
Eighth Workshop on Pedagogies and Tools for
the Teaching and Learning of Object Oriented

Concepts�

Jürgen Börstler1, Isabel Michiels2, and Annita Fjuk3

1 Ume̊a University, Sweden
2 Vrije Universiteit Brussel, Belgium

3 University of Oslo, Norway

Abstract. This report summarises the results of the eighth workshop in
a series of workshops on pedagogies and tools for the teaching and learn-
ing of object-oriented concepts. The submissions to this year’s workshop
mainly covered curriculum issues, tool support for teaching, and case
studies. Several contributions dealt with teaching object-orientation to
non-Majors (junior high-school students, non-Science students). This as-
pect permeated most of the discussions at the workshop and is also re-
flected in the conclusions. The workshop gathered 19 participants from
nine different countries.

1 Introduction

Object-orientation has nowadays become the dominant software development
paradigm. In most educational programs object-orientation is the first (and
sometimes the only) paradigm students encounter. Successfully applying object-
oriented methods, languages and tools requires a thorough understanding of the
underlying object-oriented concepts. Despite this importance there is still no
accepted approach to effectively teach or learn basic object-oriented concepts.

Studies show that there is a great mismatch between language used and
paradigm taught. In Australia for example about 82% of the introductory pro-
gramming instructors use an object-oriented language. Only about 37% however
teach their courses using an object-oriented approach [1]. Most educational pub-
lications however suggest to introduce objects early on.

Using traditional programming languages, concepts could be introduced step
by step. Abstract and advanced concepts, like for example modules and ab-
stract data types could be handled as an afterthought. In the object-oriented
paradigm, the basic concepts are tightly interrelated and cannot easily be taught
and learned in isolation, making these tasks much more challenging.

� The title of this report should be referenced as “Report from the ECOOP 2004
Eighth Workshop on Pedagogies and Tools for the Teaching and Learning of Object
Oriented Concepts”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 36–48, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Eighth Workshop on Pedagogies and Tools for Teaching and Learning 37

Switching to object-oriented development is not just a matter of program-
ming languages. Focusing on the notational details of a certain language prevents
students from grasping the “big picture.” Most students therefore have difficul-
ties taking advantage of object-oriented concepts. Many traditional examples are
furthermore not very suitable for the teaching and learning of object-oriented
concepts. Many popular examples (like for example ’Hello World’) actually con-
tradict the rules, guidelines and styles we want to instill in our students [2].

Educators must therefore be very careful when selecting or developing exam-
ples and metaphors. Rules and misconceptions that students develop based on
doubtful examples will stand in the way of teachers and learners as well.

This was the eighth in a series of workshops on issues in object-oriented
teaching and learning. Reports from most previous workshops in the series are
available [3, 4, 5, 6, 7, 8]. Further information and links to the accepted contribu-
tions of most workshops can be found at the workshop series home page [9].

The objective of the workshop series is to share experiences and discuss ideas,
approaches and hypotheses on how to improve the teaching and learning of
object-oriented concepts. The organisers particularly invited submissions on the
following topics:

– successfully used examples and metaphors;
– approaches and tools for teaching (basic) object-oriented concepts;
– approaches and tools for teaching analysis and design;
– ordering of topics, in particular when to teach analysis and design;
– experiences with innovative CS1 curricula and didactic techniques;
– learning theories and pedagogical approaches / methods;
– representation of learning resources;
– distance education / net-based learning;
– collaborative learning;
– guiding the learners;
– learners’ view(s) on object technology education;
– development of the learner’s competence.

2 Workshop Organisation

Participation at the workshop was by invitation only. The number of participants
was limited to encourage the building of few small interest groups working on
specific topics. Potential attendees were required to submit position papers.

Out of the 11 position papers that were submitted, 9 papers were accepted,
of which 7 were formally presented at the workshop. Two papers were rejected.
All accepted contributions were made available on the workshop’s web site some
weeks before the workshop, in order to give attendees the opportunity to prepare
for the discussions. All formal presentation activities were scheduled for the
morning sessions. The afternoon sessions were dedicated to discussions in small
working groups.

After the formal presentations all attendees had the opportunity to present
their main “message(s)” in a round-robin presentation (materials had to be



38 J. Börstler, I. Michiels, and A. Fjuk

Table 1. Workshop program

TIME TOPIC
9:00 Welcome and Introduction
9:15 Session 1: Curriculum Issues

Why Structural Recursion Should Be Taught Before Arrays in CS 1,
K. Bruce (15 min)
Teaching Object-Oriented Programming–Towards Teaching a System-
atic Programming Process, M.E. Caspersen (15 min)
Object-Orientation by Immersion–Teaching Outside the CS Depart-
ment, M. Lindholm (10 min)
Discussion (10 min)

10:05 Session 2: Tools
OCLE, a Tool Supporting Teaching and Learning UML and OCL, the
Understanding and Using of Metamodeling, Abstraction and Design by
Contract, D. Chiorean (10 min)
Online Assessment of Programming Exercises, G. Fischer (10 min)
Discussion (5 min)

10:30 Coffee Break
11:00 Session 3: Case Studies

Junior High School Students’ Perception of Object-Oriented Concepts,
M. Teif (15 min)
Lego as platform for learning OO thinking in primary and secondary
school, C. Holmboe (15 min)
Discussion (10 min)

11:40 Round-robin Presentations of Attendee Positions (1 overhead
each)

12:10 Split up into Working Groups
11:30 Lunch Break
13:30 Parallel Working Group Sessions
15:00 Coffee Break
15:30 Parallel Working Group Sessions (cont.)
16:15 Working Group Reports, Discussion, Wrap-up
17:00 Closing

submitted in advance). After that three working groups were formed to discuss in
more detail the topics they found most interesting or relevant. The full workshop
program can be found in table 2.

The workshop gathered 19 participants from nine different countries, all of
them from academia. A complete list of participants together with their affilia-
tions and e-mail addresses can be found in table 4.2.

3 Summary of Presentations

This section summarises the main points of the presented papers and the most
important issues raised during the morning discussions. More information on the
presented papers can be obtained from the workshop’s home page [10].



Eighth Workshop on Pedagogies and Tools for Teaching and Learning 39

Table 2. Overview of the presentations

Bruce Caspersen Lindholm Chiorean Fischer Teif Holmboe
Target Group
– CS juniors X X X (X)
– CS seniors X
– Non-CS X (X) X X
– Pre-Univ. X X
Target Area
– OOP X X X (X) (X)
– OO concepts X (X) X (X) X X
– Design X
– Modelling X X (X)
– Formal Spec. X
– Testing (X) (X)
Paper Type
– Exp. report X X X X X
– Case study X X
Main message Teach

struc-
tural
recursion
before
arrays

Teach
sys-
tematic
tech-
niques
and
processes
explicitly

Use suf-
ficiently
complex
examples
from a
familiar
domain

Tool
support
is essen-
tial for
teaching
meta-
modelling

Automatic
assess-
ment is
both fea-
sible and
effective

Miscon-
ceptions
don’t
differ
with age

OO is
more
about a
way of
thinking
as a
way of
program-
ming

3.1 Curriculum Issues

Kim Bruce (Williams College, MA, USA) described how rearranging topics
helped his CS1 students to better understand object-oriented principles, in par-
ticular encapsulation. The first half of the course originally took an objects-first,
event-driven approach using the objectdraw library, developed at Williams Col-
lege. The students caught on very well to object-orientation using this approach.
However, when introducing non-object-oriented structures, like arrays, strings
and files in the second part of the course the students do no longer apply the
object oriented principles they have learned. Students for example resisted to
encapsulate arrays in purposeful objects and returned to directly manipulating
arrays and their elements.

Moving the topic of structural recursion from the end of the course to the
beginning of the second part of the course (i.e. before introducing arrays), proved
to be a major improvement. Kim argued that recursive structures are much eas-
ier to understand than recursive procedures. In their course they use recursive
pictures, where the base cases are realised as Java interfaces. The recursion is
then an implementation of a Picture interface that has an instance variable of the
interface type for the recursive part. Such recursive structures are also very use-
ful to reinforce important object oriented concepts like dynamic method dispatch



40 J. Börstler, I. Michiels, and A. Fjuk

and interfaces. They also provide a smoother transition to arrays. This revised
topic order also helps students to better understand the motives behind explicit
encapsulation of arrays (compared to direct manipulation).

The audience found this approach very promising. However, it was not quite
clear whether this approach could be used with more mediocre student groups.
The concept of structural recursion is not that easy to grasp and even Kim’s well
designed examples would require a thorough understanding of object-oriented
concepts. Kim argued that they hide many language specific details in their
library. This makes it easier for the students to concentrate on the important
things.

Michael E. Caspersen (University of Aarhus, Denmark) claimed that teach-
ing should focus on systematic techniques to develop programs by means of
conceptual modelling and that it is mandatory to train students in the pro-
cess of applying systematic development techniques. He and his colleagues use
a model-driven objects-first approach with a strong focus on systematic tech-
niques and programming processes. In this approach the actual programming
is not just a matter of a certain programming language. Students are gradually
exposed to more complexity by means of conceptual models and not by means
of more complex constructs in a certain programming language.

Systematic (implementation) techniques are taught on different levels. On
method level the students deal with algorithm patterns and loop invariants.
On class level the students deal with class specifications (contracts). On class
structure level the students deal with specification models (class diagrams). This
separation of concern makes it easier for students to choose the appropriate
technique for the problem at hand. Michael also noted the importance of actually
demonstrating how experts use these techniques in practise. The lecturers do a
lot of “live” programming and modelling in class, where they say aloud what
they do and why the do it in a particular way. They also show videos of actual
developers working on real projects.

According to Michael the approach has been very successful. The drop-out
rates have decreased from about 50% five years ago to about 10%.

Morten Lindholm (University of Aarhus, Denmark) described his approach to
teaching object-oriented concepts to students of the Faculty of Arts. The goal
of the two-semester course Programming & Systems Development is to give stu-
dents a basic understanding of computers and software development. A problem
in course development had been to find a suitable textbook for students from
the humanities or social sciences. Current textbooks usually aim at students
with a Science or Engineering background and are therefore full of problems,
examples and exercises that draw on this background. Most solutions (i.e. ex-
ample programs) lack therefore objects rooted in the “real” world, as for example
System.out.

Morten suggested to use language philosophy and logic as the foundation for
object-orientation and a way to reason about ways of describing (a model of)
the world in a machine. To motivate the students examples, assignments, and



Eighth Workshop on Pedagogies and Tools for Teaching and Learning 41

projects should always be taken from a domain familiar to the students. There
should also be a mapping to the real world in order to grasp what an object is.

The students in this course sequence are exposed to a wide range of techniques
to give them a broad view of object-orientation and design (CRC-cards, UML,
Pair Programming, Design Patterns, Unified Process). These techniques are then
trained by means of team projects. This approach seems to work well except for
the actual coding part.

In his talk Morten highlighted the importance of “sufficiently complex” ex-
amples1. The real power of object-oriented modelling cannot be used in trivial
examples. Several attendees choose to disagree here. Micheal Caspersen agreed
that examples should not be trivial and, but not more complex than necessary
to make their point. He would rather vote for “sufficiently simple” examples.
As another important point it was mentioned that every program the students
write, should reflect the programs the students use (i.e. no batch-like processing
for example).

3.2 Tools

Dan Chiorean (Babes-Bolyai University, Romania) presented OCLE (Object
Constraint Language Environment), a tool for the teaching and learning of OCL,
UML, metamodelling, and abstraction. Dan presented several examples how the
tool can be used to view, evaluate and transform example specifications. OCLE
supports modelling on the user model level as well as the metamodel level. By
grouping both kinds of models in one project, the user models can then be
(statically) validated against the corresponding rules defined in the metamodel.

This kind of parallel modelling on two different levels of abstraction helps
the students to appreciate metamodelling and also to better understand the
semantics of OCL and UML. The tool can visualise different views of the same
information at the simultaneously. This enables students to understand how
decisions made at metamodel level affect instances on the user model level.

The tool can even generate (Java) code from OCL specifications. By doing
so one can trace the effects of changes in the metamodel down to the generated
code. It was however not clear whether the code generation would scale up to
more complex examples.

Gregor Fischer (University of Wrzburg, Germany) reported about the usage of
Praktomat (see [8]) to automatically assess programming exercises. All attendees
agreed that multiple-choice tests are not very reliable for assessing programming
skills. However, manually assessing large numbers of exercises in a consistent
manner would be very difficult, if not infeasible.

Praktomat is capable of several types of tests; formal (syntax, compiling,
coding style and required documentation), program structure, specification re-
quirements, and functional tests. Functional testing is done by means of testing
operations written in JUnit. Functional testing against the results of master so-

1 The idea of using sufficiently complex examples was originally propagated by Kristen
Nygaard using his famous Restaurant example.



42 J. Börstler, I. Michiels, and A. Fjuk

lution (working as an oracle) did not work as reliable. This would however put
less restrictions on the structure of the solutions that must be delivered by the
students.

The tool results are very reliable. Less than 2% of the programs passing
all automatic tests were rejected by a human inspector. It was however not
clear whether fundamentally good, but imperfect solutions would be rejected by
the tool. The examination work load decreased by a factor of four. Developing
suitable exercises on the other hand is much more expensive. Gregor did not
have actual data on this part, but claimed that there still is a reasonable pay
off.

Programming is a skill that requires a lot of training. Automatic assessment
can provide the immediate feedback that is necessary to handle large student
groups and/ or large numbers of exercises. In the current setting students can
perform as many tests as they like before finally submitting their programs. The
audience was not sure whether this will teach students bad habits. Nevertheless,
since the tool has been introduced Gregor and his colleagues have observed
considerable quality improvements in students’ solutions. The tool did on the
other hand, not affect the course’s overall passing rate.

Gregor noted further that currently all test are public. This helped many
students appreciate proper testing. For the future it is planned to integrate
testing and test development into the course (but how will the tests be tested).

3.3 Pre-university Case Studies

Mariana Teif (Israel Institute of Technology, Israel) presented results from a
junior high school course (7th-8th grade) on object-oriented concepts. In the
context of a research project, she studied difficulties and misconceptions the
students faced while learning basic object oriented concepts. The students devel-
oped small programs using a Java-based Turtle-graphics environment. Students
did not have to present practical programming skills at the end of the course.
Examination was by means of concept-level questions.

The study identified four types of misconceptions. Students did for example
confuse an object’s attributes with its parts (components) or actions (knowing
how to do certain things). They had also difficulties accepting sets as objects and
considered set-subset (hierarchy) relationships and whole-part relationships as
equal to the class-instance relationship. A follow-up study with undergraduate
students as subjects revealed the same results.

Mariana discussed a range of possible explanations for the found miscon-
ceptions, which might be based on classification theory. Further research and
analysis is planned to explain the underlying reasons for the problems.

Christian Holmboe (University of Oslo, Norway) presented preliminary re-
sults from a case study done in the context of the COOL2 project on teaching
primary and secondary school children general principles of object-orientation
and computer functionality.

2 Comprehensive Object-Oriented Learning



Eighth Workshop on Pedagogies and Tools for Teaching and Learning 43

The study was carried out as an intensive four day course, with two different
age groups (6th and 9th grade respectively) at different schools. The object-
oriented concepts covered were classification, specialisation and aggregation. The
students engaged in various types of classroom activities, like drawing, building
with Lego, or written textual definitions. The “products” of these activities were
discussed with respect to features, attributes and different kinds of relationships
to emphasise the usefulness of different kinds of “specification” mechanisms.

In a group project the students then explored and programmed a Lego vehicle
using a small Robot API based on LeJoS, a Java-based development language
for Lego. The API and an object diagram for the vehicle were carefully explained
and set up on the walls of the classroom. The results of the students’ group work
were discussed in relation to object-oriented principles, but without using strict
object-oriented terminology. After that the students did some exercises using the
Restaurant example.

The students solved quite interesting tasks after only four days. Interviews
after the course (using another example) showed that the students gained quite
some understanding of the covered object-oriented concepts. Teaching (object-
oriented) design and technology in this way might enhance the students confi-
dence about information technology. This might help to get more people inter-
ested in Information Technology and Computer Science. Further studies of the
gathered data are however necessary to draw any safe conclusions.

4 Working Group Discussions

For the afternoon sessions participants formed three working groups to discuss
specific topics in more detail. The following subsections summarise the discus-
sions on the topics discussed in more detail.

4.1 Balancing Focus Between Process and Product

The discussion was initiated by trying to establish a common understanding
of the notions of “process” and “product.” A product is a concrete result of a
(planned) development activity, like for example the final executable program
code, a diagram or a model. A process is the sum of the developers’ actions to
produce these products. To develop a product we also have to take care of the
pragmatics of software development, like for example the usage of tools and the
application of certain guiding principles and rules.

In his analogy with cabinet making, David Gries described nicely how the
teaching about products, processes and pragmatics should (not) be didactically
and pedagogically organised [11]:

Suppose you attend a course in cabinet making. The instructor briefly
shows you a saw, a plane, a hammer, and a few other tools, letting you
use each one for a few minutes. He next shows you a beautifully-finished
cabinet. Finally he tells you to design your own cabinet and bring him
the finished product in a few weeks.



44 J. Börstler, I. Michiels, and A. Fjuk

You would think he was crazy! You would want instructions on designing
the cabinet, his ideas on what kind of wood to use, some individual
attention when you don’t know what to do next, his opinion on whether
you have sanded enough, and so on. (p82)

One way of achieving a balance between product and process in teaching, is to
expose students to how experienced programmers work. Like how a master shows
his or her profession to apprentices. Approaches like projector-programming and
live-programming in the classroom were considered important by all group mem-
bers. However, when a teacher demonstrates the process of programming (with
help of a projector or the like), she must also think aloud and make typical er-
rors. Programming is not a straight forward process. Students must be reassured
that there are no single correct solutions that will unfold automatically when
“doing it right.”

4.2 Student Diversity and Core Computer Science

Teaching Computer Science to different groups of students rises the question
about a thorough definition about the core of our field. What do we need to
teach to students who take only few Computer Science courses? The definition
of a “real” core (see 1) of Computer Science must necessarily be much narrower
for students outside our field compared to the definition as for example proposed
by the CC2001 [12].

Fig. 1 Points of view of the core of Computer Science

The group concluded that object-oriented programming is not a core topic
for students outside our field. However, object-orientation as a way to structure
and model problems should be included in some way.

It was also pointed out that different groups of students would need differ-
ent kinds of “windows” to view the core (see 2). Matlab for example could be a



Eighth Workshop on Pedagogies and Tools for Teaching and Learning 45

Fig. 2 Windows to approach the core of Computer Science

suitable window for Math or Engineering students to approach Computer Sci-
ence. For all windows and groups it would be necessary to provide suitable
examples.

Table 3. List of workshop participants

Name Affiliation E-mail Address
Jrgen Brstler Ume University, Sweden jubo@cs.umu.se
Isabel Michiels Vrije Universiteit Brussels, Bel-

gium
imichiel@vub.ac.be

Annita Fjuk University of Oslo, Norway annita.fjuk@telenor.com
Jens Kaasboll University of Oslo, Norway jensj@ifi.uio.no
Jens Bennedsen IT University West, Denmark jbb@it-vest.dk
Maria Bortes Babes-Bolyai University, Romania maria@lci.cs.ubbcluj.ro
Kim Bruce Williams College, MA, USA kim@cs.williams.edu
Michael E. Caspersen University of Aarhus, Denmark mec@daimi.au.dk
Dan Chiorean Babes-Bolyai University, Romania chiorean@lci.cs.ubbcluj.ro
Dyan Corutiu Babes-Bolyai University, Romania dyan@lci.cs.ubbcluj.ro
Gregor Fischer University of Wrzburg, Germany fischer@informatik.uni-

wuerzburg.de
Roar Granerud University of Oslo, Norway rgraneru@ifi.uio.no
Arne-Kristian Groven Norwegian Computing Centre, Nor-

way
groven@nr.no

Hvard Hegna Norwegian Computing Centre, Nor-
way

hegna@nr.no

Christian Holmboe University of Oslo, Norway christho@ifi.uio.no
Morten Lindholm University of Aarhus, Denmark lindholm@daimi.au.dk
Wilfried Rupflin University of Dortmund, Germany wilfried.rupflin@uni-

dortmund.de
Mariana Teif Israel Institute of Technology, Is-

rael
tmariana@tx.technion.ac.il

Kristina Vuckovic Zagreb University, Croatia kvuckovi@ffzg.hr



46 J. Börstler, I. Michiels, and A. Fjuk

Most importantly examples need to be appealing to students and interesting
in itself, but not necessarily depending on context (not everything needs to
be real world relevant). Besides that examples must fulfill certain criteria to be
meaningful with respect to object-orientation. They should for example comprise
at least two classes, where at least one class has multiple instances. There should
furthermore happen some real object interaction, where different objects need to
(get to) know each other. Examples should also make use of non-static methods
and exchange objects as parameters (instead of built-in types only). In addition
to that custom designed libraries to hide language specific details would help
students to focus on the real problems.

4.3 Student Attitudes

Student attitudes was another topic discussed in this group. The audience agreed
that students are not as good as before in solving problems on their own. They
quickly give up on exercises and they often rely on help from others when they
are stuck with a certain problem. Possible solutions could be (as proposed by
Michael Caspersen) to show students the process of working towards a reliable
solution. However, it was argued that this is not sufficient. Teachers often ask
themselves questions as part of this (implicit) process in specific orders. When
this process is not made explicit to students, they do not know how to proceed
once they are on their own. The group concluded that we definitely need to teach
more programming methodology. This must however be done in a systematic
way to enable the students to choose the “right” tool for the right problem. To
help students build up confidence some kind of peer-based help to help yourself
approach, like Supplemental Instruction, can also be very useful.

5 Conclusions

The objective of the workshop was to share experiences and to discuss ideas,
approaches and hypotheses on how to improve the teaching and learning of
object-oriented concepts.

Ongoing work was presented by a very diverse group of people with very
different backgrounds, which resulted in a broad range of topics, see table 3. The
workshop attendees represented a broad range of experiences, which are often
not easily accessible and transferable. We can definitely conclude that there are
many approaches that can work in certain environments. We can also certainly
conclude that there is no is no one-size-fits-all approach to teaching object-
oriented concepts and principles. The challenge is to find the right approach (or
view on things) for each type of student.

To summarise our discussions we want to suggest the following.

– We must expose students to the real programming process, instead of an ide-
alised linear one. Software development is an inherently incremental process.
Students must be made aware of that there is no single correct solution to



Eighth Workshop on Pedagogies and Tools for Teaching and Learning 47

virtually any programming problem. There is not even a single correct pro-
cess that will “automatically” reveal a correct solution. This is even more
important when students are faced with analysis and design problems.

– Students need “tools” to help them escape when they get stuck on their own,
instead of waiting for someone to help them out. The teaching of systematic
techniques and explicit processes can help a lot. But, especially weaker stu-
dents, also need help to improve their self-confidence, for example by means
of supplemental instruction.

– Carefully developed examples and exercises are very important. They must
be designed with the target group of students in mind. They must also be
valid and meaningful with respect to the object-oriented paradigm.

– Object-oriented programming is not a given core subject for non-Majors in
Computer Science. However, basic object-oriented concepts or principles, like
encapsulation and abstraction, should certainly be taught to any student to
enable them to cope with complexity.

References

1. de Raadt, M., Watson, R., Toleman, M.: Introductory Programming: What’s Hap-
pening Today and Will There Be Any Students to Teach Tomorrow? In: Lister,
R., Young, A.: Proceedings ACE2004, Conferences in Research and Practice in
Information Technology, Vol. 30, Australian Computer Society (2004) 277-282.

2. Westfall, R.: “Hello, World” Considered Harmful. Communications of the ACM
44 (10) (2001) 129-130.

3. Börstler, J. (ed.): OOPSLA’97 Workshop Report: Doing Your First OO Project.
Technical Report UMINF-97.26. Department of Computing Science, Ume̊a Uni-
versity, Sweden (1997).

4. Börstler, J. (chpt. ed.): Learning and Teaching Objects Successfully. In: De-
meyer, S., Bosch, J. (eds.): Object-Oriented Technology, ECOOP’98 Workshop
Reader. Lecture Notes in Computer Science, Vol. 1543. Springer-Verlag (1998)
333-362.

5. Börstler, J., Fernández, A. (eds.): OOPSLA’99 Workshop Report: Quest for Effec-
tive Classroom Examples. Technical Report UMINF-00.03. Department of Com-
puting Science, Ume̊a University, Sweden (2000).

6. Michiels, I., Börstler, J.: Tools and Environments for Understanding Object-
Oriented Concepts. In:Malenfant, J., Moisan, S., Moreira, A. (eds.): Object Ori-
ented Technology, ECOOP 2000 Workshop Reader, Lecture Notes in Computer
Science, Vol. 1964. Springer (2000) 65-77.

7. Michiels, I., Börstler, J., Bruce, K.: Sixth Workshop on Pedagogies and Tools for
Learning Object-Oriented Concepts. In: Hernández, J., Moreira, A. (eds.): Object
Oriented Technology, ECOOP 2002 Workshop Reader, Lecture Notes in Computer
Science, Vol. 2548, Springer (2002) 30-43.

8. Michiels, I., Börstler, J., Bruce, K., Fernndez, A.: Tools and Environments for
Learning Object-Oriented Concepts. In: ECOOP 2003 Workshop Reader, Lecture
Notes in Computer Science, Vol. 3013, Springer (2004) 119-129.

9. Workshop series homepage: Pedagogies and Tools for the Teaching and Learning of
Object Technology. http://www.cs.umu.se/research/education/ooEduWS.html



48 J. Börstler, I. Michiels, and A. Fjuk

10. ECOOP04 workshop homepage. http://www.cs.umu.se/~jubo/Meetings/ECOOP04
11. Gries, D.: What Should We Teach in an Introductory Programmming Course.

Proceedings of the fourth SIGCSE Technical Symposium on Computer Science
Education. ACM SIGCSE Bulletin 6 (1) (1974) 81-89.

12. CC2001 Task Force: Computing Curricula 2001-Computer Science. Final Report
(2001).


	Introduction
	Workshop Organisation
	Summary of Presentations
	Curriculum Issues
	Tools
	Pre-university Case Studies

	Working Group Discussions
	Balancing Focus Between Process and Product
	Student Diversity and Core Computer Science
	Student Attitudes

	Conclusions



