
Component-Oriented Programming
(WCOP 2004)�

Jan Bosch1, Clemens Szyperski2, and Wolfgang Weck3

1 University of Groningen, Department of Computing Science, P.O. Box 800,
9700 AV Groningen, The Netherlands

Jan.Bosch@cs.rug.nl
http://segroup.cs.rug.nl

2 Microsoft, USA
CSzypers@microsoft.com

http://research.microsoft.com/~cszypers/
3 Independent Consultant, Switzerland

Abstract. This report covers the ninth Workshop on Component-
Oriented Programming (WCOP). WCOP has been affiliated with ECOOP
since its inception in 1996. The report summarizes the contributions
made by authors of accepted position papers as well as those made by
all attendees of the workshop sessions.

1 Introduction

WCOP 2004, held in conjunction with ECOOP 2003 in Darmstadt, Germany,
was the ninth workshop in the successful series of workshops on component-
oriented programming. The previous workshops were held in conjunction with
earlier ECOOP conferences in Linz, Austria; Jyväskylä, Finland; Brussels, Bel-
gium; Lisbon, Portugal; Sophia Antipolis, France; Budapest, Hungary; Malaga,
Spain and Darmstadt, Germany The first workshop, in 1996, focused on the
principal idea of software components and worked towards definitions of terms.
In particular, a high-level definition of what a software component is was formu-
lated. WCOP97 concentrated on compositional aspects, architecture and gluing,
substitutability, interface evolution and non-functional requirements. In 1998,
the workshop addressed industrial practice and developed a major focus on the
issues of adaptation. The next year, the workshop moved on to address issues
of structured software architecture and component frameworks, especially in the
context of large systems. WCOP 2000 focused on component composition, val-
idation and refinement and the use of component technology in the software
industry. The year after, containers, dynamic reconfiguration, conformance and

� The title of this report should be referenced as “Report from the ECOOP 2004
Eighth International Workshop on Component-Oriented Programming (WCOP
2004)”.

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 158–168, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

mailto:Jan.Bosch@cs.rug.nl
http://segroup.cs.rug.nl
mailto:CSzypers@microsoft.com
http://research.microsoft.com/~cszypers/


Component-Oriented Programming (WCOP 2004) 159

quality attributes were the main focus. WCOP 2002 has an explicit focus on dy-
namic reconfiguration of component systems, that is, the overlap between COP
and dynamic architectures. Last year, the workshop addressed predictable as-
sembly, model-driven architecture and separation of concerns. The 2004 instance
of the workshop had a technical and an industrialisation focus. In the technical
focus, predicting performance, testing and aspect-oriented software development
in the context of component-based software engineering were discussed. In the
second focus, issues including the application of CBSE in the context of embed-
ded systems, an analysis of the past, present and future of components and the
results of a large, European initiative, CBSENet, were discussed. WCOP 2004
had been announced as follows:

WCOP 2004 seeks position papers on the important field of component-
oriented programming (COP). WCOP 2004 is the ninth event in a series of
highly successful workshops, which took place in conjunction with every ECOOP
since 1996. COP is the natural extension of object-oriented programming to
the realm of independently extensible systems. COP aims at producing soft-
ware components for a component market and for late composition. Composers
are third parties, possibly the end users, who are not able or willing to change
components. Several component technologies emerged, including CORBA/CCM,
COM/COM+, J2EE/EJB, and .NET. There is an increasing appreciation of
software architecture for component-based systems and the consequent effects
on organizational processes and structures, as well as the software industry in
large. WCOP 2004 emphasizes the dynamic composition of component-based
systems and component-oriented development processes. Dynamically compos-
able software needs clearly specified and documented contracts, standardized
architectures, specifications of functional properties and quality attributes, and
mechanisms for dynamic discovery and binding. A typical example is web ser-
vices. A service is a running instance that has specific quality attributes, while
a component needs to be first deployed, installed, loaded, and instantiated.
Comparing service and component composition models is interesting and a pro-
posed workshop focus. Flexible development processes (such as agile ones) and
component-based development support each other in that the use of existing
components can reduce the development effort. Positions on development pro-
cesses relating to the use of components are welcome. Finally, we also solicit
reports on practical experience with component-oriented software, where the
emphasis is on interesting lessons learned.

COP aims at producing software components for a component market and for
late composition. Composers are third parties, possibly the end users, who are
not able or willing to change components. This requires standards to allow inde-
pendently created components to interoperate, and specifications that put the
composer into the position to decide what can be composed under which condi-
tions. On these grounds, WCOP’96 led to the following definition: A component
is a unit of composition with contractually specified interfaces and explicit con-
text dependencies only. Components can be deployed independently and are
subject to composition by third parties.



160 J. Bosch, C. Szyperski, and W. Weck

Often discussed in the context of COP are quality attributes (a.k.a. system
qualities). A key problem that results from the dual nature of components be-
tween technology and markets are the non-technical aspects of components, in-
cluding marketing, distribution, selection, licensing, and so on. While it is already
hard to establish functional properties under free composition of components,
non-functional and non-technical aspects tend to emerge from composition and
are thus even harder to control. In the context of specific architectures, it remains
an open question what can be said about the quality attributes of systems com-
posed according to the architecture’s constraints. As in previous years, we could
identify a trend away from the specifics of individual components and towards
the issues associated with composition and integration of components in systems.
While the call asked for position papers on the relationship to web-services and
services in general, we did not receive papers on that subject. An emphasis on
anchoring methods in specifications and architecture was noticeable, going be-
yond the focus on run-time mechanisms in the previous year. Ten papers by
authors were accepted for presentation at the workshop and publication in the
workshop proceedings; for one paper the authors withdrew the paper from the
workshop; for one paper no presenter showed up at the workshop. About 25 par-
ticipants from around the world participated in the workshop. The workshop was
organized into four morning sessions with presentations, one afternoon breakout
session with three focus groups, and one final afternoon session gathering reports
from the breakout session and discussing future direction.

2 Presentations

This section summarizes briefly the contributions of the nine presenters, as
grouped into four sessions, i.e. analysis, performance, direction of CBSE and
application of CBSE.

2.1 Analysis

The first paper, presented by Thomas Cottenier, discusses the use of aspect-
oriented programming (AOP) techniques for non-invasive component adaptation
at load-time, compose-time and runtime. The paper starts from the observation
that existing approaches to AOP operate at the code level, rather than at the
component level, destroy the locality of runtime control flow and break compo-
nent encapsulation. These issues complicate the predictability and certification
of component-based systems exploiting aspects. The paper proceeds with identi-
fying that different types of aspects are used in different phases of the lifecycle,
e.g. resource management aspects at deployment time, adapter aspects at com-
position time and dynamic adaptation aspects at run-time. The authors propose
the use of an aspect-sensitive component profile that provides expressiveness for
semantic contracts, temporal properties, quality attributes and access control
contracts. This component profile is than used in an MDA-style form of aspect
weaving to obtain the desired component and system behaviour. Judith Stafford
presented the second paper. This paper starts with the observation that software



Component-Oriented Programming (WCOP 2004) 161

development is compositional in nature, but that most analysis approaches as-
sume complete system. Consequently, the system needs to be flattened, which is
expensive and may be infeasible if external, e.g. COTS, components are present
do not allow access to their internals. To achieve compositional analysis, each
component in a system should be accompanied with an analytic asset. Once
these assets are available, compositional analysis can be performed by analyzing
input-output pathways and the specific configuration of the components in the
system. The paper raises, as open issues, the selection of analysis algorithms,
the representation of analytical assets and packaging of these assets.

2.2 Performance

Viktoria Firus presented the first paper in the performance session. This paper
discusses the notion of parametric performance contracts for components and the
compositionality of these contracts. The initial observation in the paper is that
early evaluation of software architectures is important as the design decisions
taken during the architecture design phase have a large impact on performance.
The evaluation can be used to select the best design decision. The authors iden-
tify three dimensions that are of importance for quality predicting models, i.e.
validity, compositionality and parametricity. Parametricity refers to the need for
prediction models to reflect the context dependencies of a component. The au-
thors then proceed to define parametric performance contracts. The approach
taken models the performance of a component service by a distribution which
itself depends on the performance distribution of the external services called.
Then an overview of existing work was given. The discussion following the paper
presentation focused on the difficulty of providing accurate performance predic-
tions, especially since many performance issues result from resource contention
rather than execution. An alternative approach was presented by Trevor Par-
sons. The authors present a framework for automatically detecting and assessing
performance anti-patterns in component-based systems using run-time analysis.
The authors start by highlighting the importance of performance in the context
of component-based systems. Problems of performance analysis in these systems
results from the large amounts of data, the lack of support for achieving solu-
tions and the lack of bottleneck identification. The authors attack the problem
by identifying performance anti-patterns. These patterns are identified by pro-
posed framework. The framework consists of three main parts, i.e. monitoring,
detection and assessment and visualization. The authors employ data mining
algorithms to deal with the large amounts of data generated during monitoring.
During the discussion, the main topic was that the approach seems promising,
but needs to be employed in practice before its applicability can be determined.

2.3 Direction of CBSE

Different from the first two sessions that were very technical, the third session was
of a more conceptual nature, evaluating the notion of component-based software
engineering (CBSE). The first paper, presented by Jean-Guy Schneider, discusses
an assessment of the past, present and future of CBSE. The authors analyze the



162 J. Bosch, C. Szyperski, and W. Weck

achievements of the CBSE community using six factors, i.e. functionality (what
is/does a software component?), interaction (how do we compose components?),
quality (what results in a composition of components?), management (how to
publish and retrieve existing components?), evolution and tools (what support is
needed for application development?) and methodology (how to use CBSE, e.g.
process and development models). The conclusion of the authors is that much
has been achieved, but that especially the methodology, quality and manage-
ment factors require more research before these can be considered solved. The
discussion around the paper centred on the question whether progress actually
had been made in the CBSE community or not! The second paper is this session,
presented by Stefano de Panfilis, discusses the results of the CBSEnet network
of excellence and open issues and concerns of CBSE. CBSEnet, as a project,
has resulted in several valuable outcomes, including a classification model, a
landscape document and a portal. The landscape document presents concepts
and process issues, business concerns, product related topics, issues surrounding
COTS components, domain specific concerns of component systems, e.g. business
information systems, geographical information systems and embedded systems,
and related paradigms, such as service-oriented computing and model driven en-
gineering. The presenter stresses the importance of realizing that CBSE is not a
goal in itself, but a means to improve productivity, quality and time-to-market.

2.4 Application of CBSE

The first paper in the final session, presented by Jasminka Matevska-Meyer,
addressed the description of software architectures for supporting component
deployment and dynamic reconfiguration. The authors define the requirements
that an architecture description language (ADL) should satisfy, i.e. expressive-
ness for supporting dynamic configuration, runtime component behaviour de-
scription, timing constraints, runtime dependencies and composition features
for describing subsystems. Subsequently, existing ADLs were evaluated against
these requirements, leading to the conclusion that no ADL supported all require-
ments sufficiently. As an initial step towards a solution, the authors presented a
meta-model and a reconfiguration manager. The authors identified a number of
open issues, including a concrete ADL syntax for their approach, the need for
a resource mapping view and a prototype implementation. The final paper was
presented by Ivica Crnkovic and addressed the use of software components in
the context of embedded systems. The presenter started by explaining the de-
velopments in the embedded industry, especially the automotive industry, where
the demands on software have changed from basic to complex functions, causing
multiple functions to share sensors, networks, processing nodes and actuators.
The challenge is to offer an open but dependable platform for automotive appli-
cations, i.e. to balance flexibility and predictability. The presenter proceeded to
distinguish between large and small embedded systems, focusing on the latter
type. The main conclusion from the presentation was that component technology
for embedded systems needs to focus on pre-deployment composition, the partic-
ularities of the run-time environment, fine-grained components, white-box reuse



Component-Oriented Programming (WCOP 2004) 163

and source-code level component exchange. Concluding, component-technologies
are becoming feasible for embedded systems, but require adaptation to the con-
text of embedded systems.

3 Break-Out Sessions

In the afternoon the workshop participants were organized in break-out ses-
sions addressing three specific topics, i.e. compositional reasoning on quality at-
tributes, runtime re-configuration and re-deployment and, metaphorically, ”The
Big Picture”. Each group had a nominated scribe who, as named in the subsec-
tion titles below, contributed the session summaries.

Compositional Reasoning on Quality Attributes by Ralf Reussner
This break-out group was concerned with the question how to predict or guaran-
tee quality attributes of a component based system given the quality attributes
of inner components and the architecture of their interconnection. This discus-
sion started by listing and classifying the quality attributes the participants were
interested in. A classification and a comprehensive overview on quality attributes
is given in the ISO 9126 standard. Quality attributes of particular interest were:
availability / reliability, performance (throughput, reaction time, response time)
and resource consumption (memory, cache, etc.). We agreed to consider ”scala-
bility” a meta-quality attribute, as it describes changes of a quality attribute by
varying resources, such as the response time of a clustered database application
depending on a changing number of processors. Quality attributes can be clas-
sified according to the kind of statements one wants to derive from them. (a)
predictions are of concern for quantitatively measured quality attributes, such
as reliability or performance. (b) Guarantees are made by non-quantitative at-
tributes, such as correctness, safety or security. (c) Monotonic or preservation
statements are of concern if quality attributes can be measured in a discrete
ordered scale (such as ”low, medium, good”). As a special case, this scale in-
cludes all quantitatively measured attributes. Generally, quality attributes can
be classified according their kind of metric: stochastic / deterministic and dis-
crete / continuous. That is, the correlation among attributes depends at least
also on the system’s architecture (in the example, determining the presence or
absence of redundancy). One factor of the complexity of reasoning on quality
attributes are their interdependencies. A change of a system usually affects more
than one quality attribute. For example, improving security by adding encrypted
communication channels will most likely affect performance due to the compu-
tation costs for encryption and decryption. Remarkably, a pair of attributes is
not always positively or negatively correlated. For example, adding replicated
computing resources to increase performance may also increase reliability due to
an increased fault-tolerance. However, exactly the inverse relationship also ex-
ists: by adding on a load-balancer and increasing network-traffic the replication
of computing resources improves performance but lowers the reliability of the
overall system. An important issue is to understand, that basically all quality at-
tributes of a component are not constant properties of the component itself, but



164 J. Bosch, C. Szyperski, and W. Weck

are highly dependent on the component context. Basically, the quality attributes
depend on three groups of influence factors:
– The usage profile of the component: The way a component’s services are

used (the frequency, the parameters, etc) depend on the component’s con-
text. However, it is clear that the quality exhibited depend on this usage
profile. For reliability, this is true by definition, as software reliability is de-
fined as a function of the profile. However, the performance of a component
service will also frequently depend significantly on the arguments provided
for service parameters. (A download of 10 KB will be considerably faster
than a download of 20 MB.)

– The use-relationship to other components: A component service most often
makes use of several other external services. As a consequence, the quality of a
service also depends on the qualities of external services. An highly unreliable
external service will also influence the reliability of services building upon it.

– The deployed-on-relationship: Each component is deployed on resources, such
as processing nodes, network connections or other resources. Obviously, the
performance of the deployment hardware, the middleware, virtual machines,
and the like influences reliability and performance of a component heavily.

Resource contention, leading to discontinuous quality behaviour, can happen
via the use-relationship and the deployed-on-relationship. Any compositional
reasoning has to take both relationships into account. The composition of quality
attribute values can be either symmetric or asymmetric. Asymmetric composi-
tion of quality attribute values happens, if a component ”inherits” the quality of
another component. For example, an insecure component used within a secured
environment (such as a sandbox) will become ”secure”. Symmetric composition
of quality attribute occurs when the quality of an outer component can be com-
puted by a commutative function of the inner components. The composition
itself can be performed by many composition-operators. In principle, each ar-
chitectural pattern or style defines a composition operator. However, one could
ask for the minimal set of basic composition operators. Any composition opera-
tor should be expressible as a finite combination of basic composition operators.
Some candidates for such basic composition operators can be (motivated by oper-
ators of process algebras): parallel, sequential, alternative, refinement, extension.
Finally, we listed different calculi and their use for prediction models: Queuing
Models (performance), Petri-Nets (concurrency), Finite State Machines (proto-
cols), Markov-Models (reliability), Process Algebras (protocol), symbolic (logic)
representations (memory, performance), timed-logics (time, liveness). The fol-
lowing participants participated in the break-out group: Steffen Becker, Thomas
Cottenier, Viktoria Firius, Trevor Parsons, Ralf Reussner, Sibylle Schupp and
Richard Torkar.

Runtime Re-configuration and Re-deployment by Jasminka Matevska-
Meyer
The main concern of this break-out group was the definition of the scope of
runtime re-configuration and re-deployment and the main issues to enable them.



Component-Oriented Programming (WCOP 2004) 165

First we compared the common goals of our projects and thus identified the top-
ics of interest. This helped us to distinguish re-configuration from re-engineering
approaches. Re-configuration is the process of (a) changing, (b) re-building and
(c) re-deploying a system. It is thus a subset of re-engineering processes, includ-
ing techniques to perform the necessary changes to the system while maintaining
its consistency. The process of reconfiguration can include the identification of
change requests (e.g. context dependencies), but it mainly focuses on processing
those change requests. Hence, it only ensures the technical consistency of the sys-
tem. Questions concerning the sense of the reconfiguration are to be answered by
re-engineering approaches. Runtime re-configuration takes place at system run-
time. The affected sub-system should be changed, re-build and re-deployed at
system runtime. Runtime re-deployment should also include consistency checks
of the system. It can be seen as an extension of hot deployment and dynamic
reloading including consistency checks. We consider ”rich” components (with
information on services, connections, composition properties, hence more than
mere executable code). The main problem here is the application at runtime.
To successfully perform a runtime re-configuration we need much more infor-
mation about the running system than its structural dependencies. We need an
appropriate architecture description including (1) structural view (describing the
hierarchical system structure and enabling its composition), (2) dynamic view
(description of the system’s runtime behaviour, particularly concerning the use
dependencies among instances of components) and (3) resource mapping view. A
well defined mapping between the views including relationships between descrip-
tion and implementation (reflection) is essential to identify and isolate the af-
fected sub-system. Furthermore, we need techniques for checking consistency like
monitoring, simulation, model checking etc. For identifying necessary changes
we need an additional definition of environmental (contextual) dependencies. It
becomes clear that enabling runtime re-configuration while maintaining the con-
sistency of the system is a very complex problem. So, a legitimate question about
the sense of those approaches arises. There are a variety of systems which are
characterised through high availability (e.g. mission critical systems) and have to
be changed at runtime. Performance aspects, like load balancing (horizontal and
vertical) or resource driven adaptation (foraging) could also trigger a runtime
reconfiguration. Finally, our group briefly proposed our concrete approaches con-
cerning runtime re-configuration of component-based systems: (1) architecture-
based (PIRMA) considering runtime dependency graphs, (2) resource-contract
driven (CoDAMoS) as a context driven adaptation of mobile services and (3)
Programming driven (XParts) treating dynamic distributable Java components.
The following participants participated in the break-out group: Anders Gravdal,
Jasminka Matevska-Meyer, Peter Rigole, Ulf Schreier and Bart de Win.

The Big Picture by Jean-Guy Schneider
In the following, we will summarize the results of the discussion of the breakout
group on ”the Big Picture”. The main motivation of this breakout group was to
step back from current trends and set component-based Software Engineering



166 J. Bosch, C. Szyperski, and W. Weck

(CBSE) into a bigger picture. In this context, we discussed various issues related
to CBSE from a broader perspective and tried to come up with some directions
towards which the discipline might be heading. As a starting point, we discussed
the question where we could apply a component-based approach for software
development. It was argued by one group member that CBSE is very time con-
suming, requires dual application development, and considerable knowledge in
the respective application domain is essential. Furthermore, a group of experts
is needed to apply CBSE successfully (”For most normal people CBSE is way
too hard!”). In this context it was also mentioned that the existence of reusable
components is not only a precondition for CBSE, but also a sign of a matur-
ing domain. Hence, we concluded that CBSE can only be applied in mature
domains where reusable components already exist. But what are the problems
of finding reusable components and composing them in such a domain? It was
stated that component repositories are not the issue, but skills in social dialogs
are: talking to people to find out whether a component you need is available
seems to be a much more promising approach than searching in a repository.
Dedicated component repositories are not easy to set up and use as it is difficult
to come up with suitable ontologies to classify components. Furthermore, ad-hoc
search strategies are often more successful (”Why worry about UDDI, one can
use Google”). What about composing components? It was argued that the real
complexity is not in interfacing with existing components, but the real problem
lies in the semantics of the data. Hence, we concluded that component models
should focus (more) on standardizing component connections (”Standards are
the key to setting up a component market at all”). So what is the situation with
web services? One group member pointed out that web services are basically
a trick by commercial vendors to make both developers and end users select
their respective platforms, but, as such, are nothing else than components of-
fering their services on the web. Hence, we came to the agreement that ”web
service” is probably not such a good term and should be replaced by something
like ”e-Service”. There was also some consensus that the people in the discipline
are working too much on the solution domain (components, component models,
composition environments etc.), but not enough in the problem domain (what
kind of problems are suitable for CBSE). However, we acknowledged that CBSE
has solved many technical issues - other areas have been addressed, but not yet
solved. Does CBSE cover all aspects of Software Engineering? This turned out
to be quite a difficult question to answer. After some discussion it was suggested
that CBSE covers some of the traditional SE life-cycle activities, but it does a
rather poor job when it comes down to requirements engineering. However, we
failed to clearly identify which aspects are covered well and which ones poorly
(or not at all). Hence, this is a topic where further investigations are needed.
Finally, we addressed the question whether CBSE is just hype and will disap-
pear in five years or is it here to stay. Not surprisingly (and probably due to
a certain bias within the group), we agreed that CBSE is here to say and will
not disappear in the near future. Unfortunately, we did not have the time to talk



Component-Oriented Programming (WCOP 2004) 167

about many more issues that were raised during the lively discussion. Summing
up what we were able to talk about, we came to the conclusions that

– it is the market, legal issues, and standardization, but not technology which
will govern the success of CBSE,

– CBSE works well for product lines and in-house development, but not on
the open market, and

– specialized people are needed to cope with the technology/complexity to de-
velop applications using component-based Software Engineering approaches.

The following people participated in this breakout group (in alphabetical or-
der): Ivica Crnkovic, Bernhard Groene, Stefano De Panfilis, Jean-Guy Schneider,
David Thomas, and Hoang Truong.

4 Final Words

As organizers, we look back on yet another highly successful workshop on
component-oriented programming. We are especially pleased with the constantly
evolving range of topics addressed in the workshops, the enthusiasm of the atten-
dees, the quality of the contributions and the continuing large attendance of more
than 25 and often as many as 40 persons. We would like to thank all participants
of and contributors to the ninth international workshop on component-oriented
programming. In particular, we would like to thank the scribes of the break-out
groups.

5 Accepted Papers

The full papers and additional information and material can be found on the
workshop’s Web site (http://research.microsoft.com/cszypers/events/
WCOP2004/). This site also has the details for the Microsoft Research techni-
cal report that gathers the papers and this report. The following list of accepted
papers is sorted by the name of the presenting author.

1. Ivica Crnkovic (Mlardalen University, Sweden). ”Component-based approach
for embedded systems”

2. Thomas Cottenier, Tzilla Elrad (Illinois IT, USA). ”Validation of context-
dependent aspect-oriented adaptations to components”

3. Jasminka Matevska-Meyer, Wilhelm Hasselbring and Ralf H. Reussner (Uni-
versity of Oldenburg, Germany). ”Software architecture description support-
ing component deployment and system runtime reconfiguration”

4. Stefano De Panfilis (Engineering Ingegneria Informatica S.p.A., Italy) and
Arne J. Berre (SINTEF, Norway). ”Open issues and concerns on component-
based software engineering”

5. Trevor Parsons (Dublin City U, Ireland) and John Murphy (University Col-
lege Dublin, Ireland). ”A framework for automatically detecting and assess-
ing performance antipatterns in component based systems using run-time
analysis”

http://research.microsoft.com/�cszypers/events/
WCOP2004/


168 J. Bosch, C. Szyperski, and W. Weck

6. Ralf H. Reussner, Viktoria Firus and Steffen Becker (University of Olden-
burg, Germany). ”Parametric performance contracts for software compo-
nents and their compositionality”

7. Jean-Guy Schneider and Jun Han (Swinburne University of Technology, Aus-
tralia). ”Components - the past, the present, and the future”

8. Judith A. Stafford (Tufts University, USA) and John D. McGregor Clemson
University, USA). ”Top-down analysis for bottom-up development”

9. Amir Zeid, Michael Messiha and Sami Youssef (American University Cairo,
Egypt). ”Applicability of component-based development in high-performance
systems”


	Introduction
	Presentations
	Analysis
	Performance
	Direction of CBSE
	Application of CBSE

	Break-Out Sessions
	Final Words
	Accepted Papers



