, specifications focus on what should hap-
pen and forget, sometimes voluntarily, the description of what to do when things
go wrong! May be because the former is a single description (that obviously can
be complex in itself) while the latter is very, very open.

In an attempt of modelling what is needed to deal with errors we identified
four tasks:

1. Monitoring. It is essential to be able to observe what happens in the system.
Where is this code? Complex architectures are layered, and monitoring code
is probably scattered. Error management has to be taken into account from
the lowest levels to the application level.



Communication Abstractions for Distributed Systems 73

2. Detecting. From the low-level monitoring data, the system must infer bad
risky situations. Perhaps a dedicated language is needed to define theses
unexpected events. A more elaborate error mechanism may also be able
to express the level of risk and urgency of reaction required for particular
situations.

3. Repairing actions. A set of “atomic” corrective actions is needed. For in-
stance: restart, do something & restart, do something & continue, abort, do
something & abort, abort & do something. Any real system will have to deal
with the problem that these actions are themselves subject to errors.

4. Managing. It’s easy to imagine situations where not just a single alarm is
sounded. Overall, alarms and repairs may occur simultaneously, and rules
and mechanisms are needed to arbitrate among them. Rules are required to
set up a hierarchy of decisions when things go worst and worst . . .

This view of the world relies on the existence of stable system states (recovery
checkpoints) that need to be defined and implemented. However, many errors are
not recoverable. This is especially the case for error situations after interactions
with the external world — one can not unprint something from the printer or
convince the user that he or she didn’t really see something on the screen. The
procedure to correct or undo wrong or bad real-world side-effects is often out
of the scope of the software system. It may require legal or social actions when
possible, and sometimes, is completely impossible — all the kings horses and
men can reassemble neither Humpty Dumpty nor an Ariane V rocket.

3.2 Event-Based Communication in Distributed Systems

This workshop has always included papers whose communication abstract was
based on “events.”

Distributed applications usually exist in heterogeneous environments (sys-
tems and/or languages). Middleware serves to mediate communications. Its goal
is to allow various systems and/or languages to share the same communication
protocol. The complexity of the implementation and the use of this common pro-
tocol depend on the choice of the communication mode. In this working group,
we made a comparison between two modes of communication: event-based and
method-based. In object oriented systems, the communication may require the
following element:

Interface: the type of the recipient of the message;
Data Type: the signature of the called method or the type of forwarded infor-

mation;
Identity: recipient’s address.

The following table shows the needs for each of the two selected modes:

Comm. mode Interface Data type Identity
Event-based No Yes No

Method-Based Yes Yes Yes



74 A. Beugnard et al.

We notice that the communication based on event is less demanding. This
implies less dependency between sender and receiver and thus minimizes the
role of the common communication protocol in a heterogeneous environment.
Indeed, whereas a method-based middleware requires common modes of iden-
tification and data representation, an event-based middleware requires only a
common mode of data representation. We think that in the future the event-
based middleware should be generalized.

How Should We Construct Different Communication Types Using
Events? In this section we visit the various types of communication to imagine
their implementation in an event-based system:

Asynchronism: In contrary to method-based communication, event-based com-
munication is naturally asynchronous. Objects send events and react to others.
No bond is necessary between the sent events and the those received.

Synchronism: On the other hand, the event-based communication requires
a mechanism to carry out an equivalent to synchronous calls. An example of
such mechanism would be the acknowledgement of receipt, which is sent by the
receiver at the end of its task. This defines the termination of the event sender’s
waiting . The acknowledgement of receipt is an event which contains an identifier
provided first by the event sender.

Transaction: In this mode of communication, the receiver must deal with a
complete succession of calls and respect its order. This mechanism may be pro-
duced by the concept of composite events. A composite event is a structured set
of events (a list for example). The structure defines the transaction’s order.

Call with Return: As in the case of synchronous calls, to carry out calls with
return, it will be necessary to add an identifier to the event in order to associate
it with the event representing its result.

Broadcast: Broadcast corresponds to the sending of public events. Any object
interested by those events can react.

Multicast/Unicast: This mechanism requires the concept of private event. In
the case of method-based calls, it is often the sender object which determines the
subset of the concerned objects by its call. To approach this mechanism, we can
imagine to add, to the event management system, the concept of filters. On one
side the sender gives a filter with its event and on the other side, the receivers
can choose filters during the subscribe to a type of events.

How Does This Help? The principal characteristic of the event-based systems
is the decoupling between the objects participating in the communication. This
characteristic facilitates the implementation of mobile computing and the peer-
to-peer network environments. There is a series of workshops on the topic of
distributed event-based systems and the last one is co-localized with ICSE’04
(http://serl.cs.colorado.edu/ carzanig/debs04/ ).



Communication Abstractions for Distributed Systems 75

4 Workshop Conclusions

A primary goal of this workshop is to enable the sharing of concepts and tech-
nologies among various communities. It is clear to us that a critical element for
this goal is creating a shared understanding and categorization of communication
mechanisms. This is a long-term goal. In this year’s workshop, we have made
progress on clarifying the nature of event-based communication, and, more inno-
vatively for this workshop series, began to address the issue of dealing with errors
in communications. This latter issue is clearly critical to the development of real
systems and argues for the development of the right abstractions to support that
real system development.

All previous workshop position papers are available via the CADS wiki site
http://wiki.enstb.org/cads/.

References

[1] Aziz Salah, Rabeb Mizouni, and Rachida Dssouli: Communication abstraction and
verification in distributed scenario integration.
http://bscw.enst-bretagne.fr/pub/bscw.cgi/0/2237034, July 2004.

[2] A. Vijay Srinivas, Raghavendra Koti, A. Uday Kumar, and D. Janakiram: Realizing
large scale distributed event style interactions.
http://bscw.enst-bretagne.fr/pub/bscw.cgi/0/2237034, July 2004.

[3] Eiko Yoneki: Event brokering over distributed peer-to-peer environments.
http://bscw.enst-bretagne.fr/pub/bscw.cgi/0/2237034, July 2004.

[4] E. Yoneki and J. Bacon: Content-based routing with on-demand multicast. In:
Proc. 23rd ICDCS Workshop - WWAN, March 2004.

[5] Mahmud Shahriar Hossain, M. Muztaba Fuad, Debzani Deb, Kazi Muhammad
Najmul Hasan Khan, and Dr. Md. Mahbubul Alam Joarder: Homogenization: A
mechanism for distributed processing across a local area network.
http://bscw.enst-bretagne.fr/pub/bscw.cgi/0/2237034, July 2004.

[6] Gustavo A. Santana Torrellas: Modelling a distributed network security systems
using multi-agents systems engineering.
http://bscw.enst-bretagne.fr/pub/bscw.cgi/0/2237034, July 2004.

[7] Johan Fabry: But what if things go wrong?
http://bscw.enst-bretagne.fr/pub/bscw.cgi/0/2237034, July 2004.


	Introduction
	Position Papers Abstracts and Discussions
	Communication Abstraction and Verification in Distributed Scenario Integration [1]
	Realizing Large Scale Distributed Event Style Interactions [2]
	Event Brokering Over Distributed Peer-to-Peer Environments [3]
	Homogenization: A Mechanism for Distributed Processing Across a Local Area Network [5]
	Modelling a Distributed Network Security Systems Using Multi-agents Systems Engineering [6]
	But What If Things Go Wrong? [7]

	Discussions
	Dealing with Errors
	Event-Based Communication in Distributed Systems

	Workshop Conclusions



