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Abstract. This paper proposes a multi-agent Q-learning algorithm
called meta-game-Q learning that is developed from the meta-game equi-
librium concept. Different from Nash equilibrium, meta-game equilib-
rium can achieve the optimal joint action game through deliberating its
preference and predicting others’ policies in the general-sum game. A
distributed negotiation algorithm is used to solve the meta-game equi-
librium problem instead of using centralized linear programming algo-
rithms. We use the repeated prisoner’s dilemma example to empirically
demonstrate that the algorithm converges to meta-game equilibrium.

1 Introduction

Recently there have been growing interests in extending reinforcement learning
to the multi-agent domain. Based on the Markov (or stochastic) game mod-
els, many multi-agent reinforcement learning algorithms have been proposed.
Littman suggested the minimax-Q learning algorithm for zero-sum stochastic
games [5]. A second approach was pursued by Claus and Boutilier to deal with
common-payoff stochastic games[1]. Hu et al. in 1998 made a pivotal contri-
bution by introducing Nash-Q learning to general-sum games[3][4]. Littman re-
placed Nash-Q learning by Friend-and-Foe-Q learning in some special stochastic
games[6]. Furthermore, Greenwald et al. introduced the correlated equilibrium
concept and proposed CE-Q learning to generalize both Nash-Q and Friend-and-
Foe-Q learning methods[2].

Shoham et al. have raised the question of the justification of using Nash
equilibrium in multi-agent setting[7]. To answer this question, we think that Nash
equilibrium is not optimal in general-sum games. In dealing with the collective
rationality, new solutions can be adopted to replace the Nash equilibrium. When
agents can consider their own preferences and predict actions of other agents
correctly, they can reach meta-game equilibrium that is the optimal joint policy
in the general-sum game. Based on this concept, we discuss the meta-game
equilibrium and introduce the meta-game-Q learning algorithm in this paper.
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In the next section we briefly review Markov game and multi-agent reinforce-
ment learning. In Section 3, we introduce the meta-game equilibrium concept.
Then, we present a distributed negotiation algorithm to solve the meta-game
equilibrium problem in the general-sum game in Section 4. In Section 5, we
discuss our experimental results. Finally, in Section 6 we draw some conclusions.

2 Multi-agent Reinforcement Learning

Game theory is one of the most important mathematical foundations to for-
mulate a multi-agent system. When we use the games to model a multi-agent
system, all discrete states in the MDP model are regarded as some distinguishing
games. Therefore, the immediate rewards of one agent received from the world
not only depend on its own action chosen by itself, but also depend on other
actions by other agents. As a result, the single agent reinforcement learning
algorithm fails in the multi-agent domain.

When the probability transitions between different games satisfy the Markov
property, the MDP model for single agent can be generalized to the Markov
game for the multi-agent system.

Definition 1. A Markov game is a tuple 〈I, S, (Ai(s))s∈S,1≤i≤n, T, (Ri)1≤i≤n〉,
where I is a set of n agents, S is a finite set of states of the world, Ai(s) is
a finite set of the ith agent’s actions at state s, T is the probability function
that describes state-transition conditioned on past states and joint actions, and
Ri(s,

→
a ) is the ith agent’s reward for state s ∈ S and joint actions

→
a∈ A1(s) ×

. . . × An(s)[2].
In order to find the optimal action sequence policy π : S →→

a , a state-action
value function Qπ

i (s,
→
a ) is defined as the agent i’s value of taking action

→
a in

state s under a policy π, i.e.,

Qπ
i (s,

→
a ) = Eπ{Σ∞

j=0γ
jri(sj+1)} (1)

where γ is a discounter factor. The optimal policy Q∗
i is defined as

Q∗
i (s,

→
a ) = maxπQπ

i (s,
→
a ) (2)

Because the parameters of the Markov game model are unknown, the agent
can only get its experiences by trial-and-error to approximate the optimal policy
through reinforcement learning. In the Markov games, the ith agent’s Q-values
are updated on states and the action-vector

→
a as

Qi(s,
→
a ) = Qi(s,

→
a ) + α[ri(s,

→
a ) + γmax→

a′∈A′Qi(s′,
→
a′) − Qi(s,

→
a )] (3)

3 Meta-game Equilibrium

Fig. 1 shows the Prisoner’s Dilemma game which is an abstraction of social sit-
uations where each agent is faced with two alternative actions: cooperation and
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Fig. 1. Prisoner’s Dilemma game G
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Fig. 2. Meta-game 1G of Prisoner’s
Dilemma game G

defecting. Prisoners will receive different payoffs r1, r2, r3, r4 for different combi-
nations of actions, where r3 > r4 > r1 > r2, 2r4 > r2 +r3 > 2r1. It is well-known
that the joint policy (d, d) holds Nash equilibrium in the Prisoner’s Dilemma
problem. However, the optimal joint policy is (c, c) because every prisoner can
get more rewards than the rewards under Nash equilibrium (d, d). From the
Prisoner’s Dilemma game, we can see that the combination of individual agents’
optimal policies may not be the optimal joint policy of the entire multi-agent
system in the general-sum game. In other words, Nash equilibrium may not be
the optimal strategy if collective rationality is considered.

When the agents’ payoff for different action combinations become common
knowledge, one agent can get the optimal policy of the entire system by means of
revising its own policy through deliberating its preference and predicting others’
policies. This approach is the most important principle of the meta-game theory.

Meta-game is a hypothetical game derived from the original game situation
by assuming that other agents have taken their actions first. Meta-game can
be presented as an extended strategic form. When extending the ith agent’s
strategy to a function of other agents’ strategies in game G, the meta-game KiG
is constructed, where Ki is the sign of the ith agent. Obviously, the recursive
meta-game can be derived from the meta-game too. Fig. 2 presents the meta-
game 1G as an extended form game in Fig. 1.

In this extended form, agent 1 has four different actions, f1, f2, f3 and f4.
f1(∗) =′ d′ means that agent 1 always chooses action ′d′ regardless of agent 2’s
action. Similar to f1, the second action of agent 1 is f2(∗) =′ c′. The third action
f3(∗) =′ ∗′ means that agent 1 chooses the same action as agent 2’s. If agent 1
always chooses the action opposite to the agent 2’s action, it is f4(∗) =′ ¬∗′. So,
the game shifts to the new stable equilibrium called meta-game equilibrium if
all agents can predict other’s actions correctly.

Definition 2. In a multi-agent system with n agents, the meta-game 12 . . . nG,
or n(n − 1) . . . 21G, or one meta-game whose prefix is any kind of permutation
of 1, 2, . . . , n is the complete game of the origin game G.

Definition 3. A joint policy
→
am= (a1,m, a2,m, . . . , an,m) is called meta-game

equilibrium in a complete game K1K2 . . . KnG if every agent satisfies

min
aPi

max
ai

min
aFi

Ri(aPi , ai, aFi) ≤ Ri(aPi,m, ai,m, aFi,m) (4)
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where Pi is the set of the agents listed in front of the sign i and Fi is the set of
the agents listed after the sign i in prefixes K1K2 . . . Kn[8].

4 Meta-game-Q Reinforcement Learning

In many multi-agent settings, the reward function and the probability-transition
function are unknown in advance. We cannot find the optimal Q-value by means
of linear programming directly. Every agent needs to approximate the correct
Q-value through trial-and-error. As shown in Eq. 5, agents must update their
current Q-values with meta-game equilibrium.

Qi(s,
→
a ) = Qi(s,

→
a ) + α[ri(s,

→
a ) + γQi(s′,

→
am (s′)) − Qi(s,

→
a )] (5)

We cannot use a centralized algorithm to compute any equilibrium in multi-
agent learning since each agent cannot know anything about other agents’ re-
wards in advance. Instead, we have designed a distributed negotiation algorithm
for meta-game-Q learning. Assume that there are only two agents a and b in a
multi-agent system. The algorithm of agent a is given Table 1, where Qa(s, a, b)
is agent a’s current Q-value after it chooses the joint policy (a, b) in state s.

Table 1. Negotiation algorithm for solving meta-game equilibrium

Initial Ja = NULL;
Step1: agent a chooses a joint policy (a, b) �∈ Ja;
Step2: If Qa(s, a, b) ≥ maxa′∈AQa(s, a′, b), Ja = Ja + (a, b), return step1; else,
record (a′, b), goto step3;
Step3: Agent a broadcasts the message to agent b, ask agent b to judge,
Qb(s, a′, b) ≥ maxb′∈B(s, a′, b′).

Step3.1: If it is satisfied, agent b returns ’SUCCESS MESSAGE’ to agent a.
After agent a receives the ’SUCCESS MESSAGE’, Ja = Ja + (a, b), return step1.

Step3.2: If it isn’t satisfied, agent b return ’FAIL MESSAGE’ to agent a.
After agent a receives the ’FAIL MESSAGE’, record the (a′, b′), goto step4.
Step4: Agent a judges whether Qa(s, a′, b′) ≥ Qa(s, a, b). If it is satisfied,
return step1, else, return Ja = Ja + (a, b) and return step1.
Step5: When all agents get their final joint action sets, the meta-game equilibrium could
be obtained through computing the intersection of all joint action sets, viz. Ja ∩ Jb.

A template for meta-game-Q reinforcement learning is presented in Table 2.

5 Experimental Results and Analysis

We used the repeated prisoner’s dilemma(RPD) game to test our meta-game-Q
reinforcement learning algorithm. The RPD game consists of ten independent
prisoner’s dilemma games. The immediate reward of each independent prisoner’s
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Table 2. Algorithm for meta-game-Q reinforcement learning

Step1: Initialization. ∀s ∈ S, ∀i ∈ I, ∀ →
a , Qi(s,

→
a ) = 0; α = 1, γ = 0.9, P r = 0.9;

Step2: Select action. The ith agent chooses the action ai,m with probability Pr, or
randomly chooses any other action with probability 1 − Pr;
Step3: Observation. The ith agent observes the reward ri and next state s′;
Step4: Negotiation to get the meta-game equilibrium

→
am (s′) at s′;

Step5: Learning. Update the Q-value Qi(s,
→
a ) using Eq.5.

Step6: Adjust the learning rate α and selection factor Pr. And return step2 until end.

dilemma game is given in Fig. 1. The state transitions between each indepen-
dent game is deterministic. The value of the game for one agent is defined as
its accumulated reward when both agents follow their meta-game equilibrium
strategies in Fig. 3.

Fig. 3. The Q-value matrix of the ith game in the repeated prisoner’s dilemma game,
where the sum of the game’s number is 10 and r1 = −9, r2 = −10, r3 = 0, r4 = −1

Similar to the single prisoner’s dilemma game, the joint policy (c, c) is the
optimal solution in RPD because of r3 +

∑10−i
j=1 γjr4 > r4 +

∑10−i
j=1 γjr4 > r1 +

∑10−i
j=1 γjr4 > r2 +

∑10−i
j=1 γjr4, 2r4 + 2

∑10−i
j=1 γjr4 > r2 + r3 + 2

∑10−i
j=1 γjr4 >

2r1 + 2
∑10−i

j=1 γjr4. All Q-values of the matrix of the RPD game are unknown
before agents begin to learn the optimal action sequence.

We ran 10 trails and calculated the difference between the current Q-value
and the optimal Q-value in Fig. 3. In our experiment, we employed a training
period of 100 episodes. The performance of the test period was measured by the
Q-value difference when agents followed their learned strategies, starting from
the first prisoner’s dilemma game to the last game. The experimental result for
RPD is shown in Fig. 4. From Fig. 4, we can see that when both agents were
meta-game-Q learners and followed the same meta-game updating rule, they
ended up with the meta-game equilibrium 100% of the time.

6 Conclusions

In this paper, we have discussed algorithms for learning optimal Q-values in
the Markov game, given the meta-game equilibrium solution concept. Different
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Fig. 4. On-line performance of meta-game-Q agents in RPD

from the Nash-Q learning algorithm, we have used the meta-game equilibrium
instead of Nash equilibrium in the general-sum game. Specifically, we have re-
placed the centralized linear programming algorithms with a distributed negoti-
ation algorithm to solve the meta-game equilibrium under incomplete common
knowledge. This adaptive meta-game-Q reinforcement learning algorithm can
learn the meta-game equilibrium in Markov game.
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