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Abstract. How to assess the performance of machine learning algo-
rithms is a problem of increasing interest and urgency as the data mining
application of myriad algorithms grows. Rather than predictive accuracy,
we propose the use of information-theoretic reward functions. The first
such proposal was made by Kononenko and Bratko. Here we improve
upon our alternative Bayesian metric, which provides a fair betting as-
sessment of any machine learner. We include an empirical analysis of
various Bayesian classification learners.
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1 Introduction

As interest in machine learning and data mining grows, the problem of how to
assess machine learning algorithms becomes more urgent. The standard practice
for supervised classification learners has been to measure predictive accuracy (or
its dual, error rate) using a fixed sample divided repeatedly into training and
test sets, accepting a machine learner as superior to another if its predictive ac-
curacy passes a statistical significance test. This represents an improvement over
historical practices, particularly when the statistical dependencies introduced by
resampling are taken into account (cf. [1, 2]).

Nevertheless, there are a number of objections to the use of predictive accu-
racy, the most telling being that it fails to take into account the uncertainty of
predictions. For example, a prediction of a mushroom’s edibility with a probabil-
ity of 0.51 counts exactly the same as a prediction of edibility with a probability
of 1.0. We might rationally prefer to consume the mushroom in the second case.
Predictive accuracy shows no such discernment. According to common evalu-
ation practice, every correct prediction is as good as every other. Hence, we
advocate that classification learners should be designed, or redesigned, so as to
yieled probabilistic predictions rather than catagorical predictions.
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We believe a cost-sensitive assessment, favouring the machine learner which
maximizes expected reward is, in principle, the best way of evaluating learning
algorithms. Unfortunately, finding appropriate cost functions is often difficult or
impossible. Provost and Fawcett [3] use receiver operating characteristic (ROC)
convex hulls for evaluation independent of cost functions. This has the useful
meta-learning feature of selecting the best predictor for a given performance
constraint, in the form of a selected false negative classification rate. Unfortu-
nately, the ROC curves underlying this method again ignore the probabilistic
aspect of prediction, as does predictive accuracy simpliciter.

Here we examine metrics which attend to the probability of a classification,
namely information-theoretic measures and in particular, information reward
(IR). We illustrate its application by comparing Naive Bayes with other classi-
fication learners, contrasting IR with predictive accuracy assessments.

2 Information-Theoretic Metrics

2.1 Good’s Information Reward

The original information reward (IR) was introduced by I.J. Good [4] as fair
betting fees — the cost of buying a bet which makes the expected value of the
purchase zero. Good’s IR positively rewarded binary classifications which were
informative relative to a uniform prior. IR is split into two cases: that where
the classification is correct, indicated by a superscripted ‘+’, and where the
classification is incorrect, indicated by a superscripted ‘−’.

Definition 1. The IR of a binary classification with probability p′ is

I+ = 1 + log2 p′ (for correct classification) (1a)

I− = 1 + log2(1 − p′) (for misclassification) (1b)

IR has the range (−∞, 1). For successful classification, it increases monoton-
ically with p′, and thus is maximized as p′ approaches 1; for misclassification, IR
decreases monotonically. While the constant 1 in (1a) and (1b) is unnecessary
for simply ranking machine learners, it makes sense in terms of fair fees. When
the learner reports a probability of 0.5, it is not communicating any information
(given a uniform prior), and thus receives a zero reward.

Our work generalizes Good’s to multinomial classification tasks, while also
relativizing the reward function to non-uniform prior probabilities.

2.2 Kononenko and Bratko’s Metric

The measure introduced by Kononenko and Bratko [5] also relativizes reward
to prior probabilities. Furthermore, it too is nominally based upon information
theory. This foundation is seriously undermined, however, by their insistance
that when a reward is applied to a correct prediction with probability 1 and an
incorrect prediction also with probability 1, the correct and incorrect predictions
ought precisely to counterbalance, resulting in a total reward of 0. This conflicts



A Bayesian Metric for Evaluating Machine Learning Algorithms 993

with the supposed information-theoretic basis: on any account in accord with
Shannon, a reward for a certain prediction coming true can only be finite, while a
penalty for such a certain prediction coming false must always be infinite. Putting
these into balance guarantees there will be no proper information-theoretic in-
terpretation of their reward function.

Kononenko and Bratko introduce the following reward function, where p′ is
the estimated probability and p is the prior:

I+
KB = log p′ − log p (for p′ ≥ p) (2a)

I−KB = − log(1 − p′) + log(1 − p) (for p′ < p) (2b)

This measure is assessed against the true class only. Since the probabilities
of other classes are not considered, in multinomial classification a miscalibrated
assessment of the alternative classes will go unpunished. For all these reasons we
do not consider the Kononenko and Bratko function to be adequate.1

2.3 Bayesian Information Reward

The idea behind fair fees, that you should only be paid for an informative pre-
diction, is simply not adequately addressed by Good’s IR. Suppose an expert’s
job is to diagnose patients with a disease that is carried by 10% of some popu-
lation. This particular expert is lazy and simply reports that each patient does
not have the disease, with 0.9 confidence. Good’s expected reward per patient
for this strategy is 0.9(1+log2 0.9)+0.1(1+log2 0.1) = 0.531, so the uninformed
strategy is rewarded substantially! The expected reward per patient we should
like is 0, which our generalization below provides. Good’s IR breaks down in
its application to multinomial classification: any successful prediction with con-
fidence less than 0.5 is penalized, even when the confidence is greater than the
prior. Good’s fair fees are actually fair only when both the prior is uniform and
the task binary.

We presented a Bayesian metric similar to below in Hope and Korb [6]. Un-
fortunately, it failed to reward perfect calibration maximally,2 and thus we aban-
doned it in favour of the following. For classification into classes {C1, . . . , Ck}
with estimated probabilities p′i and priors pi, where i ∈ {1, . . . , k}:

IRB =
∑

i Ii

k
(3)

where Ii = I+
i for the true class and Ii = I−i otherwise, and

I+
i = log

p′i
pi

I−i = log
1 − p′i
1 − pi

1 We did, however, include it in the empirical evaluation of [6].
2 David Dowe pointed this out.
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Clearly, when p′ = p, the reward is 0. IRB also retains an information-
theoretic interpretation: the measure is finitely bounded in the positive direction,
since prior probabilities are never zero, and misplaced certainty (i.e., when the
probability for the true value is 0) warrants an infinite negative reward. Finally,
correct probabilities are now rewarded maximally in the long run. The proof of
this is available in [7] and [8–§10.8].

A non-uniform prior p can be obtained any number of ways, including being
set subjectively (or arbitrarily). In our empirical studies we simply use the fre-
quency in the test set given to the machine learner to compute the prior.3 This
is because we have no informed prior to work with, and because it is simple and
unbiased relative to the learning algorithms under study.

Bayesian IRB reflects the gambling metaphor more adequately than does
Good’s IR. Book makers are required to take bets for and against whatever events
are in their books, with their earnings depending on the spread. They are, in ef-
fect, being rated on the quality of the odds they generate for all outcomes simul-
taneously. Bayesian IR does the same for machine learning algorithms: the odds
(probabilities) they offer on all the possible classes are simultaneously assessed,
extracting maximum information from each probabilistic classification.

3 Empirical Study: Bayesian Models

Our empirical evaluation focuses on machine learners that form Bayesian mod-
els, partially in response to recent work showing the power of Naive Bayes
learners (e.g., [9, 10, 11]). The machine learners are Naive Bayes (NB) [12], Tree
Augmented Naive Bayes (TAN) [10, 13], Averaged One Dependence Estimators
(AODE) [9] and Causal MML (CaMML) [14].

For the experiment, we artificially generated data from a series of Bayesian
model types. Three model types are chosen, each designed to favour a particu-
lar machine learner: Naive Bayes, TAN or AODE. Thus, we compare how the
learners perform when their assumptions are broken and when they are exactly
matched. To test the threshold at which a simpler model outperforms the more
complex, we also systematically vary the amount of training data.

Of our machine learners, CaMML finds models of the greatest generality.
Given standard convergence results, CaMML must better or equal every other
machine learner in the limit. Again, AODE’s and TAN’s models generalize the
Naive Bayes models, and given sufficient data they should perform at least on
par with Naive Bayes. This suggests a converse phenomenon. At low levels of
data, and if the learner’s representations include the true model, the simpler
learner should outperform the more complex, because complex machine learners
converge to their optimum models slower, due to a larger search space.

Experimental Method. For statistical analysis, we regard each model type as
a separate experiment. For each experiment we sample the space of appropriate

3 We start the frequency counts at 0.5 to prevent overconfident probabilities.
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Table 1. Table of results for the three Bayesian model experiments. The results are

average information reward for each machine learner, given 50, 500 or 5000 training

instances. Confidence intervals at 95% are shown

(a) Naive Bayes Models

Training samples NBayes AODE TAN CaMML

50 0.250 ± 0.053 0.238 ± 0.049 0.234 ± 0.053 0.092 ± 0.051
500 0.466 ± 0.051 0.443 ± 0.051 0.456 ± 0.053 0.459 ± 0.051
5000 0.496 ± 0.051 0.494 ± 0.051 0.495 ± 0.051 0.496 ± 0.051

(b) Tree Augmented Naive Bayes Models

50 −0.003 ± 0.039 0.124 ± 0.031 0.003 ± 0.039 −0.019 ± 0.033
500 0.214 ± 0.031 0.351 ± 0.029 0.361 ± 0.033 0.400 ± 0.033
5000 0.247 ± 0.031 0.411 ± 0.029 0.498 ± 0.035 0.504 ± 0.035

(c) Averaged One Dependence Models

50 −0.228 ± 0.041 −0.134 ± 0.025 −0.277 ± 0.041 −0.013 ± 0.014
500 0.020 ± 0.010 0.050 ± 0.012 0.000 ± 0.014 0.003 ± 0.004
5000 0.057 ± 0.008 0.113 ± 0.010 0.089 ± 0.010 0.098 ± 0.012

models. Each model has 4–8 attributes (including the target attribute), with each
attribute having 2–5 values. The probabilities in each attribute are determined
randomly. We sample 40 models and perform a two-factor repeated measures
ANOVA, in order to provide a statistical test independent of our Bayesian as-
sumptions. The two factors are (1) the machine learner and (2) the amount
of training data (50, 500 or 5000). It is advantageous to use a repeated mea-
sure ANOVA because this design controls for the individual differences between
samples (where each model is considered a sample).

We use information reward on a single test set of 1000 instances for each
model to measure the ‘treatment’ of each machine learner at different ‘doses’
(amounts of training data). We don’t report accuracy nor Kononenko and Bratko’s
measure, for the reasons given in Sections 1 and 2.2. Where we report confidence
intervals, these have been adjusted by the Bonferroni method for limiting the
underestimation of variance [15].

Naive Bayes Models follow the Naive Bayes assumptions: attributes are pair-
wise independent, given the class. This is the simplest model type we use in this
evaluation, so we expect that all learners will perform reasonably.

Table 1a shows the performance of the machine learners for each amount of
training data. Naive Bayes, TAN and AODE perform similarly for each level
— unsurprising, since they share the correct assumption that the target class is
a parent of all other attributes. For small amounts of data, CaMML performs
significantly worse than the others: it cannot reliably find the correct model. As
more data become available, it achieves a score similar to the others.

Tree Augmented Naive Models are formed by creating a tree-like depen-
dency structure amongst the (non-target) attributes, with all of them directly
dependent upon the target. This is more complicated than the Naive Bayes
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model above. Each model we generate has a random tree structure amongst the
non-target attributes.

Surprisingly, Table 1b shows that TAN is not the best learner with low
amounts of training data: AODE stands superior. This is likely because AODE
has a richer representation than Naive Bayes (i.e., with averaged predictions), yet
doesn’t need to search for the tree structure. Once there are enough data both
TAN and CaMML seem to find the right structure and both outperform AODE.
This illustrates the additional difficulty of model selection. Although TAN as-
sumes the correct model type, it still has to find a particular tree structure, thus
TAN’s performance is dependent on its search capabilities. Naive Bayes, with its
inaccurate assumptions, is clearly inferior to the other learners once an adequate
amount of training data is given.

Averaged One-Dependence Models are each a series of n models; in the
ith model, attribute i is the parent of each other (non-target) attribute. As in
Naive Bayes, each attribute is also directly dependent on the target. Thus, each
AODE model is a hybrid of one-dependence models, with each model having
equal chance to be selected from when sampling the model for data.

This hybrid model seems to be very difficult for the machine learners to
learn, with Table 1c showing the information reward ranging from only −0.3
to 0.1. Recall that a reward of zero corresponds to a machine learner which
finds no associations, returning the observed frequency of the target class as its
estimate. It takes more than 50 training instances to achieve an average score
higher than zero! CaMML performs slightly better with sparse data, near the
level of total ignorance. The explanation of the poor performance with little
data perhaps lies in each learner’s assumptions: Naive Bayes, TAN and AODE
assume a model where all attributes depend on the target, regardless of whether
this model decreases performance. CaMML is not beholden to any particular
model, and thus is free to choose no association at all. This conservatism wins
out, even against Naive Bayes with small datasets. After enough training data,
AODE (the only learner that can model the data properly) obtains an advantage
over the other learners.

We also evaluated the learners on a set of well known datasets, including many
from the UCI data repository. For this we used Dietterich’s 5 × 2cv evaluation
method [2], modified to incorporate stratified sampling. These are reported in [7].
Briefly, we found that AODE seemed to outperform the other learners, consistent
with its performance above, and also reconfirmed that accuracy and IRB often
return conflicting results.

4 Conclusion

We have reviewed a variety of metrics for the evaluation of machine learners.
Accuracy is too crude, optimizing only domain knowledge while ignoring calibra-
tion. We have developed a new metric which is maximized under the combination
of domain knowledge and perfect calibration. This information reward evaluates
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learners on their estimate of the whole class distribution rather than on a sin-
gle classification. In rewarding calibration, it provides a valuable alternative to
cost-sensitive metrics when costs are unavailable.
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