
Software Evolution:
A Trip Through Reflective, Aspect,

and Meta-data Oriented Techniques

Walter Cazzola1, Shigeru Chiba2, and Gunter Saake3

1 DICo - Department of Informatics and Communication,
Università degli Studi di Milano,

Milano, Italy
cazzola@dico.unimi.it

2 Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology,

Tokyo, Japan
chiba@is.titech.ac.jp

3 Institute für Technische und Betriebliche Informationssysteme,
Otto-von-Guericke-Universität Magdeburg,

Magdeburg, Germany
saake@iti.cs.uni-magdeburg.de

Abstract. Previous workshops related to aspect oriented software development,
reflection organized at previous ECOOP conferences (e.g., RMA’001.and AOM-
MeT’012.) and conferences on the same topics (Reflection’01 and AOSD since
2002) have pointed out the growing interest on these topics and their relevance in
the software evolution as techniques for code instrumentation. Very similar con-
clusions can be drawn by reading the contributions to the workshops on unantic-
ipated software evolution (USE 2002 and USE 20033.).

Following the example provided by these venues, the RAM-SE (Reflection,
AOP and Meta-Data for Software Evolution) workshop has provided an oppor-
tunity for researchers with a broad range of interests in reflective techniques and
aspect-oriented software development to discuss recent developments of such a
techniques in application to the software evolution.

The workshop main goal was to encourage people to present works in progress.
These works could cover all the spectrum from theory to practice. To ensure cre-
ativity, originality, and audience interests, participants have been selected by the
workshop organizers on the basis of 5-page position paper. We hope that the
workshop will help them to mature their ideas and to improve the quality of their
future publications based on the presented work.

The workshop proceedings are available as research report C-186 of the De-
partment of Mathematical and Computing Sciences of the Tokyo Institute of
Technology and freely downlodable from the workshop web site4.

1 Details at http://www.disi.unige.it/RMA2000.html
2 Details at http://ecoop2001.inf.elte.hu/workshop/AOMMeT-ws.html
3 Details at http://www.joint.org/use/
4 RAM-SE04 Web Site: http://homes.dico.unimi.it/RAM-SE04.html

J. Malenfant and B.M. Østvold (Eds.): ECOOP 2004, LNCS 3344, pp. 118–132, 2004.
c©Springer-Verlag Berlin Heidelberg 2004

mailto:cazzola@dico.unimi.it
mailto:chiba@is.titech.ac.jp
mailto:saake@iti.cs.uni-magdeburg.de


Software Evolution 119

Workshop Description and Objectives

Software evolution and adaptation is a research area, as also the name states, in con-
tinuous evolution, that offers stimulating challenges for both academic and industrial
researchers. The evolution of software systems, to face unexpected situations or just
for improving their features, relies on software engineering techniques and methodolo-
gies. Nowadays a similar approach is not applicable in all situations e.g., for evolving
nonstopping systems or systems whose code is not available.

The evolution of software systems, to face unexpected situations or just for improv-
ing their features, relies on software engineering techniques and methodologies. Nowa-
days a similar approach is not applicable in all situations e.g., for evolving nonstopping
systems or systems whose code is not available.

Features of reflection such as transparency, separation of concerns, and extensibil-
ity seem to be perfect tools to aid the dynamic evolution of running systems. Aspect-
oriented programming (AOP in the next) can simplify code instrumentation whereas
techniques that rely on meta-data can be used to inspect the system and to extract the
necessary data for designing the heuristic that the reflective and aspect-oriented mech-
anism use for managing the evolution.

We feel the necessity to investigate the benefits brought by the use of these tech-
niques on the evolution of object-oriented software systems. In particular we would
determine how these techniques can be integrated together with more traditional ap-
proaches to evolve a system and the benefits we get from their use.

The overall goal of this workshop was that of supporting circulation of ideas be-
tween these disciplines. Several interactions were expected to take place between re-
flection, aspect-oriented programming and meta-data for the software evolution, some
of which we cannot even foresee. Both the application of reflective or aspect-oriented
techniques and concepts to software evolution are likely to support improvement and
deeper understanding of these areas. This workshop has represented a good meeting-
point for people working in the software evolution area, and an occasion to present re-
flective, aspect-oriented, and meta-data based solutions to evolutionary problems, and
new ideas straddling these areas, to provide a discussion forum, and to allow new col-
laboration projects to be established. The workshop was a full day meeting. One part of
the workshop was devoted to presentation of papers, and another to panels and to the
exchange of ideas among participants.

Workshop Topics and Structure

Every contribution that exploits reflective techniques, aspect-oriented programming
and/or meta-data to evolve software systems were welcome. Specific topics of inter-
est for the workshop have included, but were not limited to:

– reflective middleware and environments for software evolution;
– adaptative software components;
– feature-oriented adaptation;
– aspect interference and composition for software evolution;
– evolution and adaptability;



120 W. Cazzola, S. Chiba, and G. Saake

– MOF, code annotations and other meta-data facilities for software evolution;
– intercession and introspection;
– software evolution tangling concerns.

To ensure lively discussion at the workshop, the organizing committee has chosen
the contributions on the basis of topic similarity that will permit the beginning of new
collaborations. To grant an easy dissemination of the proposed ideas and to favorite an
ideas interchange among the participants, accepted contributions are freely download-
able from the workshop web page:

http://homes.dico.unimi.it/RAM-SE04.html.

The proceedings of the event is also available as research report C-186 of the Dept.
of Mathematical and Computing Sciences of the Tokyo Institute of Technology.

The workshop was a full day meeting organized in four sessions. Each session has
been characterized by a dominant topic that perfectly describes the presented papers
and the related discussions. The four dominant topics were: reflective middleware for
software evolution, software evolution and refactoring, join points and crosscutting
concerns for software evolution, and parametric aspects and generic aspect languages.
During each session, half time has been devoted to papers presentation, and the rest
of the time has been devoted to debate about the on-going works in the area, about
relevance of the approaches in the software evolution area and the achieved benefits.
The discussion related to each session has been brilliantly lead respectively by Yvonne
Coady, Joseph W. Yoder, Günter Kniesel and Hidehiko Masuhara.

The workshop has been very lively, the debates very stimulating, and the high num-
ber of participants (see appendix A) testifies the growing interest in the application of
reflective, aspect- and meta-data oriented techniques to software evolution.

Important References

To an occasional reader who would like to deepen his(her) knowledge about the topics
of this workshop (that is, to learn more about reflection, aspect-oriented programming
and software evolution), we suggest to read the following basic contributions:

– Pattie Maes. Concepts and Experiments in Computational Reflection. In Proceed-
ings of the 2nd Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA’87), pages 147–156, Orlando, Florida, USA, October
1987. ACM.

– Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
11th European Conference on Object Oriented Programming (ECOOP’97), LNCS
1241, pages 220–242, Helsinki, Finland, June 1997. Springer-Verlag.

– Keith H. Bennett and Václav T. Rajlich. Software Maintenance And Evolution:
A Roadmap. In Anthony Finkelstein, editor, The Future of Software Engineering,
pages 75–87. ACM Press, 2000.

Whereas, to learn more about the use of reflective or aspect-oriented techniques in
the software evolution and maintenance we suggest to look at the following proceedings
and books:



Software Evolution 121

– Walter Cazzola, Robert J. Stroud, and Francesco Tisato, editors, Reflection and
Software Engineering, LNCS 1826. Springer, Heidelberg, Germany, June 2000.

– Akinori Yonezawa and Satoshi Matsuoka, editors. Proceedings of 3rd International
Conference on Metalevel Architectures and Separation of Crosscutting Concerns
(Reflection’2001), LNCS 2192. Kyoto, Japan, September 2001. Springer.

– The Proceedings of the AOSD Conferences from 2002 to 2004. Available from
http://aosd.net/archive/index.php.

Besides, to keep up to date with the evolution of the software evolution research
area we suggest to consult the following page:

– Program-Transformation.org:

http://www.program-
transformation.org/twiki/bin/view/Transform/SoftwareEvolution

which collects a lot of useful links related to software evolution (in a general sense).

1 Workshop Overview: Session by Session

In this session of the report we gather together the opinions of the session chairmen (and
woman) relatively to the session and the panel they have lead, and their considerations
about the future trends.

Session on Reflective Middleware for Software Evolution
Summary by Yvonne Coady (Session Chair, University of Victoria, Canada)

There were three papers in the session, all related to reflective middleware for the
software evolution.

[2] Reflections on Programming with Grid Toolkits. Emiliano Tramontana (Università
di Catania, Italy) and Ian Welch (Victoria University of Wellington, New Zealand).

Emiliano Tramontana gave the talk.
This paper presents an approach for developing Grid applications. In this approach,

developers need not include any code handling toolkit specific concerns nor adapta-
tion for changing conditions of the environment. This proposed solution consists of
two aspects. Firstly, applications are developed in a centralised manner and automat-
ically transformed to be distributed into the Grid, where they use a suitable commu-
nication primitive. Secondly, an open implementation of Globus is used to enable dy-
namic changes at run-time of the communication infrastructure and the service con-
tainer.

Panel session: During the panel session Emiliano was asked if the development of
the client and the server side of a Grid system took place all at once or in a coordinated
way. His answer was that they are developed separately and the approach proposes
to have only a coordinated way to add/remove nonfunctional concerns to/from both
sides.



122 W. Cazzola, S. Chiba, and G. Saake

Follow-up questioning then asked whether just the proposed reflective Grid, alone,
could satisfy both the need for adapting the application and the middleware. Emiliano’s
answer was that distribution would still need to be added into the application before
its execution could be affected/adapted by the reflective Grid, especially when the ap-
plication is initially sent for execution to a host that does not provide all the reflective
middleware.

[3] Using Aspects to Make Adaptive Object-Models Adaptable. Ayla Dantas, Paulo
Borba (Federal University of Pernambuco, Brazil) and Joe Yoder and Ralph Johnson
(University of Illinois at Urbana-Champaign, USA).

Paulo Borba gave the talk.
This paper argues that AOP and adaptive object-models (AOM) play complemen-

tary roles for structuring adaptive applications. Whereas AOM support flexible dynamic
adaptations by representing business rules and entities as data, AOP modularizes the
crosscutting adaptation code. In addition to the results presented in the paper, further
metrics were presented to quantifiably compare the approaches.

Panel session: The first part of the discussion was about the importance of metrics
to provide a meaningful comparison, and the particularly nice job the authors did in the
presentation. Follow-up discussion included issues such as the use of generic aspects
for implementing adaptation concerns. The general consensus at the end of the discus-
sion was that people thought they would be indeed useful to have reusable adaptation
aspects.

[4] RAMSES: a Reflective Middleware for Software Evolution. Walter Cazzola (Uni-
versità di Milano, Italy) and Ahmed Ghoneim and Gunter Saake (University of
Magdeburg, Germany).

Ahmed Ghoneim gave the talk.
This paper presents a middleware for dynamically evolving and validating consis-

tency of software systems against run-time changes. This middleware is based on a
reflective architecture that provides objects with the ability to dynamically change their
behavior by using design information. The evolution takes place in two steps: first a
meta-object (the evolutionary meta-object) plans a possible evolution against the de-
tected external events then another meta-object (the consistency checker meta-object)
validates the feasibility of the proposed plan before really evolving the system.

Panel session: The first question involved the use of XMI schemas and their use.
XMI is XML Meta Interchange, and this approach extracts XMI schemes from the UML
models, and then uses this data at run-time. A second question involved the ability to
drive both evolution and consistency. Both the meta-objects in this approach (evolution-
ary and consistency checker) inherit engine, which includes a set of rules. Script rules
are used for modifying the reified XMI for run-time events and check the modified XMI.

Session on Software Evolution and Refactoring
Summary by Joe Yoder (Session Chair, The Refactory Inc.)

This session presented four talks on how to handle dynamic aspects and adaptability
with AOP. These papers outlined some interesting approaches to adapt to changing



Software Evolution 123

requirements which include frameworks for dynamically refactoring separation of con-
cerns and dynamic ways to deal with runtime adaptability.

The outlines of the talks are as follows:

[5] Ruzanna Chitchyan (Lancaster University, UK) presented the work on “AOP and
Reflection for Dynamic Hyperslices”. This paper described a model for dynamic
hyperslices which uses a particular aspect-oriented approach - Hyperspaces - for
decomposition and reflection as a means for composition of software modules.
This model allows for structured, dynamic, incremental change introduction and
rollback, thus, supporting run-time evolution yet preserving component modularity.
The applicability of the model is illustrated through a schema adaptation scenario.

[6] Peter Ebraert (Vrij Universiteit Brussel) presented the work on “A Reflective Ap-
proach to Dynamic Software Evolution”. The paper outlines a solution that allows
systems to remain active while they are evolving. The approach goes out from the
principle of separated concerns and has two steps. In the first step, they make sure
that the system’s evolvable concerns are cleanly separated by proposing aspect min-
ing and static refactorings for separating those concerns. In the second step, they
allow every concern to evolve separately. A preliminary reflective framework that
allows dynamic evolution of separate concerns is outlined.

[7] Yvonne Coady (University of Victoria) presented the work on “OASIS: Organic As-
pects for System Infrastructure Software Easing Evolution and Adaptation through
Natural Decomposition”. The OASIS project explores the potential of aspects to
naturally shape crosscutting system concerns as they grow and change. This paper
describes ongoing work to modularize evolving concerns within high-performance
state-of-the-art systems software, and outlines some of the major challenges that lie
ahead within this domain.

[8] Yoshiki Sato (Tokyo Institute of Technology) presented the work on “Negligent
Class Loaders for Software Evolution”. This paper presents a negligent class loader,
which can relax the version barrier between class loaders for software evolution.
The version barrier is a mechanism that prevents an object of a version of a class
from being assigned to a variable of another version of that class. In Java, if a class
definition (i.e. class file) is loaded by different class loaders, different versions of
the class are created and regarded as distinct types. If two class definitions with
the same class name are loaded by different loaders, two versions of the class are
created and they can coexist while they are regarded as distinct types.

The following highlight the main questions the presenters and the audience dis-
cussed after the presentations:

– How do you ensure consistency when making changes at run-time? Sometimes the
model needs to clearly define the adaptability parameters up front, thus managing
consistency.

– How do you deal with performance issues while dynamically loading new versions
with the class loader? Some well known techniques were discussed such as static
code translation, just-in-time hook insertion and modified JVM.

In summary, providing dynamic ways to adapt to changing requirements has some
great potential benefits for software developers. Using some well-known reflection tech-
niques in conjunction with AOP can really assist with this by separating what changes



124 W. Cazzola, S. Chiba, and G. Saake

from what doesn’t and by allowing ways to refactor your systems by dynamically ap-
plying new weavings for the evolving separation of concerns during run-time. Also, by
using AOP to separate adaptable concerns shows promise for assisting with run-time
adaptations.

Session on Join Points and Crosscutting Concerns for SW Evolution
Summary by Günter Kniesel (Session Chair, University of Bonn, Germany)

This and next session were dedicated to the relation between software evolution and
aspect oriented software development (AOSD). This session focused on the influence
of join point models, a central concept of AOSD, on evolution and evolvability. The
three papers in this session addressed this issue from different perspectives:

[9] Nicolas Pessemier (INRIA, France) presented the paper “Components, ADL &
AOP: Towards a Common Approach”. In his talk he motivated the need for uni-
fication and explained the approach taken in the FRACTAL project. FRACTAL
integrates the notion of components with ports and port binding from the domain
of architecture description languages with the AOSD specific notion of join points.

[10] Naoyasu Ubayashi (Kyushu Institute of Technology, Japan) presented the paper
“An AOP Implementation Framework for Extending Join Point Models”. He argued
that current join point models are too rigid and extensible join point models are
needed instead to foster unanticipated evolution. Then he introduced a reflective
API for defining join points, which gives programmers complete control over join
points and the kind of weaving actions to be performed at a specific join point.

[11] Sonia Pini (University of Genova, Italy) presented the paper “Evolving Pointcut
Definition to Get Software Evolution”. She explained the need for a formal model
of join points and showed that no satisfactory one is available so far for dynamic
join points. Then she introduced the use of UML statechart diagrams as a precise
specification of dynamic join points. She showed that evolving the diagram con-
cisely captures evolution scenarios that are hard to express otherwise (in AspectJ,
for instance).

In the subsequent discussion the first paper attracted no critical remarks regarding
the chosen approach or its utility. The asked questions only requested clarification of
technical details of the used join point model.

For the second paper its reliance on a reflective API within an AOP approach trig-
gered a lively discussion. Some attendants argued that such a combination should be
avoided since AOP had been motivated in the first place by the desire to provide a sim-
pler abstraction than full reflection. Others pointed out that it may be worthwhile to go
“back to the roots” and review “old” design decisions in the light of new experience.

The third paper was received with a mix of positive surprise about the simplic-
ity and elegance of the statechart based join point specification and some skepticism
about the compositionality of different specifications and the scalability of the ap-
proach.



Software Evolution 125

Session on Parametric Aspects and Generic Aspect Languages
Summary by Hidehiko Masuhara (Session Chair, University of Tokyo, Japan)

This session had three talks on AOP languages and frameworks to develop software
systems that are more robust to software evolution.

By supporting separation of crosscutting concerns, aspect-oriented programming
languages, AspectJ in particular, are known to be useful to develop more reusable pro-
grams. For example, Hannemann and Kiczales presented that some of the GoF design
patterns can be provided as reusable aspects in AspectJ [12]. However, the experiences
also revealed that current AOP languages are not sufficient for providing certain kinds of
reusable aspects. The three talks in this session addressed the problem by introducing
aspects whose pointcuts, introductions and advices are parameterized. These generic
definitions can be tailored to different applications by instantiating some of their pa-
rameters. The outlines of the talks are as follows (in the order presented):

[13] Jordi Alvarez Canal (Universitat Oberta de Catalunya, Spain) presented the work
on “Parametric Aspects: A Proposal”, in which parametric aspects can take type pa-
rameters, and are useful to define abstract factory patterns in a domain-independent
way and simple Enterprise Java Beans.

[14] Philip Greenwood (Lancaster University, UK) presented the work on “Dynamic
Framed Aspects for Dynamic Software Evolution”, in which aspects support dy-
namic changes in software systems. The approach is based on the Framed Aspects
to parameterize the aspects for a specific use.

[15] Tobias Rho (University of Bonn, Germany) presented the work on “Evolvable Pat-
tern Implementations need Generic Aspects”, which points out that the evolution
of design patterns is rarely supported in existing AOP languages. He also intro-
duced the language LogicAJ, an extension of AspectJ in which homogeneously
generic aspects are supported. LogicAJ is based on the use of logic meta variables
as placeholders for arbitrary program elements, a concept borrowed from logic pro-
gramming languages.

After the talks, the presenters and the audience discussed the following questions:

– How those proposals are different from each other? While all three talks proposed
some form of generic aspects they differ in terms of their primary target, syntax,
generality, and so forth. LogicAJ is an attempt to provide general framework to
cover various kinds of generic aspects; Parametric Aspects offer simpler syntax;
and Framed Aspects are more interested in supporting product lines, rather than
supporting reusable design patterns.

– How those proposals support for software evolution? Generally, they all improve
modularity of software systems so that independently evolving parts can be sepa-
rated from others.

– How those proposals ensure the correctness of the generated aspects? Since all
those proposals generate base code from generic definitions, it might be possible
to generate incorrect code. It would be better if the system could check the safety
of a generic aspect and the code that instantiates the aspect into specific context



126 W. Cazzola, S. Chiba, and G. Saake

so that incorrect code is never generated5. All of the proposals currently check the
correctness after they generated base code for specific contexts. LogicAJ aims at
checking the correctness before generating aspects by extending its logical frame-
work to static types. Both parametric aspects and framed aspects are willing to offer
some means to check before generation as well.

To summarize the session, generic or parametric AOP languages and frameworks are
promising means to develop more evolvable and better modularized software systems.
At the same time there are also interesting challenges such as supporting rich kind of
evolution and statically ensuring correctness.

2 Software Evolution Trends: The Organizers’ Opinion

The authors, with this report, would like to go beyond the mere presentation of statistical
and generic information related to the workshop and to its course. They try to speculate
about the current state of art of the research in the field and to evaluate the role of
reflection, AOSD and meta-data in the software evolution.

The Role of Reflection in Software Evolution
Comment by Walter Cazzola (Università di Milano)

In [16], software evolution is defined as a kind of software maintenance that takes place
only when the initial development was successful. The goal consists of adapting the
application to the ever-changing, and often in an unexpected way, user requirements
and operating environment.

Software evolution, as well as software maintenance, is characterized by its huge
cost and slow speed of implementation. Often, software evolution implies a redesign of
the whole system, the development of new features and their integration in the existing
and/or running systems (this last step often implies a reboot of the system). The redesign
and develop steps correspond to an economic effort from the software producer that
often does not have an immediate benefit from this extra work whereas the integration
step involves also the user of the system.

The chimera of the current and future trends in this discipline is to beat down the cost
of evolving a system. The most recognized approach consists of minimizing the impact
of the software evolution on the activity of the user and of improving the software adapt-
ability. This statement brings forth the need for a system to manage itself to some ex-
tent, to inspect components’ interfaces dynamically, to augment its application-specific
functionality with additional properties, and so on. To deal with these issues many re-
searchers are developing middleware for supporting the software evolution without af-
fecting the activity or the property of the system that has to be evolved. Few examples of
this kind of middleware have been presented also to our workshop, see [3], [7] and [4].

5 Note that it can be checked in some situations as we see in the programming languages with
polymorphic types, such as ML.



Software Evolution 127

Reflection is a discipline that is steadily attracting attention within the community of
object-oriented researchers and practitioners. From a pragmatic point of view, several
reflective techniques and technologies lend themselves to be employed in addressing
the software evolution issue. On a more conceptual level, several key reflective princi-
ples could play an interesting role as general software design and evolution principles.
Even more fundamentally, reflection may provide a cleaner conceptual framework than
that underlying the rather ‘ad-hoc’ solutions embedded in most commercial platforms
and technologies, and so on. The transparent nature of reflection makes it well suited to
address problems such as evolution of legacy systems, customizable software, product
families, and more. The properties of transparency, separation of concerns, and extensi-
bility supported by reflection have largely been recognized as useful for software devel-
opment and design. These features seem perfect tools to aid the dynamic evolution of
running systems providing the basic mechanisms for adapting (i.e., evolving) a system
without directly altering or stopping the existing system.

A reflective architecture represents the perfect structure that allows running systems
to adapt themselves to unexpected external events, i.e., to consistently evolve. In this
kind of reflective architecture, the system running in the base-level should be the one
prone to be adapted, whereas software evolution should be the nonfunctional feature
realized by the meta-level system. Reflection plays a fundamental role allowing the
meta-level system of inspecting and instrumenting the code of the base-level system in
a transparent way and independently of the knowledge of such code. This approach,
therefore, permits of developing the software evolution as a separate and independent
system that could be connected at any time to the system to be adapted without any
specific requirement.

In theory, this kind of middleware can provide many benefits (e.g., dynamic patching
to critical failures without stopping the system and the consequently the postponement
of the system redesigning) but it is not to simple and immediate to realize. To evolve the
base-level system and maintain it consistent and stable, the meta-level system must face
many problems. The most important are: (1) to determine which events cause the need
for evolving the base-level system (2) how to react on events and the related evolutionary
actions (3) how to validate the consistency and the stability of the evolved system and
eventually how to undo the evolution, (4) to determine which information are need to the
evolution and/or are involved by the evolution. Therefore, the future research in reflective
middleware for software evolution should face these open issues and many others.

The Role of AOP in Software Evolution
Comment by Shigeru Chiba (Tokyo Institute of Technology)

AOP (Aspect Oriented Programming) gives us a new concept called aspects, which im-
prove our ability for modeling and designing software. In traditional OOP (Object Ori-
ented Programming), we must decompose software into a number of objects. A group
of objects that have similar functionality is categorized as a class. We have been devel-
oping and maintaining software by using a class as a minimum unit of maintenance.
However, in practice, there are usually several different means of decomposing soft-
ware into objects. Developers could take multiple viewpoints for decomposition; every
viewpoint would cause different decomposition. A problem is that there is no single



128 W. Cazzola, S. Chiba, and G. Saake

best viewpoint for decomposition. Some viewpoints would be good for developing or
maintaining some parts of software and others would be good for doing other parts.

AOP enables us to decompose software from various viewpoints – aspects – as
well as the dominant viewpoint represented by classes. For example, in the AspectJ
language, some functionality that must be spread over several classes in a traditional
OOP language can be separated into an independent module called an aspect. In AOP,
such functionality is called a crosscutting concern.

Since AOP enables better modeling and designing of software, it is absolutely use-
ful technology for software evolution. Well modeled and designed software is easy to
maintain for evolution. If a crosscutting concern is separated as an independent module,
that concern can be maintained without touching other modules. This fact will reduce
maintenance costs of software evolution.

An issue actively discussed during the workshop was the maintainability of aspects
themselves. Speakers pointed out that the implementation of some aspects heavily de-
pends on other class-based modules and hence those aspects cannot be maintained in-
dependently of the other modules. In other words, aspects are in separate files but they
must be edited when the classes that the aspects depend on are edited. Such aspects
cannot be regarded as a truly separated module. This problem can be avoided by using
abstract aspects to a certain degree, but the use of abstract aspects is a limited solution.

A better solution of this problem is to introduce parametric aspects. In fact, one
session of this workshop was allocated for discussing this topic. Roughly to say, para-
metric aspects are generic templates that are used to generate concrete aspects in the
given contexts. For example, Rho presented their language called LogicAJ, in which
developers can write generic aspects using logic variables. He showed that some design
patterns can be implemented as aspects in LogicAJ but the definitions of these aspects
can be independent of the definitions of the classes that are woven with the aspects.

Although parametric aspects are powerful language constructs, there is still a ques-
tion; are there any unique issues or techniques for parametric aspects against parametric
classes? For example, the C++ template system is powerful and well-studied. The Java
generics system is also. Are parametric aspect systems just straightforward variations
of such parametric class systems? If not, what are design issues unique to generics for
AOP? In OOP, classes can be regarded as types. Parametric classes have been studied
by the researchers of type theory. Is it possible that we apply the results of such study to
parametric aspects? If not, is there any theoretical background of parametric aspects?

The Role of Meta-data in Software Evolution
Comment by Gunter Saake (University of Magdeburg)

Future software systems should be robust and adaptive to a changing environment and
to evolving requirements. This adaptiveness requires a kind of self-awareness — a soft-
ware system has to reason about itself to be able to react on external stimuli requiring a
modification.

Current software technology does not allow to build general systems reacting on ar-
bitrary, unforeseen changes which require unanticipated modifications of system



Software Evolution 129

structure and behavior. However, for restricted scenarios we can use for example reflec-
tion to react on explicit events of the environments with a modified behavior.

A key concept of such software systems are explicit meta-data. Meta-data are used
to describe (relevant parts of) system architecture, system objects and behavior in a
form which can be processed by a software system. Self-awareness of a system is only
possible if the system has a kind of system model of itself and such a system model can
be described as meta-data of that system.

This use of meta-data opens some research problems:

– How to represent meta-data? A promising approach is to use standards where ap-
propriate, for example UML notation and XML coding. Are domain-specific lan-
guages more appropriate than general frameworks?

– What is the best abstraction level for the system model? It should be detailed
enough to represent the implemented system correctly, but abstract enough to have
manageable reasoning rules. One solution is to use a design model for reasoning
instead of the implementation model. In this case, one has to propagate changes
from the design to the implementation each time an adaptation is performed.

– Can meta-data be automatically extracted from source code and documentation?
When should the extraction be done? What about continuous extraction versus in-
cremental update of meta-data? How to filter the extracted meta-data? Can all this
be done with reasonable performance? Is it possible to performing a kind of meta-
data mining process on the running system itself?

– What kind of reasoning is necessary to compute a modification at run-time? A
modification has to react on the changed requirements, but system functionality
has to be preserved. The reasoning process therefore is driven by a certain goal
with some strong constraints on the resulting solution.

– Using extracted meta-data, can we be sure about the consistency of the meta-data
w.r.t. the actual system? How to detect discrepancies? How to minimize the amount
of extracted information?

– Can we find a general meta-data presentation for different kinds of software sys-
tems, or do we need application specific frameworks?

– Is meta-data management done by the system itself, or does the system use services
of a meta-data repository? If so, which services are core services for self-adaptive
systems?

– Besides the dynamic evolution using reflection, we still have a more static kind
of evolution through new releases of the software and so on. These two kinds of
evolution have to be synchronized. That is, we need a backpropagation of evolution
steps through reflection onto design documents, source code and documentation.

Meta-data for software evolution was not a core topic of the workshop but appears
in several presentations notwithstanding that I confide that in the future, meta-data will
become more and more important in the software evolution research area. Two pre-
sentations make explicit use of meta-data and reflection in their approaches. Cazzola,
Ghoneim and Saake [4] propose a reflective middleware, where meta-data based on de-
sign models in UML are used for evolution. This meta-data is represented in XMI format.
For reflection, two meta-objects play together: the evolutionary object plans evolution
steps, and the consistency checker object proves correctness of evolution plans. Ebraert



130 W. Cazzola, S. Chiba, and G. Saake

and Tourwé [6] represent the object structure of the system explicit on the meta-level.
For evolution, the meta-level evolves and the changes are propagated to the base level.

3 Final Remarks

This workshop main goal was to encourage people to present works in progress in the
area of the application of reflective and aspect-oriented techniques applied to software
evolution. The workshop was lively and the debates were very stimulating. We hope
that the workshop has helped researchers to mature their idea and we encourage the
accepted papers to be submitted to the attention of more important venues.

Acknowledgements. We wish to thank Yvonne Coady, Günter Kniesel, Hidehiko Ma-
suhara, and Joseph Yoder both for their interest in the workshop, and for their help
during the workshop and in writing part of this report. We wish also to thank all the
researchers that have participated to the workshop.

We have also to thank the Department of Informatics and Communication of the
University of Milan, the Department of Mathematical and Computing Sciences of the
Tokyo institute of Technology and the Institute für Technische und Betriebliche Infor-
mationssysteme, Otto-von-Guericke-Universität Magdeburg for their various supports.

A Workshop Attendee

The success of the workshop is mainly due to the people that have attended it and to
their effort to participate to the discussions. The following is the list of the attendees in
alphabetical order.

Name Affiliation Country e-mail
Alvarez Canal, Jordi Universitat Oberta de Catalunya Spain jalvarezc@uoc.edu
Borba, Paulo Federal University of Pernambuco Brazil phmb@cin.ufpe.br
Cazzola, Walter Università degli Studi di Milano Italy cazzola@dico.unimi.it
Chiba, Shigeru Tokyo Institute of Technology Japan chiba@is.titech.ac.jp
Chitchyan, Ruzanna Lancaster University United Kingdom r.chitchyan@lancaster.ac.uk
Coady, Yvonne University of Victoria Canada ycoady@cs.uvic.ca
Ebraert, Peter Vrij Universiteit Brussel Belgium pebraert@vub.ac.be
Ghoneim, Ahmed University of Magdeburg Germany ghoneim@iti.cs.uni-magdeburg.de
Greenwood, Phil Lancaster University United Kingdom greenwop@comp.lancs.ac.uk
Kniesel, Günter University of Bonn Germany gk@cs.uni-bonn.de
Masuhara, Hidehiko University of Tokyo Japan masuhara@graco.c.u-tokyo.ac.jp
Monfort, Valérie MDTVision France v-monfort@mdtvision.com
Nyström, Sven-Olof Uppsala University Sweden svenolof@user.it.uu.se
Pessemier, Nicolas INRIA France nicolas.pessemier@lifl.fr
Pini, Sonia Università degli Studi di Genova Italy pini@disi.unige.it
Rho, Tobias University of Bonn Germany rho@cs.uni-bonn.de
Saake, Gunter University of Magdeburg Germany saake@iti.cs.uni-magdeburg.de
Sato, Yoshiki Tokyo Institute of Technology Japan yoshiki@csg.is.titech.ac.jp
Seinturier, Lionel INRIA France lionel.seinturier@lifl.fr
Störzer, Maximilian Universität Passau Germany stoerzer@fmi.uni-passau.de
Tanter, Eric University of Chile Chile etanter@dcc.uchile.cl
Tramontana, Emiliano Università di Catania Italy tramonta@dmi.unict.it
Ubayashi, Naoyasu Kyushu Institute of Technology Japan ubayashi@ai.kyutech.ac.jp
Yahiaoui, Nesrine Université de Versailles France nesrine.yahiaoui@edf.fr
Yoder, Joseph W. The Refactory Inc. U.S.A. joeyoder@joeyoder.com
Yonezawa, Akinori University of Tokyo Japan yonezawa@yl.is.s.u-tokyo.ac.jp



Software Evolution 131

References

1. Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of the 1st ECOOP Workshop on Reflec-
tion, AOP and Meta-Data for Software Evolution (RAM-SE’04). Research Report C-196 of
the Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology. Preprint
No. 10/2004 of Fakultät für Informatik, Otto-von-Guericke-Universität Magdeburg (2004)

2. Tramontana, E., Welch, I.: Reflections on Programming with Grid Toolkits. In Cazzola, W.,
Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop on Reflection, AOP and
Meta-Data for Software Evolution (RAM-SE’04), Oslo, Norway (2004) 3–8

3. Dantas, A., Yoder, J.W., Borba, P., Johnson, R.: Using Aspects to Make Adaptive Object-
Models Adaptable. In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo,
Norway (2004) 9–19

4. Cazzola, W., Ghoneim, A., Saake, G.: RAMSES: a Reflective Middleware for Software Evo-
lution. In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop
on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo, Norway
(2004) 21–26

5. Chitchyan, R., Sommerville, I.: AOP and Reflection for Dynamic Hyperslices. In Cazzola,
W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop on Reflection, AOP
and Meta-Data for Software Evolution (RAM-SE’04), Oslo, Norway (2004) 29–35

6. Ebraert, P., Tourwé, T.: A Reflective Approach to Dynamic Software Evolution. In Cazzola,
W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop on Reflection, AOP
and Meta-Data for Software Evolution (RAM-SE’04), Oslo, Norway (2004) 37–43

7. Gibbs, C., Coady, Y.: OASIS: Organic Aspects for System Infrastructure Software Easing
Evolution and Adaptation through Natural Decomposition. In Cazzola, W., Chiba, S., Saake,
G., eds.: Proceedings of ECOOP’2004 Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE’04), Oslo, Norway (2004) 45–52

8. Sato, Y., Chiba, S.: Negligent Class Loaders for Software Evolution. In Cazzola, W., Chiba,
S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop on Reflection, AOP and Meta-
Data for Software Evolution (RAM-SE’04), Oslo, Norway (2004) 53–58

9. Pessemier, N., Seinturier, L., Duchien, L.: Components, ADL & AOP: Towards a Com-
mon Approach. In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo,
Norway (2004) 61–69

10. Ubayashi, N., Masuhara, H., Tamai, T.: An AOP Implementation Framework for Extending
Join Point Models. In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo,
Norway (2004) 71–81

11. Cazzola, W., Pini, S., Ancona, M.: Evolving Pointcut Definition to Get Software Evolution.
In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop on Re-
flection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo, Norway (2004)
83–88

12. Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ. In:
Proceedings of the 17th Annual ACM Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’02), ACM Press (2002) 161–173

13. Alvarez Canal, J.: Parametric Aspects: A Proposal. In Cazzola, W., Chiba, S., Saake, G., eds.:
Proceedings of ECOOP’2004 Workshop on Reflection, AOP and Meta-Data for Software
Evolution (RAM-SE’04), Oslo, Norway (2004) 91–99



132 W. Cazzola, S. Chiba, and G. Saake

14. Greenwood, P., Loughran, N., Blair, L., Rashid, A.: Dynamic Framed Aspects for Dynamic
Software Evolution. In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004
Workshop on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo,
Norway (2004) 101–110

15. Kniesel, G., Rho, T., Hanenberg, S.: Evolvable Pattern Implementations Need Generic As-
pects. In Cazzola, W., Chiba, S., Saake, G., eds.: Proceedings of ECOOP’2004 Workshop
on Reflection, AOP and Meta-Data for Software Evolution (RAM-SE’04), Oslo, Norway
(2004) 111–126

16. Bennett, K.H., Rajlich, V.T.: Software Maintenance and Evolution: a Roadmap. In Finkel-
stein, A., ed.: The Future of Software Engineering. ACM Press (2000) 75–87


	Workshop Overview: Session by Session
	Software Evolution Trends: The Organizers' Opinion
	Final Remarks
	Workshop Attendee



