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Abstract. The cochlear ear implant has become a standard clinical in-
tervention for the treatment of profound sensorineural hearing loss. After
20 years of research into implant design, there are still many unanswered
clinical questions that could benefit from new analysis and modelling
techniques. This research aims to develop techniques for extracting the
cochlea from medical images to support clinical outcomes. We survey
the challenges posed by some of these clinical questions and the prob-
lems of cochlea modeling. We present a novel algorithm for extracting
tubular objects with non-circular cross-sections from medical images,
including results from generated and clinical data. We also describe a
cochlea model, driven by clinical knowledge and requirements, for rep-
resentation and analysis. The 3-dimensional cochlea representation de-
scribed herein is the first to explicitly integrate path and cross-sectional
shape, specifically directed at addressing clinical outcomes. The tubular
extraction algorithm described is one of very few approaches capable of
handling non-circular cross-sections. The clinical results, taken from a
human CT scan, show the first extracted centreline path and orthogonal
cross-sections for the human cochlea.

1 Introduction

This paper describes a collaborative project being undertaken by the Depart-
ments of Computer Science and Software Engineering, and Otolaryngology at
The University of Melbourne and National ICT Australia to model and anal-
yse the shape of the human cochlea. In the first half of the paper, we describe
the problems, challenges and clinical motivations for the research. In the second
half of the paper, we present a novel algorithm for extracting tubular objects
with non-circular cross-sections (such as the cochlea) from medical images. We
present results from generated test data, and clinical results from human CT
scans.
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2 Clinical Background

Across the world, millions of people suffer from profound sensorineural hearing
loss. This form of deafness affects many people; one in 1000 babies are born
deaf with congenital hearing defects, while adults can develop profound hearing
loss with age. Around 40% of people over the age of 75 and over 3 million
children suffer from hearing loss. Until recent years, this type of hearing loss
was incurable. Nerve-impaired deafness is not treatable with standard acoustic
hearing aids, which only amplify the sound. It is characterised by damage to the
nerve or hair cells in the inner ear, and has a variety of causes.

In normal human hearing, sound waves enter the outer ear via the exter-
nal auditory meatus (ear canal) and strike the tympanic membrane (ear drum).
This resonates the connected auditory ossicles (middle ear bones) which convert
the sound waves into mechanical vibration that in turn resonates via the round
window along the scala (internal channel) of the cochlea (shell-like hearing or-
gan). The vibrations displace the basilar membrane, which runs the length of
the cochlea. Hair cells attached to the membrane are displaced by the vibration
and generate an electrochemical stimulus causing neurons in the local region to
fire. The neuronal stimulus is transmitted via the auditory nerve to the cortex
of the brain for processing. The sound frequency is a function of the distance
along the cochlea, thus spatially encoding sound.

The cochlea is the organ of hearing, a tiny (2cm3) shell-like spiral structure
in the inner ear, embedded in the temporal bone of the skull. A normal cochlea
revolves through 21

2 turns, from the basal turn (lower turn) up to the helicotrema
(top of spiral). Three channels run the length of the cochlea: the scala tympani,
scala media and scala vestibuli. The cochlear implant (described below) is in-
serted into the scala tympani. The path of the cochlea resembles a helical spiral,
while the cross-sectional shape resembles a cardioid (rounded “B” shape). The
basilar membrane resonates at different frequencies along its length; the distance
along corresponds to the frequency perceived. The degree of neuronal stimulation
determines the amplitude (volume) sensed.

The cochlear implant, also known as the bionic ear, was developed by Profes-
sor Graeme Clark at The University of Melbourne and later at The Bionic Ear
Institute. The implant restores hearing to patients with sensorineural damage,
and has become a standard clinical intervention for profound deafness. There
have been over 50,000 recipients of the cochlear implant in 120 countries world-
wide, since the first clinical trials in 1985 [2].

The cochlear ear implant consists of: an external microphone that picks up
sound; a signal processing unit that converts the sound into electrical signals;
and an electrode array that stimulates the nerve fibres inside the cochlea. This
completely bypasses the outer and middle ear, and relies only on residual hearing
in the form of viable neurons inside the cochlea. The signal processing unit
performs spectrum analysis on the incoming sound, and determines the frequency
and amplitude of the speech. The array consists of a series of electrodes that
directly stimulate the auditory nerve with electrical current, thus recreating
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Fig. 1. Left: The middle and inner ear: a) external cochlea device, b) signal processor,

f) basal turn, g) cochlea, h) auditory nerve

the sensation of hearing. The distance along the array encodes frequency, while
current determines amplitude [3].

There are many clinical problems and questions that could benefit from new
techniques for the analysis of the shape of the cochlea and implant, some of
which are listed in Figure 2. In order to answer these questions, it is clear that

1. Does the patient suffer from Mondini’s syndrome [1]?

A normal cochlea revolves about 2 1
2

turns, whereas Mondini’s syndrome is char-
acterised by incomplete formation of turns. This needs a model of the cochlea
path to determine number of turns of cochlea canal.

2. Does the patient present surgical risks?

Pathologies such as ossification of the basal turn can complicate surgery. A model
of cross-sectional shape could identify such an abnormality, given a statistical
prior model of normal shape.

3. Where are the electrodes with respect to the modiolus?

Calibration and tuning of the speech processor are affected by the distance to the
modiolus and the position of each electrode. This requires a cochlea model and
implant model to determine distances and path.

4. How far has the electrode array been inserted?

Post-operative tuning of the signal processor depends on this information, to
determine frequency correspondences with the electrodes. Requires a model of
the cochlea and implant.

5. Has the implant pierced the basilar membrane?

If this occurs during implant insertion, it may impair vestibular function or dam-
age residual neurons. This information may also be used to improve electrode de-
sign, and have impact on surgical technique evaluation. Requires detailed cochlea
model and implant model.

Fig. 2. Clinical questions, surgical outcomes and cochlea modelling requirements
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we need a shape model of the cochlea that captures the path of the otic capsule,
the cross-sectional shape (along with the position of the basilar membrane), and
a model of the path of the implant with respect to the cochlea model.

Abnormalities in the shape of the cochlea may be associated with hearing
impairment and deafness. Shape analysis of the cochlea also has implications for
cochlear implant surgery in several areas: diagnosis, such as identifying Mondini’s
syndrome [1] and ossification of the basal turn; surgery planning, since vital
structures may be found in unpredictable locations; and clinical management,
as abnormal shape increases the risk of meningitis.

A variety of non-invasive imaging techniques are available to clinicians for
diagnosis and surgery planning. Conventional 2D x-rays, or radiographs, have
been in use for many years, and are still widely used. Computed Tomography
(CT) is a form of 3-dimensional x-ray, which is particularly suited to imag-
ing bone structures. Magnetic Resonance Imaging (MRI), also a 3-dimensional
modality, images the subject in a magnetic field, and is best at discriminating
different types of tissue. Since the implant is metallic, MRI cannot be used post-
operatively, due to the risk of internal damage. X-rays and CT scans are cur-
rently the only practical means of post-operative evaluation in vivo for cochlear
implant patients.

There are clearly many clinical motivations for imaging the cochlea. However,
there are many significant challenges that remain before these questions can be
answered. As the cochlea is only 2cm3 (about the size of a marble), with current
imaging resolutions, in vivo scans will resolve approximately 60x60x45 voxels at
a 0.1mm anisotropic scale. The scala tympani, the part of the cochlea into which
the electrode is inserted, is approximately 1mm in diameter. The electrode itself
consists of 24 × 0.01mm wires with electrodes of 0.5mm in diameter.

Traditional 2D radiographs are currently used in clinical practice to post-
operatively evaluate the position of the electrode. The individual wires and elec-
trodes on the implant are visible, and the resolution is very good. However, it can
be difficult to acquire an x-ray that is properly aligned with the basal turn. More
significantly, since the radiograph is a planar projection, 3D information is lost.
Current clinical practice relies on the surgeon’s experience to make qualitative
evaluations from this data. A CT scan can deliver a full 3D reconstruction of the
cochlea and electrode array post-operatively. However, the metallic construction
of the electrode (platinum) introduces significant blooming artifacts into the sur-
rounding image, and distorts for more than 1mm. Individual electrodes are not
detectable in CT [4]; only the path of the implant and wires. Since this distortion
extends beyond the size of the cochlea affecting local structures, post-operative
evaluation of the implant path is not ordinarily feasible. Clearly, neither CR nor
CT is sufficient alone for these evaluations.

Surprisingly little attention has been paid to modelling the three-dimensional
shape of the hearing organ itself, the cochlea. It is generally accepted that the
cochlea resembles an Archemidean spiral [5, 6] or shell. The only models pub-
lished have described the path, thus no model integrating path and cross-section
exists.
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Cohen’s 2D Electrode Model. Cohen et al. present a 2-dimensional spiral
template to model the path of the inserted electrode array [7], providing a model
for frequency estimation and implant tuning. This can be seen as an approxima-
tion of the path of the otic capsule (defined by the walls of the bone structure
containing the cochlea), however it is known that the implant does not always
track the walls. Since the implant is inserted into the scala tympani, the elec-
trode will not necessarily follow the precise centreline of the otic capsule itself.
Thus this model is only an approximation to the cochlea tubular path.

Cohen’s 2D spiral model is a piecewise logarithmic spiral based on a polar
co-ordinate system (the second equation takes into account the curvature of the
basal turn):

R = ac−bθ θ ≥ 100◦

R = c(1 − d log(θ − θ0)) θ < 100◦ (1)

for some constants a, b, c, d. The origin is centred at the modiolus.

Yoo’s 3D Spiral Model. Cohen’s 2D electrode path model was extended into
3D by Yoo et al. [5, 8] in order to model the centreline path of the cochlea
itself. This involved adding a Z-axis component to the existing polar coordinate
system. First a linear function z = e(θ−θ1) was described [5], then an exponential
function h = cedθ [8], where z and h both represent the height of the spiral curve,
for some constants c, d, e and angle θ.

This model for the cochlea centreline is based on the electrode model, and
assumes that the paths are coincident. It was evaluated on a single patient and
validated against histological data, which is typically imprecise. The centreline
is taken as the centroid of cross-section, which is extracted using Wang’s un-
wrapping technique [9]. Ultimately this model is only an approximation to the
path of the cochlea centreline; it does not address the shape of the cross-section
of the cochlea along its path.

Ketten’s Archimedean Spiral Model. Ketten et al. present an Archemidean
spiral model, which is used to estimate cochlea length along the midcanal spiral
path [6]. This model is aimed at predicting insertion depth and cochlea length,
and thus does not directly address the 3D space-curve path that we seek. Yoo
points out that this model does not take into account the basal turn [8], and
thus is less faithful to cochlea morphometry than the models described above.

Models Summary. The most advanced model thus far is the 3D path model
of Yoo et al.. It been derived from a single CT scan, is based on the assumption
that the electrode path and centreline are equivalent, and does not address cross-
section. These existing models are inadequate to respond to the clinical questions
before us. This research aims to address this gap by producing a model that inte-
grates both path and cross-sectional shape, developing an extraction algorithm
capable of generating such a model, and one that will integrate with a model of
the electrode.
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3 Tubular Object Extraction

The cochlea is often described as an Archemidean spiral shell [5], which can
be approximated by a logarithmic curve. However the cross-sectional shape of
the cochlea is not elliptical; it resembles a cardioid (a rounded “B”). Both the
shape and size of the cochlea vary along its length, posing some unique chal-
lenges for extraction and modeling. Most existing tubular extraction techniques
are concerned with the vasculature, where a circular or elliptical cross-section is
typically assumed. Since we cannot make this assumption, a new approach is re-
quired that explicitly treats complex cross-sectional shape. Our goal is therefore
to develop techniques for extracting 3-dimensional tubular objects with non-
circular cross-sections, and recover clinically relevant parameters that support
medical outcomes.

The remainder of this paper is structured as follows: first we discuss related
research in the area of tubular object extraction, and why these are unsuitable
for our purposes. Then we describe the design of our algorithm, including param-
eter selection. We then present the results of processing synthetic data (a gold
standard) based on Yoo’s 3D model, and real CT dataset of a human cochlea.

A number of approaches exist for tubular object segmentation and extraction,
however the majority of research has focused on segmenting vascular networks
[10–14]. Since blood vessels are thin, long, have circular or elliptical cross-sections
and form complex branching networks, most tubular research has focused on
anatomy with these attributes. Consequently, larger tubular objects with non-
trivial cross-sections such as the cochlea have received much less attention.

The intrinsic shape characteristics of a tube can be described by two related
components: the centerline path and the cross-sectional shape along the path.
Binford [15] first proposed the Generalised Cylinder (GC), a spatial curve defin-
ing the centerline path of the object, and a cross-section (typically circular or
elliptical) that can vary as a function of the distance along the path. The Right
Generalised Cylinder (RGC) [16] constrains the cross-section to be orthogonal to
the tangent of the path. With some exceptions (eg. [13]), the majority of recent
approaches to tubular models employ variations on the RGC. In the case of the
cochlea, the centerline path is clinically significant (see Figure 2). Consequently,
a tubular representation suitable for shape analysis would be highly desirable.

In scale space terms, the gross-scale shape of a tube is characterised by the
path of its centerline (the tubular axis), and is typically modelled as a B-spline
[11]. To extract the centreline of a tube, Principal Components Analysis (PCA)
can be applied to a local image region directly to track the maximal eigenvector
[9] and follow the principal axis. More common is to apply PCA to the local
Hessian matrix, and track along the maximal eigenvectors [10, 11, 14].

Aylward et al. [10] use multi-scale intensity ridge traversal, driven by the
eigenvalues of the local Hessian, to extract the centerline of blood vessels. This
approach requires a near-circular cross-section, limiting its applicability to com-
plex cross-sectional modeling. While Krissian [14] simply employs the local Hes-
sian for orientation, Frangi [11] also employs a local discriminant function that
identifies tubular structures locally to improve and guide tracking.
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The Hessian is a 2nd-order directional derivative, which makes it more sus-
ceptible to noise than a 1st-order gradient operator (employed in our approach).
Multi-scale blurring is typically used in conjunction with the local Hessian to
mitigate noise. This also ensures the requisite Gaussian intensity profile to create
the intensity ridge at the centre of the tube. However, this requires the cross-
section to be nearly circular [10], thus limiting its generality. Bifurcations can
also cause problems when using the local Hessian, due to filtered signal loss
around the joint [11].

Yim et al. [13] employ a deformable curve (snake) in a novel tubular co-
ordinate system, that deforms according to image and smoothing forces to model
the wall as a mesh. It is assumed that the centerline has been manually specified
as a sequence of points along the centre axis of the vessel, although Bitter [17]
demonstrates how this can be error-prone.

Lorigo describes an approach based on Level Sets called curves [12], that
uses an evolving curve driven by image intensity gradient to extract vasculature.
However the result is still a segmentation, and thus further analysis would be
required to produce a tubular model suitable for shape analysis.

The fine-scale detail of a tube is defined by the local shape of the orthogonal
cross-section, which can vary along the length of the tube. This is difficult to ex-
tract and model explicitly. Most approaches either do not address cross-sectional
shape [18], or assume a circular or elliptical [10] cross-section. These assumptions
may generally be valid for vasculature, however in [11] Frangi points out that “ex
vivo measurements have shown that this assumption is rather simplistic”. Frangi
describes a spline-based tubular model capable of representing non-circular cross-
sections, and demonstrates the approach to model vessel stenosis.

3.1 Tubular Extraction Algorithm

The Tubular Extraction algorithm uses the Principal Flow Filter [19] to incre-
mentally extract a tubular object by tracking along its path and taking cross-
sectional slices. Since our approach is driven by the image gradient at the tube
walls, there is no constraint imposed on the cross-sectional shape. In this paper,
we do assume that the cross-sectional area does not vary significantly along the
length, which is valid for the cochlea.

The Principal Flow Filter calculates the local orientation of flow along a
tube. Given an input volume I : R

3 �→ R containing a non-branching tubular
object, we specify a point p = (x, y, z) inside the tube, and a vector v oriented
approximately along the tube. We assume that the contrast along the tubular
walls is strong (see Figure 3(a)). Thus the gradient intensity vectors along the
walls will tend to be oriented approximately co-planar with the orthogonal cross-
sectional plane. It follows that the cross-product of any two of these wall gradient
vectors should produce a vector approximately oriented along the tubular axis.
With a sufficiently robust analysis, a local region can be processed in this way to
calculate a mean orientation from all the cross-products, yielding the principal
flow vector vf .
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Fig. 3. (a) Cross-section of a tube, showing: centroid p, maximal diameter ρ, and

gradient vectors around wall; (b) Side view of tube, showing: point p, flow vector vf ,

longitudinal dimension δ and gradient vectors along the wall; (c) pairs of gradient

vectors along the wall contribute to flow vector

Parameters are supplied for the expected maximum diameter of the tube ρ
and the desired section depth δ (inversely proportional to the curvature). This
specifies a Volume of Interest V, centred at p, oriented such that v defines the
new Z-axis, with size ρ × ρ × δ. We size V such that it completely encloses a
short and relatively uniform section of the tube; that is, the width and height
ρ is slightly larger than the diameter of the tube, and the depth δ is small
enough to minimise local curvature. Over the resampled VOI IV we calculate
the first-derivative image gradient:

G = ∇IV (2)

Thus G will yield strong gradient vectors normal to the walls. We randomly
sample N vectors a from this vector field:

M = {ai : ai = S(G), i ∈ [0, N ], ‖ai‖ > ε} (3)

where S is a pseudo-random sampling function, and ε is the minimum gradi-
ent magnitude threshold. We then take the vector cross-product of all pairs
from M : C = {ci : ci = vm × vn, ∀vm, vn ∈ M ,m �= n} (4)

We map the vectors from C into (φ, ψ) ∈ R
2, where φ is the angle of ci in the

XZ plane and ψ is the angle of in the Y Z plane (see Figure 4(c)). This produces
a cluster around the mean local orientation. To eliminate outliers and mitigate
against sampling noise, we employ a robust random sampling approach based on
the RANSAC algorithm [20]. A series of potential models is taken from the data
set, and compared with all data points in the set using a Euclidean distance
metric d(a, b). The support for a model is increased by a data point falling
within a given threshold of the model. After a sufficient number of iterations,
the model with the greatest support is chosen. The new mean orientation is
calculated from all points in this support set, which is transformed back into a
vector in the original frame, and becomes the local flow vector vf for that region
oriented along the tube.
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Fig. 4. (a) typical mid-saggital slice of human cochlea, showing upper and basal turns,

and auditory nerve; (b) A VOI from the CT cochlea, showing wall with gradient vec-

tors; (c) Flow vectors projected into a Euclidean space, with a cluster clearly showing

consensus on orientation

The Tubular Extraction algorithm consists of the following steps:
1. Initialise with p = p0 and v = v0, and select ρ, δ
2. Resample the Volume Of Interest (VOI) centred at p oriented by v, with

dimensions ρ × ρ × δ
3. Calculate the local flow direction vf using the Principal Flow Filter
4. Extract the cross-sectional plane P given normal vf centred about p
5. Calculate the new centre pc from centroid of P
6. Calculate the new centre point with p = pc + δvf

7. Repeat from step 2

3.2 Results

First the algorithm was evaluated against generated data, in order to have
ground-truth for testing and validation. Yoo’s 3D model of the cochlea [5] was
used to generate a realistic test model (Figure 5i,ii). Two test volumes were ren-
dered with different cross-sections: a circular shape with diameter 10mm, and
a clover-leaf shape with diameter 12mm (resolution 1mm/voxel). The track-
ing results are shown in Figure 5 (iii,iv). The algorithm demonstrated excellent
tracking in both cases, successfully extracting the entire length of the tubes
automatically.

The algorithm has also been applied to a CT scan of a real human cochlea.
The input data and tracking results are shown in Figure 5. The algorithm suc-
cessfully tracked through the basal and mid-modiolar sections of the cochlea, for
approximately 11

4 turns. The characteristic curve shape is clearly visible in the
XZ plot of Figure 6(iv). At two points, anatomy adjoins the cochlea, creating
a bifurcation that necessitated a manual restart. The tracking is not precisely
on the centreline, mainly due to the low resolution available (limited by clinical
considerations and x-ray dosage).
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Fig. 5. Generated Data: Input data (i,ii) and tracking results (iii,iv) for (a) circular

and (b) clover cross-section
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Fig. 6. Clinical Results: the input CT scan data showing a mid slice (i) and 3D view

(ii), with tracking results (iii,iv) and the first 10 cross-sections (v). Note: the path in

(iii) is not orthogonal to viewing plane

4 Conclusion

We have presented a survey of the clinical challenges of cochlea modelling. We
have presented a novel tubular extraction algorithm that captures the path of
tubular objects and their cross-sections. The algorithm explicitly handles non-
circular cross-sections, which is relevant to numerous areas of anatomy. The
output of the algorithm is model-centric, which has direct advantages for shape
analysis, as the model directly captures clinically relevant parameters. The re-
sults demonstrated very accurate extraction of difficult generated test data. Sig-
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nificantly, the algorithm has been applied to CT and produced the first successful
of the centreline and cross-sections of the human cochlea for 1 1

4 turns. This data
will be validated, extended to analyse a small population, and form the basis of
the first general cochlea shape model derived from clinical data. The challenge of
bifurcations will need to be addressed to apply this technique to other anatomy.

Our thanks to the Royal Victorian Eye and Ear Hospital for supplying the
CT scan data used in this study, to the reviewers for their helpful comments,
and to the developers of the Insight Toolkit [21] imaging library, which was used
to develop the analysis software for this project.
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