
2nd Workshop on Object-Oriented Language
Engineering for the Post-Java Era:

Back to Dynamicity�

Sebastián González1, Wolfgang De Meuter2, Pascal Costanza3,
Stéphane Ducasse4, Richard Gabriel5, and Theo D’Hondt2

1 Département d’Ingénierie Informatique, Université catholique de Louvain – Belgium
2 Programming Technology Lab, Vrije Universiteit Brussel – Belgium

3 Institute of Computer Science III, Universität Bonn – Germany
4 Software Composition Group, Universität Bern – Switzerland

5 Sun Microsystems – USA

Abstract. This report covers the activities of the 2nd workshop on
“Object-Oriented Language Engineering for the Post-Java Era”. We de-
scribe the motivation that led to the organisation of a second edition of
the workshop. Relevant organisational aspects are mentioned. The main
part of the report consists of a summary of Dave Thomas’s invited talk,
and a recount of the presentations by the authors of position papers.
Comments given along the way by the participants are included. Finally,
some pointers to related work and events are given.

1 Introduction

As stated in the workshop’s first edition, the advent of Java has always been
perceived as a major breakthrough in the realm of object-oriented languages.
And to some extent it was: it turned academic features like interfaces, garbage-
collection and meta-programming into technologies generally accepted by indus-
try. Nevertheless Java also acted as a brake especially to academic language de-
sign research. Whereas pre-Java ECOOP’s and OOPSLA’s traditionally featured
several tracks with a plethora of research results in language design, more recent
versions of these conferences show far less of these. Those results that do make
it to the proceedings very often are formulated as extensions of Java. Hence,
they necessarily follow the Java doctrine: statically typed, single-inheritance,
class-based languages with interfaces and exception handling.

Recent academic developments seem to indicate that a new generation of
application domains is emerging for whose development the languages adhering
to this doctrine will probably no longer be sufficient. These application domains

� The title of this report should be referenced as “Report from the ECOOP 2004 2nd

Workshop on Object-Oriented Language Engineering for the Post-Java Era: Back to
Dynamicity”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 49–61, 2004.
c©Springer-Verlag Berlin Heidelberg 2004



50 S. González et al.

have recently been grouped together under the name of Ambient Intelligence
(AmI). The visionary idea of AmI is that in the future, everybody will be sur-
rounded by a dynamically defined processor cloud of which the applications are
expected to cooperate smoothly. AmI was put forward as one of the major strate-
gic research themes by the IST Advisory Group of the European Commission
for the financing structure of the 6th Framework of the European Union [1, 2].
Meanwhile, the first European symposium on AmI has recently been organised
and institutions like the MIT and Phillips have published their visions on the
matter. Currently, AmI seems to group previously “unrelated” fields such as
context dependency, domotics, ubiquitous/pervasive computing, mobility, intel-
ligent buildings and wearable hardware. Early experiments in these fields already
seem to indicate that their full development will need a new generation of pro-
gramming languages that have dedicated provisions to deal with highly dynamic
hardware and software constellations. As such, AmI will open up a new “market”
for a new generation of programming languages which are designed to write soft-
ware that is expected to operate in extremely dynamic hardware and software
configurations.

The big success of the workshop’s first edition at ECOOP 2003 [3] confirmed
the feeling that many researchers in the object-oriented community are still in-
terested in object-oriented language design, and moreover, many are interested
in languages that move away from Java’s main design lines. The goal of this
second edition of the workshop was to address object-oriented languages that
diverge from Java’s doctrine but support a much more dynamic way of con-
structing software. In the near future, this dynamicity will be required in order
to construct software that is highly context-dependent due to the mobility of
both the software itself and its users, as is the case in AmI. There is a new
future for languages based on Lisp, CLOS, Scheme, Self, Smalltalk and loads of
less well-known academic languages. This new generation of programming lan-
guages will exhibit a mix of new and old ideas. Many position papers submitted
to the workshop support this view.

2 Organisation

This section summarises some organisative aspects of the workshop and gives
information about attendance.

The submitted position papers, the invited talk slides, and complementary
information about the workshop can be found at the workshop website:
http://prog.vub.ac.be/∼wdmeuter/PostJava04/

2.1 Call for Contributions

The call for contributions invited researchers to submit a position paper or an es-
say (6 pages maximum) about new language features or about existing ones that
cover solutions to problems that are currently getting relevant in mainstream
languages. Provocative and visionary contributions were especially encouraged.



2nd Workshop on Object-Oriented Language Engineering 51

Dynamicity as required by the AmI vision was selected as the common theme
of the workshop, i.e. a new context in which we can talk about the object-oriented
language features of the future. Hence the “Back to Dynamicity” part in the
workshop’s title. Topics of interest were formulated as follows:

– agent languages,
– distributed languages,
– actors, active objects,
– delegation,
– mixins,
– prototypes,
– multi-paradigm programming,
– meta-programming and reflection,
– mobile languages,
– (distributed/mobile) virtual machines,
– other exotic dynamic features which could be categorised as OO.

2.2 Organisers

Wolfgang De Meuter
wdmeuter@vub.ac.be

Pascal Costanza
costanza@web.de

Stéphane Ducasse
ducasse@iam.unibe.ch

Richard Gabriel
rpg@dreamsongs.com

Theo D’Hondt
tjdhondt@vub.ac.be

The affiliations of the organisers are mentioned in the title of this report.

The organisers asked the first author to write this report (even though he is
not an organiser himself), since he played the role of reporter of the workshop.
The cooperation was natural given that the workshop proposal was actually a
merge of two earlier proposals, one of which was co-submitted by the first author.

2.3 Format

The workshop started with an invited talk by Dave Thomas (see section 3.1).
The presentation of each position paper followed, in 30-minute slots including
questions. The more “technical” papers were first in the lineup. The more “philo-
sophical” papers were presented after lunch. A plenary discussion session was
held afterwards, and the workshop finished with a short wrap-up / evaluation
part.

2.4 Attendance

A total of 9 position papers were received. PDF files can be found at the work-
shop website (see section 4). Of those 9 submissions, 7 authors attended the
workshop. Other 13 attendees were present for a total of 20 people:

1. Christopher Anderson, Imperial College London – UK
2. Marie Beurton-Aimar, University of Bordeaux – France



52 S. González et al.

3. Ilia Bider, Ibisoft – Sweden
4. Alex Buckley, Imperial College London – UK
5. Raphaël Collet, UCL – Belgium
6. Marc Conrad, University of Luton – UK
7. Pascal Costanza, University of Bonn – Germany
8. Wolfgang De Meuter, VUB – Belgium
9. Theo D’Hondt, VUB – Belgium

10. Jean-François Gélinas, UQTR – Canada
11. Sebastián González, UCL – Belgium
12. Christian Heinlein, University of Ulm – Germany
13. Jonne Itkonen, University of Jyväskylä – Finland
14. Erik Meijer, Microsoft – USA
15. Sven-Olof Nyström, Uppsala University – Sweden
16. Maximilian Störzer, University of Passau – Germany
17. Eric Tanter, University of Chile – Chile
18. Dave Thomas, Bedarra Research Labs – Canada
19. Richard Torkar, BTH – Sweden
20. Jianguo Zhou, University of Leicester – UK

3 Presentations

This section accounts for the workshop presentations. Two main lines were ob-
served in the contributions this year: concurrency and dynamic system adaption.
Some position papers were in one extreme (e.g. concurrency in Erlang) or in the
other (e.g. object shadowing), but most of them are influenced by both forces.
An approximate classification of the presentations (including Dave Thomas’s
invited talk) could be:

Concurrency Concurrency in Erlang (section 3.3)
��

��

Laziness and Declarative Concurrency (section 3.2)
First Class Execution (section 3.1)

Who is Agent: Object or Relation? (section 3.8)
APPLE (section 3.4)

Failure of Class-Based Languages (section 3.7)
Dynamic vs. Static Typing (section 3.6)

Dynamic system adaption Object Shadowing (section 3.5)

In the reminder of this section, we hope to give a complementary view of the
position papers by describing the presentations rather than the papers them-
selves. The highlights of the discussions by the participants are marked with a
[Discussion]. label so that they can be easily spotted, although we don’t aim
at covering each and every nit. The presentation order here is the same as in the
workshop.



2nd Workshop on Object-Oriented Language Engineering 53

3.1 Invited Talk: First Class Execution – Messages and Actors
Dave Thomas and Brian Barry, Bedarra Research Labs

In his invited talk, Dave Thomas advocated the reification of messages in object-
based programming languages. Current commercial OO languages lack support
for first class execution (unlike Beta, ABCL etc.). One symptom is that messages
have no meta-messages, while classes do have meta-classes. A second one is
that message dispatch (evaluation) is usually “hidden”, i.e. performed using
internal machinery hidden in the compiler or virtual machine. Ideally, messages
should have first class status. Many applications are considerably simpler if the
viewed from the perspective of the message rather than the object/process. This
message-centric view, baptised Message-Oriented Programming by Dave Thomas
[4], is aligned with the ideas presented by Ilia Bider (see section 3.8).

Method dispatch can be abstractly defined in message-oriented programming
as: eval(message, args, sender, receiver), where the sending and receiving objects
are explicit parameters to the message evaluation in addition to the arguments. A
quick comparison shows the differences with two other fundamental approaches:

– Scheme: given the function (method) find the environment.
– Smalltalk: given the environment, find the function (method).
– Message-oriented programming: given the message determine the function

(method), knowing the message definition and the value of the sender (en-
vironment) and the receiver (environment).

Message-oriented programming is one part of a broader view on how to struc-
ture Service Oriented Architectures (SOAs) [5]. The coordination of services
(nowadays web services) has proved to be difficult using petri nets or state ma-
chines. Dave Thomas turned attention to Carl Hewitt’s actor model [6] to tackle
this problem. Actors are autonomous and concurrent objects that communicate
asynchronously and are intended to be a model of an intelligent person. When an
actor receives a message, it executes according to its script and communicates
with a well-defined and finite set of other known actors. Actors allow one to
model computations as an organisation of communicating active objects and to
apply anthropomorphic roles such as Workers, Coordinators, Managers, Couri-
ers, Notifiers, or more application-specific ones like PulseCourier, RadarTrack,
TrackManager. Hence, workflow in the system mimics real-world workflow. This
Anthropomorphic Programming approach allows business processes to be ex-
pressed using common organisational design principles.

Anthropomorphic programming was used for process structuring in the Har-
mony operating system: tasks are assigned personified roles such as the already
mentioned Servers, Administrators, Workers, Couriers, Notifiers, etc. Each of
these roles has well known pre-defined semantics. Servers must be responsive, so
they delegate most of the work. Processes spend most of their life in a “receive
any” loop, while Workers do most computations. The Administrator helps or-
ganise this. All these tasks are very lightweight (in Harmony, tasks = processes
= threads). Harmony is a message-based operating system, with a simple set
of primitives: Blocking Send, Blocking Receive, Reply, Create, Terminate and
special forms for Non-Blocking Receive and Interrupts.



54 S. González et al.

Harmony was used as a foundation for the Actra project. Actra sought to
show how far Smalltalk could be used in the development of complex embedded
applications. The Actra project combined Smalltalk, actors and multiprocessors.
An actor encapsulates cooperating passive (non-actor) objects. Actors synchro-
nize and communicate by sending messages. Actors execute in pseudo parallel on
a single processor and in parallel on multiple processors. Actors have the gran-
ularity of lightweight processes (threads/tasks). There are uniform semantics
for remote/local processes and these processes have a well defined life cycle. In
Actra, programmers create their own application-specific actors by specialising
the generic ones. The complete taxonomy of known actors, some generic, many
more application specific, creates a vocabulary that populates the programming
model and defines its semantics.

[Discussion]. One participant asked why Smalltalk is not considered to have
first-class messages, given that the doesNotUnderstand: message can be over-
ridden to get an instance of the Message class. This was considered a hack by
Thomas, rather than a true first-class mechanism. Apart from this, the sender
of the message is not available, unless a complex inspection of the runtime stack
is performed.

3.2 Laziness and Declarative Concurrency
Raphaël Collet, Université catholique de Louvain (Belgium),
raph@info.ucl.ac.be

Raphäel Collet presented an extension of the concurrent declarative framework
of the Oz language with by-need synchronisation. Oz has a store consisting of
constraints over logic variables. There are two operations, ask and tell. Telling
a constraint simply adds it to the store. Asking a constraint makes the thread
wait until the store can logically infer it or its negation.

Programming a demand-driven computation in a dataflow concurrent lan-
guage is easy. The computation is put in a thread and is suspended until another
thread manifests its need for the result. The way of manifesting the need is by
telling need(x) to the store, where x is the variable. This constraint does not
restrict the possible value of x. In this way dataflow synchronisation of multiple
threads is achieved.

3.3 Concurrency in Java and Erlang
Sven-Olof Nyström, Uppsala University (Sweden), svenolof@csd.uu.se

Java’s threads are rather nicely integrated with the class system. Unfortunately,
the implementations use the threads of the underlying operating system, which
means that threads are expensive. Many operating systems only allow a very
restricted (a few hundred) number of threads. What is even worse is that the
behavior of threads depends on the operating system, so that a Java program
written for one OS might not work when run on an other OS. The use of OS
threads is discouraged by the Erlang designers.

In contrast, all Erlang processes under a specific node share the same OS-
process. An Erlang process is a data structure, containing a stack, a heap and a



2nd Workshop on Object-Oriented Language Engineering 55

program counter. The stack and the heap are small at creation, and allowed to
grow when necessary, so the minimum size of a process is a few hundred bytes.
Erlang can easily support thousands of threads.

[Discussion]. An operating system based on Erlang could be developed, given
its reliability and concurrent design.

3.4 APPLE: Advanced Procedural Programming Language
Elements
Christian Heinlein, University of Ulm (Germany),
heinlein@informatik.uni-ulm.de

Christian Heinlein started by observing that current programming languages, in
particular aspect-oriented languages such as AspectJ, are considerably complex,
in contrast with traditional procedural languages, such as Pascal or C, which
provided just two basic building blocks: data structures and procedures. The
gain in complexity is not reflected proportionally in the gain of expressive power.

He pointed out that there are many features in aspect-oriented languages
which could be dropped from the kernel of these languages and implemented
in terms of other features. After many conceptual reductions, he argues that
“around advice” (i.e. the possibility to freely override an existing procedure,
either with completely new code or with code that augments the original code)
remains as one of the few essential (i.e. really necessary) mechanisms.

His position was to go back to the starting point of procedural programming
languages and extend them in a different direction, not leading to OO or AOP
programming, but to “advanced procedural languages” which are significantly
simpler than aspect-oriented languages while offering comparable expressiveness
and flexibility.

Three points are the key:

1. Replacing statically bound procedures with dynamically overridable pro-
cedures (roughly comparable to around advice) covers the whole range of
dynamic dispatch strategies usually found in object-oriented languages. Dy-
namic procedures remain a single, well-defined concept, hardly more complex
than traditional procedures.

2. Replacing record types having a fixed set of fields with modularly exten-
sible “open types” and “attributes” (roughly comparable to empty classes
extended by inter-type field declarations) covers a wide range of (practically
all) OO abstractions. Again, open types constitute a single, well-defined con-
cept which is little more complex than traditional record types.

3. Preserving (resp. (re-)introducing) the module concept of modern proce-
dural languages with clearly defined import/export interfaces and a strict
separation of module definitions and implementations, provides support for
encapsulation and information hiding.

Instances of open types differ from instances of classes in object-oriented
languages such as Java or C++ in two ways. First, their set of attributes is
dynamic, again in two ways: because the attributes of a particular type can be



56 S. González et al.

defined in different modules, the set of all attributes is unknown when compiling
a single module. Furthermore, since modules containing attribute definitions
might be loaded dynamically at run time, the set of all attributes belonging to
a type is even unknown at link or program start time. If an attribute is accessed
that is not present yet, a well-defined null value is returned for read accesses,
while a new attribute/value pair is added for write accesses. Second, the dynamic
type of an object, which is equal to its static type immediately after creation,
can be changed at run time.

Because procedures are not directly associated with types or objects, such
manipulations cannot lead to “message not understood” or other run time type
errors, i.e., the system remains statically type-safe.

[Discussion]. If a dynamic procedure is overridden in different modules, the
linear “module order” that is uniquely determined by the modules’ import rela-
tionships, determines the order of the procedure redefinitions.

[Discussion]. Dynamic procedures solve the well-known “expression problem”
(it is hard to add both new types and new operations to an existing type hi-
erarchy) in a simple and straightforward manner – so simple that some of the
participants found it hard to believe.

3.5 Object Shadowing – A Key Concept for a Modern
Programming Language
Marc Conrad, Tim French, and Carsten Maple, University of Luton
(UK), {marc.conrad, tim.french, carsten.maple}@luton.ac.uk

Shadow objects mask one or more methods in a target object (the “shadowed”
object). A shadow is applied at run-time rather than compile-time, in response
to dynamic needs. Every message sent to the shadowed object is processed by
the shadow, if the shadow defines it, or otherwise it is passed to the shadowed
object as if there were no shadow in between. More characteristics of the shadow
mechanism are described in the position paper. The shadow mechanism has for
long been available in LPC (a highly pragmatic language used for text based
computer games, see http://wwwlysator.liu.se/mud/lpc.html) but has not been
evaluated academically so far.

Marc Conrad presented possible application areas for this mechanism:

1. Deprecated Methods: a shadow system could help the developer of a library
to separate an object into two parts. The actual, official version of the ob-
ject where the deprecated methods have been removed and a collection of
shadows that implement deprecated methods. The shadows avoid breaking
existing (legacy) clients.

2. Prototyping: a shadow could be used to adapt the behaviour of objects in
a library, in situations where the objects cannot be directly manipulated
because the library has been bought from an external supplier or because of
copyright issues.

3. Reclassification: reclassification and a special case of it, dynamic inheritance,
is the process of changing the class of an object at run-time. The main goal



2nd Workshop on Object-Oriented Language Engineering 57

in reclassification is to modify the behaviour of an object. This could be
achieved by the application of a shadow to the object. For example a player
having a temporal “frog shadow” might change its nature by replacing it
with a “prince shadow” (but it remains a player).

4. Interclassing: the basic principle in interclassing is the insertion of a new
class in an existing inheritance hierarchy. Suppose an existing hierarchy has
Parallelogram as a parent of Square, and that Rectangle is introduced
as a specialization of Parallelogram. Now, Square should inherit from
Rectangle, and to this end, one could shadow Square with a SquareShadow,
which inherits from Rectangle. All the clients of Square will now see the
behaviour of Rectangle, even if Square itself is not modified.

5. Inheritance and Specialization: A shadow could even be used to emulate
inheritance. In particular, a programming language that has shadows as a
first class feature and derives inheritance as a special application of shadows
can be envisioned. However the presenter expressed fears that this particular
idea may be too wild and not relevant for any practical implementation.

At the end of his talk Marc Conrad raised the (provocative) question, why
such a useful feature is not available in mainstream languages?

[Discussion]. It was pointed out that the last feature, emulation of inheritance
by shadows (the feature that has been considered as too esoteric by the presen-
ter), could be the most useful, as it would allow the implementation of different
roles that an object may have during its lifetime.

[Discussion]. The class java.lang.reflect.Proxy of Java may serve a similar
purpose as a shadow but it was pointed out that this Java class works only for
interfaces and cannot shadow classes or objects.

There was some agreement in the audience that shadows may be a useful
feature and the question why it is not available in mainstream language is valid.

3.6 Dynamic Versus Static Typing – A Pattern-Based Analysis
Pascal Costanza, Universität Bonn (Germany), costanza@web.de

The main point Pascal Costanza made is that statically typed languages some-
times force solutions which in dynamic typed languages could be expressed more
naturally or are even available by default. Furthermore, statically-typed lan-
guages introduce new sources of potential bugs, contrary to conventionally per-
ceived wisdom. He presented three examples of these situations, in the form
of patterns. Java was chosen as a representative example of a statically typed
language. The three examples shown were the following:

Statically Checked Implementation of Interfaces. When implementing an
interface in Java, usually the programmer “fills in” the required methods with
dummy bodies (e.g. which simply return null, 0 or false), so that the program
compiles. Clean compilation is needed for incremental development of the class.
The problem with these dummy implementations is that they are a potential
bug which might be hard to find later on. The solution is to throw dynamically



58 S. González et al.

checked exceptions indicating that the involved methods are currently not im-
plemented, instead of providing a dummy implementation, as in the following
example:

public class FileCharSequence implements CharSequence {
public FileCharSequence() {...}
public char charAt(int index) {...}
public int length() {...}
public CharSequence subSequence(int start, int end) {

throw new UnsupportedOperationException
("FileCharSequence.subSequence not implemented yet.");

}
}

But the main point is, dynamically typed languages do exactly this by default:
the sending of a message which is not implemented will raise an exception, à la
Smalltalk’s “message not understood”.

[Discussion]. The problem could be seen as an IDE support issue rather than
a programming language flaw: for example in Eclipse, one can configure the IDE
so that code similar to the above is generated automatically. But by default,
Eclipse generates dummy code.

Statically Checked Exceptions. This issue is better explained with an exam-
ple. Assume that a class performs some heavy computations based on statistical
data. It should be possible to deploy this class by itself, in which case the data
is read from a local file, or else it will fetch the data from a remote file via
an RMI service. In the latter case, this class needs to deal with the statically
checked RMI exceptions. The problem is that declaring RMI exceptions is not
appropriate to the abstraction provided by the statistical class.

The solution is to use dynamically checked exceptions. They are passed on
by any code without the need to even mention the exceptions. A class only needs
to explicitly deal with exceptions it is concerned with. The point in favour of
dynamically typed languages with exception handling mechanisms, is that they
have this functionality by default.

[Discussion]. In the case of Java, the RMI exception can be wrapped with a
RuntimeException so that the exception declaration can be omitted.

Checking Feature Availability. Checking if a resource provides a specific
feature and actually using that feature should be an atomic step in the face of
multiple access paths to that resource. Otherwise, that feature might get lost in
between the check and the actual use. Example:

System.out.println("Name: " + person.getName());
if (person instanceof Employee) {

System.out.println("Employer: " +
((Employee)person).getEmployer().getName();

}



2nd Workshop on Object-Oriented Language Engineering 59

If the value of persons is changed by another thread between the type check
and the type cast, an exception will be raised. Static typing promotes the notion
that the availability of a particular feature should be checked before it is actually
used. For example, fields and methods can be regarded as features of classes.

The solution is to make the check and the use an atomic step:

System.out.println("Name: " + dilbert.getName());
try {

System.out.println("Employer: " +
((Employee)dilbert).getEmployer().getName();

} catch (ClassCastException e) {
// do nothing

}

The point in this example is, dynamically typed languages throw “message
not understood” errors by default. One only has to catch them instead of Class-
CastException. Apart from that difference, the resulting behavior is the same.

[Discussion]. Some found that this problem is related to concurrent execution
and is not inherent to static typing.

3.7 The Unavoidable Failure of Class-Based Languages in the
Processor Cloud Era
Sebastián González, Wolfgang De Meuter, Kim Mens, Theo D’Hondt,
Université catholique de Louvain (Belgium) and Vrije Universiteit
Brussel (Belgium), {sgm, kim.mens}@info.ucl.ac.be, {wdmeuter,
tjdhondt}@vub.ac.be

The point made by this presentation was that class-based languages are not
adequate for the programming of the so-called “processor clouds”, i.e. ad-hoc
mobile networks of wirelessly interconnected computers where nodes can enter
and leave the network at any moment, for instance if a user enters or leaves
a certain building. The use of object-based languages without the concept of
class are advocated as a good alternative. The main problem with classes is that
they are a universal, stateful resource sharing mechanism, which is a bad com-
bination of ingredients for open distribution (processor clouds). For example, a
node containing the same class as another node may appear in the network, but
with a different value for a class variable or a different method implementation;
this is an unsolvable conflict since none of the two versions is the “right” one.
Other problems with classes mentioned were the fact that classes grow monotoni-
cally, getting deprecated methods, which waste resources (storage space, network
bandwidth) in a context where resources are scarce: mobile computing. Another
problem is that idiosyncratic behaviour is even more important in mobile com-
puting, which is harmed by the usage of classes. A last problem was mentioned:
upon sending a message to a node, a class and its superclass(es) need to be sent
along, and if the language is statically typed, argument-type, result-type and
exception-type classes need to be sent also.



60 S. González et al.

3.8 Who Is Agent: Object or Relation?
By Ilia Bider, IbisSoft (Sweden), ilia@ibissoft.se

Starting from the observation that any object-oriented system can be consid-
ered as consisting of objects and relations between them, Ilia Bider proposed a
rather different perspective for the role these objects and relations play. In his
programming model, the centre of attention is on the relations. This contrasts
with traditional OO programming where attention is mainly put on objects, and
relations are usually simple pointers. In the new perspective, while objects are
passive, relations are active. The relations or connectors represent laws which
are to be maintained throughout the system. Whenever the state of an object
changes (e.g. because of an external user action), the relations connected to that
object are verified. If necessary, these relations change the state of other con-
nected objects in order to bring the system back to an acceptable state. Changes
are propagated in this way through object networks. The relations are perceived
as the “agents” in the system: the active elements which perform computation
and evolve its state. This motivates the title of his position paper.

The described object-connector model is proposed as a method of distributed
programming. The whole system is expressed in terms of local laws, with commu-
nication and execution control being automatically provided by the environment.

[Discussion]. The workshop participants found the programming model quite
different from what they are used to in standard OO programming. No flaws or
problems were pointed out.

4 Related Work

The submitted position papers, Dave Thomas’s slides, and complementary in-
formation about the workshop can be found at the workshop website:
http://prog.vub.ac.be/∼wdmeuter/PostJava04/
The website for the previous edition of the workshop is located at:
http://prog.vub.ac.be/∼wdmeuter/PostJava/
And there is already a followup event planned at OOPSLA 2004, the 1st Work-
shop on the Revival of Dynamic Languages:
http://pico.vub.ac.be/∼wdmeuter/RDL04/index.html

This workshop was inspired by Richard Gabriel’s Feyerabend events at past
OOPSLAs and ECOOPs. The home page of the Feyerabend Project is located at:
http://www.dreamsongs.com/Feyerabend/Feyerabend.html

References

1. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: Sce-
narios for ambient intelligence in 2010. Technical report, EC Information Sco-
ciety Technologies Advisory Group (ISTAG) (2001) Available [2004-07-12] at
http://www.cordis.lu/ist/istag-reports.htm.



2nd Workshop on Object-Oriented Language Engineering 61

2. Shadbolt, N.: Ambient intelligence. IEEE Intelligent Systems 18 (2003) 2–3
3. De Meuter, W., Ducasse, S., D’Hondt, T., Madsen, O.L.: Object-oriented language

engineering for the post-java era. In Buschmann, F., Buchmann, A.P., Cilia, M.,
eds.: Object-Oriented Technology: ECOOP 2003 Workshop Reader. Volume 3013.,
Springer-Verlag (2004)

4. Thomas, D.: Message oriented programming. Journal of Object Technology 3 (2004)
7–12 Available [2004-07-12] at http://www.jot.fm/issues/issue 2004 05/column1.

5. Thomas, D., Barry, B.: Using active objects for structuring service oriented ar-
chitectures. Journal of Object Technology 3 (2004) 7–14 Available [2004-07-12] at
http://www.jot.fm/issues/issue 2004 07/column1.

6. Hewitt, C.E.: Viewing control structures as patterns of passing messages. Journal
of Artificial Intelligence 8 (1977) 323–364


	Introduction
	Organisation
	Call for Contributions
	Organisers
	Format
	Attendance

	Presentations
	Invited Talk: First Class Execution -- Messages and Actors\ Dave Thomas and Brian Barry, Bedarra Research Labs
	Laziness and Declarative Concurrency\ Raphaël Collet, Université catholique de Louvain (Belgium),
raph@info.ucl.ac.be
	Concurrency in Java and Erlang\ Sven-Olof Nyström, Uppsala University (Sweden),
svenolof@csd.uu.se
	APPLE: Advanced Procedural Programming Language Elements\ Christian Heinlein, University of Ulm (Germany),
heinlein@informatik.uni-ulm.de
	Object Shadowing -- A Key Concept for a Modern Programming Language\ Marc Conrad, Tim French, and Carsten Maple, University of Luton (UK),
{marc.conrad, tim.french, carsten.maple}@luton.ac.uk
	Dynamic Versus Static Typing -- A Pattern-Based Analysis\ Pascal Costanza, Universität Bonn (Germany),
costanza@web.de
	The Unavoidable Failure of Class-based Languages in the Processor Cloud Era\ Sebastián González, Wolfgang De Meuter, Kim Mens, Theo D'Hondt, Université catholique de Louvain (Belgium)
and Vrije Universiteit Brussel (Belgium), {sgm, kim.mens}@info.ucl.ac.be,
{wdmeuter, tjdhondt}@vub.ac.be
	Who Is Agent: Object or Relation?\ By Ilia Bider, IbisSoft (Sweden),
ilia@ibissoft.se

	Related Work



