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Abstract. Fitting a curve of a certain type to a given set of points in the plane is
a basic problem in statistics and has numerous applications. We consider fitting
a polyline with k joints under the min-sum criteria with respect to L1- and L2-
metrics, which are more appropriate measures than uniform and Hausdorff metrics
in statistical context. We present efficient algorithms for the 1-joint versions of
the problem, and fully polynomial-time approximation schemes for the general
k-joint versions.

1 Introduction

Curve fitting aims to approximate a given set of points in the plane by a curve of a
certain type. This is a fundamental problem in statistics, and has numerous applications.
In particular, it is a basic operation in regression analysis. Linear regression approximates
a point set by a line, while non-linear regression approximates it by a non-linear function
from a given family.

In this paper, we consider the case where the points are fitted by a polygonal curve
(polyline) with k joints, see Figure 1. This is often referred to as polygonal approx-
imation or polygonal fitting problem. It is used widely. For example, it is commonly
employed in scientific and business analysis to represent a data set by a polyline with
a small number of joints. The best representation is the polyline minimizing the error
of approximation. Error is either defined as the maximum (vertical) distance of any
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Fig. 1. A 4-joint polyline fitting a set of points

input point from the polyline (min-max-optimization) or the sum of vertical distances
(min-sum-approximation). In either case, distance is measured in some norm. We follow
common practice and restrict ourselves to norms L1 and L2.

In this paper, we focus on the L1- and L2-fitting problems when the desired curve
is a k-joint polyline; in other words, it is a continuous piecewise-linear x-monotone
curve with k +1 linear components. We assume that a coordinate system is fixed, and
the input points are sorted with respect to their x-coordinate values. To the authors’
knowledge, the computational complexity of the optimal k-joint problem under either
of these minimization criteria has not been previously investigated. More specifically, it
seems that an efficient solution of the L1-fitting problem extending the result of Imai et
al. [8] is theoretically challenging even for the 1-joint problem.

In this paper, we begin by considering the 1-joint problem. We give algorithms of
complexity O(n) and Õ(n4/3) time for the L2 and L1 criteria, respectively.1 The L2-
fitting algorithm is simple and practical, whereas the L1-fitting algorithm depends on
using a semi-dynamic range search data structure and parametric search. For general k,
we present two approximation schemes. Let zopt be the minimum fitting error for a k-
joint polyline and let ε be a positive constant. We give a polynomial-time approximation
scheme (PTAS) to compute a �(1+ε)k�-joint fitting whose error is at most zopt and we
describe a fully polynomial-time approximation scheme (FPTAS) to compute a k-joint
polyline with (1+ε)zopt fitting error, and consequently show that the problems cannot
be strongly NP-hard, although their NP-hardness remains open.

2 Preliminaries

A k-joint polyline is an alternating sequence P = (e1,v1,e2,v2, . . . ,ek,vk,ek+1) of line
segments (links) and joint vertices (joints), where es and es+1 share the endpoint vs,
for s = 1,2, . . . ,k, and e1 and ek+1 are infinite rays. We denote the link es on line
y = asx− bs by (as, bs) if the interval of the values of x corresponding to the link is
understood. A joint vs is represented by the pair (us,vs) of its coordinate values. Thus,

1 We write f(n) = Õ(g(n)) if there exists an absolute constant c ≥ 0 such that f(n) =
O(g(n) logc n).



Polyline Fitting of Planar Points Under Min- um Criteria 79

the connectivity and monotonicity of the polyline can be guaranteed by requiring that
vs = asus − bs = as+1us − bs+1, for s = 1,2, . . . ,k +1, and u1 < .. . < uk.

We now formulate the problem of fitting a k-joint polyline to an n-point set. Given a
set of points S = {p1 = (x1,y1),p2 = (x2,y2), . . . ,pn = (xn,yn)} with x1 < x2 < .. . <
xn and an integer k, and setting u0 = −∞ and uk+1 = ∞ for convenience, find a polyline
P = ((a1, b1),(u1,v1),(a2, b2), (u2,v2), . . . ,(uk,vk), (ak+1, bk+1)) minimizing one of
the following three quantities for L1-, L2-, and uniform metric fitting, respectively:

L1 :
k+1∑

s=1

∑

us−1<xi≤us

|asxi − bs −yi|, (1)

L2 :
k+1∑

s=1

∑

us−1<xi≤us

(asxi − bs −yi)2, (2)

Uniform metric : max
s=1,... ,k+1

{
max

us−1≤xi≤us
|asxi − bs −yi|

}
. (3)

For k = 0, the problems are linear regression problems. The L2-linear regression is
well known as the Gaussian least-squares method. Once we compute An =

∑n
i=1 xi,

Bn =
∑n

i=1 yi, Cn =
∑n

i=1 x2
i , Dn =

∑n
i=1 x2

i , and En =
∑n

i=1 xiyi in linear time, we
can construct an optimal fitting line y = ax− b by considering the partial derivatives
of the objective function and solving a 2 × 2 system of linear equations. The linear
regression problem with respect to the uniform error is to find a pair of parallel lines at
the minimum vertical distance that contain all the given points between them. This can
be done by applying the rotating caliper method that computes antipodal pairs of points
on the convex hull of the point set. For an x-sorted point set this can be done in O(n)
time [15]. The L1-linear regression problem is more involved; however, a linear-time
algorithm has been devised by Imai et al. [8] based on Megiddo’s prune-and-search
paradigm.

3 Fitting a 1-Joint Polyline

We consider the problem of fitting a 1-joint polyline to a set of points. We proceed in
two steps. We first assume that the joint vertex lies in a fixed interval [xq,xq+1] and later
eliminate this assumption. Let S1(q) = {p1,p2, . . . ,pq} and S2(q) = {pq+1, . . . ,pn}.
Our objective polyline consists of two links lying on lines �1 : y = a1x−b1 and �2 : y =
a2x−b2, respectively. We call a tuple (a1, b1,a2, b2) feasible if the two lines y = a1x−b1
and y = a2x − b2 meet at a point whose x-coordinate u = b1−b2

a1−a2
lies in the interval

[xq,xq+1]. Our goal here is to find a feasible tuple (a1, b1,a2, b2) representing a 1-joint
polyline minimizing

q∑

i=1

|a1xi − b1 −yi|+
n∑

i=q+1

|a2xi − b2 −yi| and (4)

q∑

i=1

(a1xi − b1 −yi)2 +
n∑

i=q+1

(a2xi − b2 −yi)2, (5)

S
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for L1- and L2-fitting, respectively. Minimizing (4) is equivalent to, provided a1 �= a2,
minimizing

∑n
i=1 wi subject to

−wi ≤ a1xi − b1 −yi ≤ wi, for i ≤ q,

−wi ≤ a2xi − b2 −yi ≤ wi, for i ≥ q +1, and

xq ≤ b1 − b2

a1 −a2
≤ xq+1,

(6)

where the last line represents the feasibility condition.

Lemma 1. For either L1- or L2-fitting criterion, the 1-joint problem for a fixed q reduces
to solving two convex programming problems.

We omit the proof due to space limitations. From the above lemma, it is clear that
the optimal 1-joint polyline can be computed by using linear/quadratic programming.
However, we aim to design combinatorial algorithms for these problems. Indeed, we
can classify the solution into two types: (1) The joint is either on the line x = xq or
x = xq+1. (2) The joint lies strictly in the interior of the interval [xq,xq+1]. We call the
solution fixed in the former case and free otherwise. We now have the following simple
observation.

Lemma 2. If the solution is fixed, the joint is located on either of the two vertical lines
x = xq, x = xq+1.

If the joint is on the line x = xq+1, we can regard it as a solution for the partition into
S1(q +1) = S1(q)∪{pq+1} and S2(q +1) = S2(q)\{pq+1}. Thus, for each partition,
we essentially need to solve two subproblems: (1) the free problem and (2) the fixed
problem where the joint is on the vertical line x = xq. This leads to the following generic
algorithm: For each partition of S into two intervals S1 and S2, we first consider the free
problem ignoring the feasibility constraint, and check whether the resulting solution is
feasible or not, i.e., we verify that the intersection point lies in the strip between pq and
pq+1. If it is feasible, it is the best solution for the partition. Otherwise, we consider the
fixed solution adding the constraint that the joint lie on x = xq, and report the solution
for the partition. After processing all n− 1 possible partitions, we report the solution
with the smallest error.

If it takes O(f(n)) time to process a subproblem for each partition, the total time
complexity is O(nf(n)). For efficiency, we design a dynamic algorithm to process each
partition so that f(n) is reduced in the amortized sense.

3.1 The L2 1-Joint Problem

We show how to construct an optimal L2-fitting 1-joint polyline in linear time.We process
the partitions (S1(q),S2(q)) starting from q = 1 to q = n − 1, in order. We maintain
the sums, variances, and covariances Aq =

∑q
i=1 xi, Bq =

∑q
i=1 yi, Cq =

∑q
i=1 x2

i ,
Dq =

∑q
i=1 y2

i , and Eq =
∑q

i=1 xiyi incrementally, at constant amortized cost. They
also provide us with the corresponding values for S2(q) if we precompute those values
for S, i.e.,

∑n
i=q+1 xi = An −Aq etc.
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For the free case, the objective function is separable, in the sense that the optimal
solution can be identified by finding (a1, b1) minimizing

∑q
i=1(a1xi − b1 − yi)2 and

(a2, b2) minimizing
∑n

j=q+1(a2xj − b2 − yj)2 independently. Each can be computed
in O(1) time from the values of Aq, . . . ,Eq as explained in section 2. The feasibility
check of the solution is done in O(1) time by computing the intersection point of the
corresponding pair of lines. It remains to solve the subproblems with the additional
constraint that the joint is at x = xq. Put

f(a1, b1,a2, b2) =
q∑

i=1

(a1xi − b1 −yi)2 +
n∑

j=q+1

(a2xj − b2 −yj)2, (7)

g(a1, b1,a2, b2) = a1xq − b1 −a2xq + b2, and (8)

L(a1, b1,a2, b2) = f(a1, b1,a2, b2)−λg(a1, b1,a2, b2), (9)

so that f(·) is the function to be minimized and the joint constraint can be expressed as
g(·) = 0. Now, a standard Lagrange multiplier method solves the problem, and we have
a linear equation whose coefficients can be expressed in terms of xq,Aq, . . . ,Eq. Thus,
we have the following

Theorem 1. L2-optimal 1-joint fitting can be computed in linear time.

3.2 The L1 1-Joint Problem

Semi-dynamic L1 Linear Regression. We start with the problem of computing the
optimal linear L1-fitting (i.e., linear regression) of the input point set, i.e., we seek the
line �opt : y = ax− b minimizing

∑n
i=1 |axi − b−yi|.

The difficulty with the L1-fitting problem is that, written in linear programming
terms (as in (6)), it has n+2 variables, in contrast to the least-squares case where the
problem is directly solved as a bivariate problem. Nonetheless, Imai et al. [8] devised an
optimal linear-time algorithm for computing �opt based on the multidimensional prune-
and-search paradigm using the fact that the optimal line bisects the point set. In order to
design an efficient algorithm for the 1-joint fitting problem, we consider a semi-dynamic
version of the L1 linear regression for a point set P with low amortized time complexity,
where we dynamically maintain P with insertions and deletions under an assumption
that P is always a subset of a fixed universe S of size n that is given from the outset. (In
fact, for our application, it is sufficient to be able to start with P = ∅ and handle only
insertions, and to start with P = S and handle only deletions. Moreover, the order of
insertions and deletions is known in advance. The data structure we describe below is
more general.)

Consider the dual space, with pi = (xi,yi) transformed to the dual line Y = fi(X)
where fi(X) = xiX − yi. The line y = ax− b is transformed to the point (a,b) in the
dual space. The kth level of the arrangement A = A(S∗) of the set S∗ of dual lines is the
trajectory of the kth largest value among fi(X).2 We call the 	n/2
th level the median
level.

2 We use an asterisk to denote geometric dual of a point, line, or a set of lines/points.

Polyline Fitting of Planar Points Under Min- um CriteriaS
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Lemma 3 (Imai et al. [8]). If the optimal L1-fitting line is given by y = aoptx− bopt,
its dual point (aopt, bopt) is on the median level if n is odd, and between the n

2 th level
and the (n

2 +1)th level if n is even.

Now, given X-value t, consider the point (t,fi(t)) for each i = 1,2, . . . ,n, and let
F (t) be the sum of the �n/2� largest values in {fi(t) : i = 1,2, . . . ,n} and G(t) be the
sum of the �n/2� smallest values in the same set. Put H(t) = F (t)−G(t). H(t) gives
the L1 fitting error of the dual line of any point (t,y) on the median level (or between
the two median levels if n is even). Thus, by Lemma 3, H(t) is minimized at t = aopt.

Lemma 4. F (t) is a convex function, while G(t) is concave. As a consequence, H(t)
is also convex. H(t) has either slope 0 at t = aopt or its slope changes from negative to
positive at t = aopt.

Proof. The convexity follows directly from the fact that, in any line arrangement, the
portions of the lines lying on or below (resp. on or above) any fixed level k can be
decomposed into k non-overlapping concave (resp. convex) chains; see, for example, [2].

Suppose a fixed universe S∗ of lines is given. We need a data structure that maintains
a subset P ∗ ⊆ S∗ and supports the following operations:

Median-Location Query. For a query value t, return the point on the �n/2�th highest
line at X = t.

Slope-Sum Query. For a query point p = (t,y), return the sum of the slopes of lines
below p at X = t.

Height-Sum Query. For a query value p = (t,y), return the sum of the Y -coordinates
of the lines below p at X = t. The height-sum query reduces to a slope-sum query
plus a constant-term-sum query.

Update. A line in S∗ is added to or removed from P ∗.

Suppose a data structure supporting such queries on a set P ∗ ⊆ S∗ of lines in O(τ(n))
time is available, where n = |S∗|. Then we can query the slopes of F and G at t, and
hence compute the slope of H at t in O(τ(n)) time. Because of convexity of H , we have
the following:

Lemma 5. Given t, we can decide whether t < aopt, t > aopt, or t = aopt in O(τ(n))
time.

Thus, we can perform binary search to find aopt. We show below how to make this
search strongly polynomial. Once we know aopt, we determine bopt by the median-
location query at t = aopt.

Semi-dynamic Data Structure for the Queries. We show how to realize semi-dynamic
median-location query and sum-queries. As a preliminary step, we describe a semi-
dynamic data structure for vertical ray queries, i.e., queries of the form: Given a vertical
upward ray starting at (t,z) determine the number of lines in P ∗ intersected by the ray,
the sum of their slopes, and the sum of their constant terms. A dual line Y = xiX −yi is
above (t,z) iff the primal point (xi,yi) is above the line y = tx−z. Thus our problems
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reduce to half-space queries in the primal plane. We use the partition-tree data structure
of Matoušek [3, 11, 13]. It supports half-space queries on sets with n points in time
O(

√
n), linear space, and preprocessing time O(n logn).

We build a partition tree T (S) on the set S of points dual to the lines in S∗ (in fact,
these are the points to which a line is being fitted). A standard construction proceeds as
follows: With each node v of the partition tree we associate a point set S(v) ⊆ S and a
triangle ∆(v) ⊃ S(v), where S(v) ⊂ S(parent(v)) at any node v other than the root and
S(v) = S at the root. In addition we also store at v the size |S(v)| of S(v) and the sums
ξ(S(v)) =

∑
pi∈S(v) xi and χ(S(v)) =

∑
pi∈S(v) yi of the slopes and constant terms of

the corresponding dual lines. Since the point sets S(v), over all children v of a node w
in the tree, by definition of a partition tree, partition the set S(w), and |S(v)| is at most a
fraction of |S(w)|, this tree has linear size and logarithmic depth. For our purposes, we
modify the partition tree to obtain a new tree T (S,P ) where the same ∆(v) as in T (S)
is associated with every node v, but v stores P (v) = S(v)∩P , ξ(P (v)) and χ(P (v))
instead of the corresponding values for S(v). This data structure enables us to execute
the half-plane range query in P , and thus the vertical ray query in P ∗.

Our data structure is semi-dynamic. When P changes, with a point p being added
or removed, what we need to update is just values |P (v)|, ξ(P (v)), and χ(P (v)) for
each node v where p is relevant. Since the sets S(v) for all nodes v at a fixed level of
the partition tree form a partition of S, only one node must be updated at each level; to
facilitate the update one might associate with each point p ∈ S a list of length O(logn)
containing the nodes v of the tree with p ∈ S(v). Thus, the update can be performed
in O(logn) time. This ends the description of the semi-dynamic vertical ray query data
structure. Our sum-queries can be done by using the vertical ray query.

We next turn to the median-location query data structure. For a given t, let m(t) =
(t,y(t)) be the intersection of the vertical line X = t and the median level of the dual
arrangement A(S∗). We can use the vertical query data structure to compare any given
η with y(t). We perform a vertical ray query to find the number of lines above (t,η). If it
is less than �n/2�, y(t) < η; otherwise y(t) ≥ η. This suggests computing y(t) by some
kind of binary search. If we had the sorted list of intersections between the vertical line
X = t and the lines in S∗ available, we could perform a binary search on L by using
O(logn) ray queries. However, it takes O(n logn) time to compute the list, which is too
expensive since we aim for a sublinear query time. Instead, we construct a data structure
which can simulate the binary search without explicitly computing the sorted list.

Lemma 6. We can construct a randomized data structure in time O(n logn) such that,
given t, we can compute y(t) in Õ(

√
n) time. The query time bound holds for every

vertical line X = t with high probability.

Proof. We fix a small constant ε > 0, and randomly select cn1−ε lines from Ψ0 = S∗,
to have a set Ψ1 of lines, where c is a suitable constant. From the results of Clarkson and
Shor [5], if the constant c is sufficiently large, with high probablity every vertical segment
intersecting no line of Ψ1 intersects at most nε logn lines of S∗. In other words, Ψ1 is the
dual of an (nε−1 logn)-net of S. Similarly, we construct Ψi+1 from Ψi such that Ψ∗

i+1

is an (nε logn
|Ψi| )-net of Ψ∗

i if |Ψi| > nε logn. Thus, we have a filtration Ψ0 ⊃ Ψ1 ⊃ . . . ⊃ Ψk,

Polyline Fitting of Planar Points Under Min- um CriteriaS
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and |Ψk| ≤ nε. The number k of layers is a function of ε and c only, so the construction
takes O(n) time.

Additionally, we construct a dual range-searching data structure for Ψi such that for
a query vertical interval I we can report all lines in Ψi meeting I in O(

√
n+K) time,

where K is the number of reported lines. In primal space a vertical interval corresponds
to a strip bounded by two parallel lines and hence we may use partition trees as described
above to implement reporting queries. The preprocessing time is O(n logn).

Now, our algorithm for finding y(t) is as follows: Given t, we first compute all the
intersections between X = t and the lines of Ψk, sort them, and perform binary search
for y(t) on them. Each step of the search requires a vertical ray query and hence time
O(

√
n). As the result of the binary search, we obtain a vertical interval I containing

y(t) such that no line of Ψk crosses the interior of I . By using the dual range-searching
data structure, we extract, in time O(

√
n+K), the set of K lines in Ψk−1 intersecting

I; K = O(nε logn) with high probability. Proceeding recursively, we obtain y(t), since
at the last level of the filtration we arrive at an interval I ′ containing y(t), with no line
of Ψ0 = S∗ crossing its interior. The total time is O(nε log2 n+

√
n logn) = Õ(

√
n).

At this point, we have a Õ(
√

n) realization of the semi-dynamic query data structure,
i.e., τ(n) =

√
n. We finally come to the strongly polynomial method for determining

aopt. We use parametric search [16]. We use a parallel version of the ray-query algorithm,
i.e., the parallel traversal of the partition tree, for the guide algorithm (see [9]). Since
the depth of a partition tree is O(logn), the parallel time complexity of the ray query is
O(logn). Thus, the parallel time complexity of sum queries is O(log2 n) using O(τ(n))
processors. Therefore, using standard parametric search paradigm, we can compute the
optimal L1 linear fitting in Õ(τ(n)).

We remark that we do not employ parametric search to computey(t) for a fixed t, since
it is not always possible to use it in a nested fashion, and there are technical difficulties
in applying multi-dimensional parametric search paradigm [14] to our problem.

To speed up the query time τ(n) and thus the overall algorithm, we generalize the data
structure to allow it to use super-linear storage based on Matoušek’s construction [12].
If we can use O(m) space for n < m < n2, we first select r = O(m/n) points from
S and construct a dual cutting, i.e., a decomposition of the dual plane into cells, such
that each cell C is intersected by at most n/r lines dual to points of S; the number
of cells required is O(r2) and the computation time is O(nr). Let S(C) be the set of
lines intersecting C. We construct a point-location data structure on the cutting. For
each cell C, we store the cumulative statistics (the sum of slopes etc.) for the set of lines
passing below C, and construct the partition tree for S(C). The query time of each tree is
Õ(

√
n/r). When P changes, we need to update the data stored in each of the O(r2) cells

of the arrangement, and also the O(r) partition trees corresponding to sets containing the
updated point. Thus, update time is O(r2 +r logn). Update time can be sped up by not
storing the statistics for each cell explicitly, but rather retrieving them when needed at a
cost of O(logr). This reduces the time needed for an update to O(r logn) and the total
time of all updates to O(nr logn); we omit the details in this version. If we set r = n1/3,
the update time and query time are both Õ(n1/3). The space and preprocessing time is
Õ(n4/3). The parallel time complexity is not affected by the space-time trade-off.
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Algorithm for L1 1-Joint Fitting. Finally, we describe the algorithm to find the L1-
optimal 1-joint polyline fitting a set S of n points in the plane. Recall that there are two
different types of solutions:

Type 1. There is an index q such that the 1-joint polyline consists of the optimal L1-
fitting line of S1(q) = {p1,p2, . . . ,pq} and that of S2(q) = {pq+1,pq+2, . . . ,pn}.

Type 2. There is an index q such that the joint lies on the vertical line x = xq.

If the optimal solution is of type 1, we compute an optimal L1-fitting line for S1(q)
and S2(q) separately, for every q = 1,2, . . . ,n, by using the semi-dynamic algorithm with
S as the universe. If we use quasi-linear space Õ(n), the time complexity is Õ(n1.5),
and if we use O(n4/3) space, the time complexity is Õ(n4/3).

Otherwise, the optimal solution is of type 2. For each q, we guess the y-coordinate
value η of the joint vertex (xq,η). Then, we can compute the best line, in the sense of L1
fitting, approximating S1(q) going through the (for now, fixed) joint by using almost the
same strategy as in section 3.2. Indeed, it suffices to determine the slope of this line. In
the dual space, we just need to compute a point p = (a(p), b(p)) on the line Y = xqX −η
such that

∑q
i=1 |a(p)xi −b(p)−yi| is minimized. We observe that the above function is

convex if it is regarded as a function of a, and hence θ(p) = θ+(p)−θ−(p) is monotone
and changes the sign at p, where θ+(p) (θ−(p)) is the sum of slopes of lines above p
(resp. below p). Thus, we can apply binary search by using slope-sum query, and this
binary search can be performed in O(logn) steps by using the filtration as described in
Lemma 6.

Moreover, because of the convexity of the objective function, once we know the
optimal solution for a given η0, we can determine whether the global optimal value η is
greater than η0 or not by using the height-sum query. Indeed, when we infinitesimally
slide η0, the gain (or loss) of the objective function can computed from the slope sums
and height sums of dual lines associated with each of the sets of points lying above,
below, and on the current polyline (for each of S1(q) and S2(q)).

Thus, we can apply binary search for computing the optimal value of η. In order to
construct a strongly polynomial algorithm, we apply parametric search. Note that given
η, our algorithm has a natural parallel structure inherited from the range-searching algo-
rithms, and runs in polylogarithmic time using Õ(τ(n)) processors. Thus, the parallel
search paradigm [16] is applicable here. Therefore, for a fixed q, the second case of the
problem can be handled in Õ(τ(n)) time. Thus, we have the following:

Theorem 2. The optimal L1-fitting 1-joint polyline is computed in Õ(n1.5) randomized
time using quasi-linear space, and Õ(n4/3) randomized time using O(n4/3) space.

4 Fitting a k-Joint Polyline

The k-joint fitting problem is polynomial-time solvable if k is a fixed constant. We de-
scribe the algorithm in a non-deterministic fashion. We guess the partition of x1, . . . ,xn

into k intervals each of which corresponds to a line segment in the polyline. Also, we
guess whether each joint is free or fixed. We decompose the problem at the free joints

Polyline Fitting of Planar Points Under Min- um CriteriaS
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and have a set of subproblems. In each subproblem, we add the linear constraints cor-
responding to the fixed condition (i.e., each joint is located on a guessed vertical line).
Thus, each subproblem is a convex programming problem: a linear program for L1, and
a quadratic program for L2. We solve each subproblem separately to obtain the solution
of the whole problem. Note that this strategy works because of the convexity of each
subproblem. There are O((3n)k) different choices of the guesses, thus we can be replace
guessing by a brute-force search to have a polynomial-time deterministic algorithm if k
is a constant.

For a general k, we do not know whether the problem is in the class P or not. Thus,
we would like to consider approximation algorithms. One possible approach is to relax
the requirement that number of joints be exactly k. We can design a PTAS for it.

Theorem 3. Let zopt be the optimal L1 (or L2) error of a k-joint fitting. Then, for any
constant ε > 0, we can compute a �(1+ε)k�-joint fitting whose error is at most zopt in
polynomial time.

Proof. We ignore continuity and approximate the points by using a piecewise-linear (not
necessarily continuous) function with k linear pieces. This can be done by preparing
the optimal linear regression for each subinterval of consecutive points of S, and then
applying dynamic programming. We can restore the continuity by inserting at most k
steep (nearly vertical) line segments. The resulting polyline has at most 2k joints and
error at most zopt. We can improve 2k to � 3k

2 � by applying the 1-joint algorithm instead
of linear regression algorithm, and further improve it to �(1+ε)k� by using the r-joint
algorithm mentioned above for r = 	ε−1
.

Another approach is to keep the number of joints at k and approximate the fitting
error. We give a FPTAS for it. We only discuss the L1 case, since the L2 case is analogous.
Let zopt be the optimal L1-error, and we aim to find a k-joint polyline whose error is
at most (1 + ε)zopt. We remark that if zopt = 0, our solution is exactly the same as
the solution for the uniform metric fitting problem, and thus we may assume zopt > 0.
Recall that the uniform metric fitting problem can be solved in O(n logn) time [6]. The
following is a trivial but crucial observation:

Lemma 7. Let z∞ be the optimal error for the uniform metric k-joint fitting problem.
Then, z∞ ≤ zopt ≤ nz∞.

Proof. The sum of the errors in the uniform-metric–optimal polyline is at most nz∞.
Hence nz∞ ≥ zopt. On the other hand, every k-joint polyline has a data point in S such
that the vertical distance to the polyline is at least z∞, so zopt ≥ z∞.

Our strategy is as follows: We call the n vertical lines through our input points the
column lines. We give a set of portal points on each column line, and call a k-joint
polyline a tame polyline if each of its links satisfies the condition that the line containing
the link goes through a pair of portal points.

On each column line, the distance between its data point and the intersection point
with the optimal polyline is at most zopt, thus at most nz∞. Thus, on the ith column
line, we place the portals in the vertical range [yi −nz∞,yi +nz∞]. The portal points
are placed symmetrically above and below yi. The jth portal above yi is located at the
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y-value yi +(1+ ε
2 )j−1δ, where δ = z∞ε

2n and j = 1,2, . . . ,M . We choose the largest M
satisfying (1+ ε

2 )Mδ ≤ nz∞, and hence M = O(ε−1 log(n+ε−1)). We also put portals
at heights yi and yi ±nz∞. In this way the number of portals in any column is at most
2M +3.

Lemma 8. There exists a tame polyline whose L1 error is at most (1+ε)zopt.

We omit the proof of above lemma in this version. Thus, it suffices to compute
the optimal tame polyline. There are Mn portals, and thus N = O(M2n2) lines going
through a pair of portals. Let L be the set of these lines. We design a dynamic program-
ming algorithm. For the ith column, for each line � ∈ L and each m ≤ k, we record the
approximation error of the best m-joint tame polyline up to the current column whose
(rightmost) link covering pi is on �. When we proceed to the (i + 1)th column, each
approximation error is updated. We omit the details of the analysis in this version, and
only show the result.

Theorem 4. An (1+ε)-approximation, i.e., a k-joint polyline with error 1+ε times the
optimal, for each of theL1 andL2 k-joint problems can be computed inO(kn4ε−4 log4(n+
ε−1)) time.

5 Concluding Remarks

A major open problem is to determine the complexity class of the k-joint problem for
L1- and L2-fitting. The corresponding L1 or L2 polyline approximation problem where
the input is a curve is also interesting.
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