10th Workshop on Mobile Object Systems*

Ciaran Bryce! and Crzegorz Czajkowski?

1 Object Systems Group,
University of Geneva, Switzerland
Ciaran.BryceQunige.ch
2 Sun Microsystem Laboratories,
Mountain View, California, USA
Grzegorz.Czajkowski@sun. com

Introduction

The ECOOP Workshop on Mobile Object Systems is now in its 10th year.
Over the years, the workshop has dealt with topics related to the movement
of code and data between application platforms, security, operating system sup-
port, application quality of service, and programming language paradigms. In
many cases, the workshop has been a forum to discuss traditional object-oriented
issues, since mobility influences such a broad spectrum of topics.

To celebrate the 10th anniversary of the workshop, we decided to accept
papers dealing with all aspects of mobility. Eight presentations in total were
made at the workshop, and some time was allocated to discussion of each. The
tone of the discussions was informal. The workshop took place on Monday, June
14th, 2004, in Oslo University, just prior to the main ECOOP conference.

The Talks

The presentations made at the workshop were the following:

— Portable CPU Accounting in Java by Jarle Hulaas and Walter Binder.

— Reducing the Overhead of Portable CPU Accounting in Java by Jarle Hulaas
and Walter Binder.

— An Environment for Decentralized Adapted Services: A Blueprint by Riidiger
Kapitza, Franz J. Hauck and Hans Reiser.

— An Extensible Directory Service for Efficient Service Integration by Walter
Binder, Ion Constantinescu and Boi Faltings.

— Mobile Code, Systems Biology and Metamorphic Programming by Christian
Tschudin.

— Perspectives on Mobile Code by Eric Jul.

* The title of this report should be referenced as “Report from the ECOOP 2004 10th
Workshop on Mobile Object Systems”.

J. Malenfant and B.M. @stvold (Eds.): ECOOP 2004, LNCS 3344, pp. 169-{I76} 2004.
(© Springer-Verlag Berlin Heidelberg 2004


mailto:Ciaran.Bryce@unige.ch
mailto:Grzegorz.Czajkowski@sun.com

170 C. Bryce and C. Czajkowski

— Proactive Resource Manipulation for Agile Computing by Niranjan Suri,
Marco Carvalho and Jeffrey M. Bradshaw.
— A Security Model for Autonomous Computing Systems by Ciaran Bryce.

Jarle Hulaas from EPFL in Switzerland kicked-off the workshop by present-
ing joint work with Walter Binder entitled Portable CPU Accounting in Java for
the first part of the talk, and Reducing the Overhead of Portable CPU Accounting
in Java for the second part. Following an approach entirely based on portable
bytecode transformation schemes, in order to allow ubiquitous support for CPU
accounting, the presented research has yielded several significant improvements
to J-RAF, a previous effort on portable CPU accounting in Java.

Accounting and controlling the resource consumption of applications and
individual software components is crucial in server environments that host com-
ponents on behalf of various clients, in order to protect the host from malicious
or badly programmed code. Java and the Java Virtual Machine (JVM) are be-
ing increasingly used as the programming language and deployment platform for
such servers (Java 2 Enterprise Edition, Servlets, Java Server Pages, Enterprise
Java Beans). Moreover, accounting and limiting the resource consumption of
applications is a prerequisite to prevent denial-of-service (DoS) attacks in mo-
bile object systems, for which Java is the predominant programming language.
However, currently the Java language and standard Java runtime systems lack
mechanisms for resource management that could be used to limit the resource
consumption of hosted components or to charge the clients for the resource con-
sumption of their deployed components.

Prevailing approaches to providing resource control in Java-based platforms
rely on a modified JVM, on native code libraries, or on program transforma-
tions. Resource control based on program transformations at the bytecode level
offers an important advantage over the other approaches, because it is inde-
pendent of a particular JVM and underlying operating system. It works with
standard Java runtime systems and may be integrated into existing server and
mobile object environments. Furthermore, this approach enables resource con-
trol within embedded systems based on modern Java processors, which provide
a JVM implemented in hardware that cannot be easily modified.

CPU accounting in the initial version of J-RAF relied on a high-priority
scheduling thread that executed periodically in order to aggregate the CPU
consumption of individual threads and to adjust the running threads’ priori-
ties according to given scheduling policies. This approach hampered the claim
that J-RAF enabled fully portable resource management in Java, because the
scheduling of threads within the JVM is not well specified and the semantics of
thread priorities in Java is not precisely defined. Hence, while some JVMs seem
to provide preemptive scheduling ensuring that a thread with high-priority will
execute whenever it is ready to run, other JVMs do not respect thread priorities
at all. Therefore, scheduling code written for environments using J-RAF may not
exhibit the same behaviour when executed on different JVM implementations.

To overcome this limitation, the new version J-RAF2 (the Java Resource
Accounting Framework, Second Edition) comes with a new scheme for CPU



10th Workshop on Mobile Object Systems 171

accounting. In J-RAF2 each thread accounts for its own CPU consumption, tak-
ing the number of executed JVM bytecode instructions as platform-independent
measurement unit. Periodically, each thread aggregates the collected information
concerning its CPU consumption within an account that is shared by all threads
of a software component and executes scheduling code that may take actions in
order to prevent the threads of a component from exceeding their granted CPU
quota. In this way, the CPU accounting scheme of J-RAF2 does not rely on a
dedicated scheduling thread, but the scheduling task is distributed among all
threads in the system. Hence, the new approach does not rely on the underlying
scheduling of the JVM.

During the second part of his presentation, Jarle Hulaas covered different op-
timization schemes, the goal of which is to lower the additional execution time
needed by code transformed by the J-RAF2 tool. Such optimization techniques
essentially consist in trying to minimize the number of inserted bytecode in-
structions, or adding the CPU account as last argument in all method profiles,
including the JDK. In the end, the measurements showed an overhead dropping
from 300% (for older JVMs) or 40% (for the most recent JVMs from Sun and
IBM) down to around 27%. With certain approximation schemes designed to fur-
ther reduce the amount of inserted accounting instructions, but at the expense
of a loss of precision, the overhead would even be as low as 20%.

Riidiger Kapitza then presented joint work with Franz J. Hauck and Hans
Reiser from the Universities of Ulm and Erlangen, entitled An Environment for
Decentralized Adapted Services: A Blueprint.

This talk described the design and implementation of an infrastructure for
service provision that ranges from the traditional client-server to a peer-to-peer
approach. This infrastructure is based on the Fragmented Object model. In
effect, nodes can negotiate their entry into a service group. The aim of the
system is to combine the advantages of both client-server and peer-to-peer.

In the last few years peer-to-peer systems have been one of the most evolving
research areas. Apart form the great public demand, the use of peer resources
is a major reason for this. In pure peer-to-peer systems, every peer has almost
equal responsibilities and provides resources for the whole system. This concept
has certain drawbacks in the context of a high number of nodes participating
only for short periods of time or peers which try to attack the system. In these
cases the overall system performance and service quality degrades or the system
may even collapse. In contrast, traditional client-server applications can cope
with these problems quite smoothly but offer no possibility to exploit client-side
resources.

To fill the gap between the traditional client-sever model and a peer-to-peer
based approach, the authors propose a model entitled Decentralised Adaptive
Services. This concept enables the usage of client-side resources in a controlled,
secure fashion and provides services in a scalable, fault-tolerant manner. Decen-
tralised adaptive services consist of a fragmented object which is spread over a
dynamic set of peers. Each part of the object might be replicated in the scope
of the peer set for fault tolerance or load balancing reasons. Furthermore each



172 C. Bryce and C. Czajkowski

part of the service is mobile and can migrate on demand of the service within
the scope of the peer set. Thus a decentralised, adaptive service can be seen as a
distributed mobile agent. The peer set dynamically expands or shrinks depend-
ing on the participating peers. In this way, decentralised adaptive services are
comparable to peer-to-peer systems. In contrast to peer-to-peer systems, where
each new peer does not have to support the system. First a peer has to signal
the willingness to support the service and provide information about the offered
resources. Second the decentralised adaptive service has to decide if the offering
is accepted and in what way the provided resources can be used in the context of
the service. In fact a decentralised adaptive service can dynamically change the
internal service model from a client-sever scenario where client-side resources are
simply not used to a peer-to-peer based approach by accepting only peers which
offer resources and give each peer the same responsibilities for service provision.

The aim of the Environment for Decentralised Adaptive Services (EDAS)
is to provide the basic concepts and mechanisms for the development and the
operation of decentralised adaptive services. This includes mechanisms for group
membership, resource monitoring and management, mobility, and mechanisms
for the use of resources of partially trusted or untrustworthy peers.

Walter Binder presented joint work with Ton Constantinescu and Boi Falt-
ings from EPFL, Switzerland entitled An Eztensible Directory Service for Effi-
cient Service Integration. The talk presented two techniques for improving the
quality of service of an Internet directory service. The first is the addition of
sessions, the goal of which is to ensure that an interacting client sees the same
view of the directory despite changes that might occur in the services registered.
The second modification is a framework for the deployment of ranking functions
in the form of mobile code. The code is verified on deployment to ensure safety.
An API for these extensions was also presented.

In a future service-oriented Internet, service discovery, integration, and or-
chestration will be major building blocks. One particularly important issue is the
efficient interaction between directory services and service composition engines.
In previous work, the authors designed special index structures for the efficient
discovery of services based on their input/output behaviour. Each service is char-
acterized by the set of its required input parameters (name and type) and the
set of the output parameters provided by the service. The indexing technique is
based on the Generalised Search Tree (GiST), proposed as a unifying framework
by Hellerstein. Moreover, the authors have also developed service composition
algorithms that incrementally retrieve service descriptions from a directory ser-
vice during the service integration process. The composition problem is specified
by a set of available inputs and a set of required outputs. The service integration
algorithm creates a workflow that describes the sequence of service invocation
and the passing of parameters in order to obtain the required results.

The authors present two recent extensions to their directory, service integra-
tion sessions and user-defined ranking functions. The session concept provides
a consistent long-term view of the directory data which is necessary to solve
complex service integration problems. It is implemented in a way to support a



10th Workshop on Mobile Object Systems 173

large number of concurrent sessions. Custom ranking-functions allow to execute
user-defined application-specific heuristics directly within the directory, close to
the data, in order to transfer the best results for a query first. As a consequence,
the tranfer of a large number of unnecessary results can be avoided, thus saving
network bandwidth. As different service integration algorithms require different
ranking heuristics (e.g., forward chaining, backward chaining, etc.) it is impor-
tant to have a flexible way to dynamically install new ranking functions inside the
directory. As custom ranking functions may be abused for attacks, the directory
imposes severe restrictions on the code of these functions.

Christian Tschudin from the University of Basel in Switzerland presented
Mobile Code, Systems Biology and Metamorphic Programming. The talk dis-
cussed some commonalities between computer science and life sciences. Chris-
tian Tschudin argued that the lack of acceptance of mobile code is mainly due
to the poor general understanding we have of large systems, and that this weak-
ness also is hampering advances in life sciences. Suggestions are made to build
methodologies that might benefit both sciences.

The interpretation offered is that mobile code, if one wants to focus on its
failure so far, hit the systems wall right from the beginning. Only its very re-
stricted forms (Applets, update deployment) have been successful, while the fully
autonomous versions of mobile code were rejected, not so much because of the
psychological problem of losing control, but because of the inablity of its propo-
nents to predict the resulting behavior at the system level. Both sides, computer
science and system biology, lack engineering know-how about the assembly of
mobile code fragments and molecular pathways.

A first avenue presented by the speaker is to cut a slice through the design
space such that at least some form of processing can be engineered and tailored
for specific requirements. Taking the hypothetical task of creating an artificial
cell from scratch, this would mean to first come up with basic building blocks,
transistor like, and to build a hierarchy of complexity abstractions up to the point
where one can program such a cell. The analogy in the networking area would
be the GRID where the next service level is achieved by adding a coordination
layer to an existing infrastructure. A basic belief and hope of this approach is
that all additional levels of complexity can still be mastered, even for molecular
or for otherwise massive computing systems.

The other approach is basically bottom up and is a propagation of the meth-
ods found in molecular biology: It consists in turning the basic exploratory in-
struments into a generative tool by combinatorial means and blind mutation.
Translated into computer science this means that one explores the design space
in a methodological way instead of cutting out a slice. By generating and eval-
uating a huge number of program candidates, new solutions can be extracted
from the program space that an engineer would never dream of. This second
approach is specifically promising for mobile code.

The Fraglet system starts with a simple and executable model that blends
code and data: Whether some mobile item is named a data packet or a mobile
code fragment becomes a (human) interpretation which is irrelevant. Writing



174 C. Bryce and C. Czajkowski

Fraglet code resembles very much the programming with monadified functions
a la metamorphic computing and is tedious at best (for humans). Although it
is conceivable to use Fraglets as a target for a BioAmbient compiler, one sees a
more attractive use in exploring algorithmic solutions outside the range induced
or imposed by a modeling environment. The belief in this case is that search
strategies for exploring program space can remain simple while producing high
quality results in reasonable time.

In conclusion, complex (man made) systems are a recent challenge both in
computer science and biology. The author argues that advances in mobile code
research will be linked to progress in this area. There is a natural affinity be-
tween mobile code and the corresponding level of autonomous molecules that
has become visible in the research literature and that was anticipated in the
metaphorical speech of early mobile code research. In another ten years we will
better understand their relationship.

Eric Jul from the University of Copenhagen then gave an invited talk on
object mobility. The talk compared issues and challenges facing mobile object
system designers today, with those faced by the Emerald system designers over 20
years ago. Interestingly, there are close similarities, despite the fact that Emerald
was initially designed for a local area network of machines and current object
systems aim for the Internet or pervasive computing environments.

One of the issues that all application designers face is when to migrate an
object. Moving an object A can also require moving objects that closely com-
municate with A, since otherwise, the advantage of migrating A is offset by the
overheads of the resulting communication between A and these objects. The
FEmerald system dealt with this issue using the attach command, which allowed
the application to specify the set of objects to move with an object. Another
mobility issue that designers still face is to locate objects. In Emerald, the fix
command allowed an application to bind an object to a specific machine, so that
mobility can be controlled to a certain extent.

So what are the new challenges for object mobility today? Perhaps the answer
lies in how mobility will be exploited in emerging applications, notably in the
pervasive computing domain.

Afterwards, Niranjan Suri and Marco Carvalho from the Institute for
Human and Machine Cognition (USA) and Lancaster University (UK) presented
joint work with Jeffrey M. Bradshaw entitled Proactive Resource Manipulation
for Agile Computing.

This talk’s subject deals with the exploitation and active manipulation of any
available computing resources in order to get a job done. Resource manipulation
may even include physical displacement of the computer. The approach also
generalizes a number of domains, including peer-to-peer, active networking and
mobile agents.

Exploitation of a resource discovery involves assigning a task to the node
that contains the resource. The request to use the resource is handled by the
middleware operating on the node. One of the key concepts in the approach is
the use of mobile code in order to provide complete flexibility in how the resource



10th Workshop on Mobile Object Systems 175

is used. For example, suppose node A contains spare CPU capacity that the agile
computing middleware plans to exploit in order to carry out a computation. In
order to use that capacity, the middleware will dispatch code that embeds the
computation to node A, which in turn will instantiate and execute the code.
Similarly, in order to use a node’s excess storage capacity, code that is capable
of receiving, holding, and serving data would be dispatched. In the same way,
in order to use network bandwidth, code that is responsible for relaying data
would be dispatched. Mobile code plays a key enabling role in the realization of
agile computing without which the system could not be opportunistic. If a new,
previously unexpected node with resources is discovered in the military settings
we have been investigating, the probability that this node already contains the
code necessary to service the request at hand is minimal. Dynamically pushing
code allows any resource that is discovered to be put to use as needed.

Policies play an important role in regulating the autonomous behavior of
agile computing middleware. If we look at agile computings role as ”exploiting
the wiggle room” through taking advantage of underutilized system resources,
the role of policy is to define and bound the wiggle room so that people are
comfortable with allowing their resources to be manipulated and used by the
agile computing middleware. The middleware relies on the existence of policies
previously defined by humans that constrain the manipulation of resources. For
example, policies may be used to govern the movement of the robotic platforms.
Policies are defined in the KAoS framework and may range from basic constraints
(a ground robot may not venture into water) to safety constraints (a robot must
stay a minimum of three feet away from a human) to operational constraints
(a robot must not be positioned in the middle of a road and thereby blocking
traffic). Policies may also govern various aspects of information feeds (e.g., la-
tency, resolution, access control) from sensor resources. At a more abstract level
of consideration, policies may also constrain the adjustment of autonomy itself
in an agile computing context.

The FlexFeed middleware realizes the goal of agile computing for distributed
sensor networks. FlexFeed addresses several challenges including providing effi-
cient sensor data feeds, hierarchical distribution of data, and policy enforcement.
FlexFeed relies on a coordinator that computes resource utilization costs in order
to determine the best possible data distribution approach.

Ciaran Bryce from the University of Geneva then presented A Security
Model for Autonomous Systems. This talk described results from the European
project entitled SECURE (IST-2001-32486), a collaboration between the Trinity
College Dublin, the University of Cambridge (U.K.), the University of Strath-
cylde (U.K.), the University of Aarhus (Denmark) and the University of Geneva
(Switzerland).

The goal of the SECURE project is to develop a trust-based security model
for autonomous systems. Given the very large number of entities in these sys-
tems, a model of security was designed that is closer to the way that humans
establish trust than to traditional computer models. The heart of the SECURE
project is the development of a computational model of trust that provides the



176 C. Bryce and C. Czajkowski

formal basis for reasoning about trust and for the deployment of verifiable se-
curity policies. The trust model alone is not sufficient to allow us to deliver a
feasible security mechanism for the global computing infrastructure. It is equally
important that we understand how trust is formed, evolves and is exploited in
a system, i.e., the trust lifecycle; how security policy can be expressed in terms
of trust and access control implemented to reflect policy; and how algorithms
for trust management can be implemented feasibly for a range of different ap-
plications. Further activities address these issues based on an understanding of
trust derived from the formal model but also contributing to the understanding
of trust as a feasible basis for making security decisions to be embodied in the
model.

The result has been the development of a software framework encompassing
algorithms for trust management including algorithms to handle trust formation,
trust evolution and trust propagation. The framework was used in the develop-
ment of a SPAM filter application that classifies mail messages as SPAM based
on the trust established in the message sender, either via observation of his be-
haviour or from recommendations received for him. This application is being
used to help us to evaluate the SECURE approach. More information about
SECURE can be found at the web site:

http://secure.dsg.cs.tcd.ie.

Conclusions

The consensus at the end of the workshop was that the workshop was a success,
and that the theme of object mobility is present in applications, in some form
or another.

One of the issues discussed at the end of the day was whether the workshop
series should continue to be held in the context of the ECOOP conference. On the
one hand, the number of attendees has been falling over the years as the vision of
objects roaming the Internet becomes less attractive. Research into mobility has
shown that security is still a major challenge and that programming abstractions
for building mobile object applications are missing.

It was suggested that the pervasive computing field might be closer to the
mobile object domain today than is standard object-orientation. Many of the
issues that are treated in mobile objects occur in pervasive computing. In the
former, mobility occurs through objects and threads changing their site of exe-
cution. In the later, mobility occurs by physically carrying the device — and its
objects and threads — from one network environment to another. A key sugges-
tion in the future is to involve people from the pervasive computing domain in
the workshop series.

All papers and presentations of this year’s workshop and of all previous edi-
tions are available at our website:

http://cui.unige.ch/ ecoopws



	Introduction
	The Talks
	Conclusions



