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Abstract. Quantified Boolean formulas (QBFs) play an important role in arti-
ficial intelligence subjects, specially in planning, knowledge representation and
reasoning [20]. In this paper we present ZQSAT (sibling of our FZQSAT [15]),
which is an algorithm for evaluating quantified Boolean formulas. QBF is a lan-
guage that extends propositional logic in such a way that many advanced forms
of reasoning can be easily formulated and evaluated. ZQSAT is based on ZDD,
which is a variant of BDD, and an adopted version of the DPLL algorithm. The
program has been implemented in C using the CUDD package. The capability of
ZDDs in storing sets of subsets efficiently enabled us to store the clauses of a QBF
very compactly and led us to implement the search algorithm in such a way that
we could store and reuse the results of all previously solved subformulas with few
overheads. This idea along some other techniques, enabled ZQSAT to solve some
standard QBF benchmark problems faster than the best existing QSAT solvers.

Keywords: DPLL, Zero-Suppressed Binary Decision Diagram (ZDD), Quantified
Boolean Formula (QBF), Satisfiability, QSAT.

1 Introduction

Propositional satisfiability (SAT) is a central problem in computer science with numerous
applications. SAT is the first and prototypical problem for the class of NP-complete
problems. Many computational problems such as constraint satisfaction problems, many
problems in graph theory and forms of planning can be formulated easily as instances
of SAT.

Theoretical analysis has showed that some forms of reasoning such as: belief revision,
non monotonic reasoning, reasoning about knowledge and STRIPS-like planning have
computational complexity higher than the complexity of the SAT problem. These forms
can be formulated by quantified Boolean formulas and be solved as instances of the
QSAT problem . Quantified Boolean formula satisfiability (QSAT) is a generalization of
the SAT problem. QSAT is the prototypical problem for the class of PSPACE-complete
problems. With QBFs we can represent many classes of formulas more concisely than
conventional Boolean formulas.

ZDDs are variants of BDDs. While BDDs are better suited for representing Boolean
functions, ZDDs are better for representing sets of subsets. Considering all the variables
appearing in a QBF propositional part as a set, the propositional part of the formula
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can be viewed as a set of subsets, this is why using ZDDs for representing a formula
could potentially be beneficial. This idea is used in a number of related works [8, 10, 2]
where the SAT problem is considered. They use ZDDs to store the CNF formula and the
original DP algorithm to search its satisfiability. We also found ZDDs very suitable for
representing and solving QSAT problems.

We represent the clauses in the same way in a ZDD, but we employ an adopted version
of the DPLL [9] algorithm to search the solution. In fact, our adopted version simulates
the “Semantic tree method in evaluating QBFs”. It benefits from an adopted unit-mono-
resolution operation which is very fast thanks to the data structure holding the formula. In
addition, it stores all already solved subformulas along their solutions to avoid resolving
same subproblems. Sometimes the split operation generates two subproblems which are
equal. With ZDDs it is very easy to compare and discover their equality, therefore our
algorithm can easily prevent solving both cases when it is not necessary. There are some
benchmark problems which are known to be hard for DPLL (semantic tree) algorithms.
ZQSAT is also a DPLL based algorithm, but it manages to solve those instances very
fast. ZQSAT is still slow in some QBF instances, this is why we can not claim ZQSAT
is the best conceivable algorithm, but it is the first work that shows how ZDDs along
memoization can be used successfully in QBF evaluation.

2 Preliminaries

2.1 Quantified Boolean Formulas

Quantified Boolean formulas are extensions of propositional formulas (also known as
Boolean formula). A Boolean formula like (x ∨ (¬y → z)) is a formula built up from
Boolean variables and Boolean operators like conjunction, disjunction, and negation. In
quantified Boolean formulas, quantifiers may also occur in the formula, like in ∃x(x ∧
∀y(y ∨ ¬z)). The ∃ symbol is called existential quantifier and the ∀ symbol is called
universal quantifier. A number of normal forms are known for each of the above families.
Among them, in our research, the prenex normal formand conjunctive normal form
(CNF) are important. In many problems including SAT and QSAT, normal forms do not
affect the generality of the problem, instead they bring the problem in a form that can
be solved more easily.

Definition 1. A Boolean formula is in conjunctive normal form (CNF) if it is a con-
junction of disjunctions of literals, that is, φ = c1 ∧ c2 ∧ . . . ∧ cn, where ci =
(li1 ∨ . . . ∨ limi

) and lij is a negative or positive literal. The disjunctions are referred
as clauses.

Each Boolean formula can be transformed into a logically equivalent Boolean for-
mula which is in conjunctive normal form (CNF). Generally this transformation can not
be done efficiently.

Definition 2. A QBF Φ is in prenex normal form, if it is in the form:

Φ = Q1V1Q2V2 . . .QnVnφ,
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where Qi ∈ {∀, ∃}, Vi (1 ≤ i ≤ n) are disjoint sets of propositional variables and φ is a
propositional formula over the variables x1, . . . , xn. The expressionQ1V1Q2V2 . . .QnVn

is called the prefix and φ the matrix of Φ.

2.2 The DPLL Algorithm for the SAT Problem

Most former and recent SAT solvers are in some way extensions of the DPLL [9] al-
gorithm. DPLL tries to find a satisfying assignment for a CNF formula by making an
exhaustive search. Each variable is assigned with a truth-value (true or false) which
leads to some simplifications of the function. Since the function is in CNF, the assignment
can be done efficiently. If an assignment forces the formula to be reduced to false then
a backtrack will take place to make another possible assignment. If none of the possible
assignments satisfy the function then the function is unsatisfiable. In order to prune the
search space we have to consider unit clauses. A unit clause is a clause with exactly one
literal. For example in f = (a ∨ ¬b ∨ ¬c) ∧ (a ∨ ¬c ∨ d) ∧ (b) ∧ (a ∨ b ∨ c),
the third clause is a unit clause. Unit resolution is the assignment of proper truth values
to the literals appearing in unit clauses and removing them from the formula. For in-
stance, in the above example, b receives the value true, which lets f be simplified to:
f1 = (a ∨ ¬c) ∧ (a ∨ ¬c ∨ d). If all literals in a clause simplify without satisfying
the clause then DPLL immediately returns "UNSATISFIABLE", but if all the clauses
satisfy and be removed then it returns "SATISFIABLE". When no more simplification
is possible, DPLL splits the simplified function over one of the remaining variables
(which can receive either the value true or false). This step removes one variable,
and consequently a number of clauses. Two smaller CNF formulas will be generated of
which at least one must be satisfiable to make the original formula satisfiable.

2.3 The Semantic Tree Approach for the QSAT Problem

This method is very similar to the DPLL algorithm. It iteratively splits the problem of
deciding a QBF of the form Qx Φ into two subproblems Φ[x = 1] and Φ[x = 0] (the
unique assignment of each x respectively with true or false), and the following
rules:

– ∃x Φ is valid iff Φ[x = 1] or Φ[x = 0] is valid.
– ∀x Φ is valid iff Φ[x = 1] and Φ[x = 0] is valid.

Figure 1 displays the pseudocode of this algorithm, which we have called QDPLL.
The differences between QDPLL (for QBFs) and the DPLL algorithm (for Boolean

satisfiability) can be enumerated as follows:

1. In the Unit-Resolution step (line 1), if any universally quantified variable is found
to be a unit clause then the procedure can immediately conclude the UNSAT result
and terminate.

2. In the Mono-Reduction step (line 1), if any universally quantified variable is found to
be a mono-literal, then it can be removed from all the clauses where it occurs (rather
than removing the clauses, as it applies to existentially quantified mono literals).
We call a literal monotone if its complementary literal does not appear in the matrix
of the QBF. The Mono-Reduction step can result in new unit clauses. Therefore the
procedure must continue line 1 as long as new simplifications are possible.
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Boolean QDPLL( Prenex-CNF F )
{
1 F=Simplify F by repeated Unit-Resolution removal of subsumed

clauses and possible Mono-Reductions;

2 if (F is primitive ) return Solution;
// the same as in DPLL, if F include Empty-Clause return
// UNSAT, but if F is Empty return SATISFIABLE

3 F0,F1=choose x as the splitting variable; Split F;
// Very little freedom in choosing variables.

4 Solution=DPLL(F0);
5 if (Solution==TRUE and Existential_Literal(x) ) return TRUE;
6 if (Solution==FALSE and Univarsal_Literal(x) ) return FALSE;

// for the other two cases
7 return DPLL(F1);
}

Fig. 1. The semantic tree approach for QBFs

3. In the splitting step (line 3), there is a little freedom in choosing the splitting vari-
able. In fact, in a block of consecutive variables under the same kind of quantifier
we are allowed to consider any order, but before processing all the variables in
the leftmost block we are not allowed to assign values to any variable from other
blocks. In other words, Iterations of quantified blocks must be considered exactly
in the same order as they appear in the QBF prefix. As an example in the QBF
∀x1∀x2∀x3∃y1∃y2∃y3∀z1∀z2∀z3φ, all xi must be assigned before any assignment
for any yj take place, in the similar way, all yj must be assigned before any assign-
ment for any zk take place, but we are allowed to consider any order when we are
processing the variables of for example x block.

4. After solving one of the branches, even if the result is true (line 7), it could be
necessary to solve the other branch as well. Due to universal variables allowed to
appear in QBFs, the false result (line 6) for one of the branches can signify the
UNSAT result and terminate the procedure without checking the other branch.

From another point of view, this method searches the solution in a tree of variable
assignments. Figure 2 [13] displays the semantic tree for:

Φ = ∃y1∀x∃y2∃y3(C1 ∧ C2 ∧ C3 ∧ C4),
where:

C1 = (¬y1 ∨ x ∨ ¬y2), C2 = (y2 ∨ ¬y3), C3 = (y2 ∨ y3), and C4 = (y1 ∨ ¬x ∨ ¬y2).

We can follow the tree and realize that Φ is invalid. A very interesting point can be
easily seen in the tree. It is the duplication problem in semantic tree method, namely,
the same subproblem can appear two or more times during the search procedure. In a
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Fig. 2. A semantic tree proof Fig. 3. BDD versus ZDD

big QBF this situation can frequently happen in different levels. The superiority of our
algorithm which we will present later, is its possibility to detect and avoid to examine
such duplications repeatedly.

2.4 BDDs Versus ZDDs

Here we give a very short background for BDDs and ZDDs. Several years ago, Binary
Decision Diagrams (BDDs) [5, 6, 21, 3, 16] and their variants [4] entered the scene of
the computer science. Since that time, they have been used successfully in industrial
CAD tools. In many applications, specially in problems involving sparse sets of subsets,
the size of the BDD grows very fast and causes inefficient processing. This problem
can be solved by a variant of BDD, called ZDD (Zero suppressed Binary Decision
Diagrams) [17, 1]. These diagrams are similar to BDDs with one of the underlying
principles modified. While BDDs are better suited for the representation of functions,
ZDDs are better suited for the representation of covers (set of subsets). Considering all
the variables appearing in a QBF (propositional part) as a set, the propositional part of
the formula can be viewed as a set of subsets, this is why using ZDDs for representing a
formula could potentially be beneficial. As an example [18], in Figure 3, the left diagram
displays the ZDD representing S = {{a, b}, {a, c}, {c}}, and the right diagram displays
F = (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ c) ∨ (¬a ∧ ¬b ∧ c), which is the characteristic function
of S. In a ZDD (or BDD) we represent an internal node by P (x, Γ0, Γ1) where x is the
label of the node, and Γ1, Γ0 are SubZDDs rooted in it ’Then-child’ and ’Else-child’
respectively. The size of a ZDD Γ , denoted by |Γ |, is the number of its internal nodes.

3 Our Algorithm

ZQSAT is the name we used for our QSAT solver. The major points which are specific
to our algorithm are:

1. Using ZDDs to represent the QBF matrix (the formula clauses). (We adopted this
idea from [8, 10, 2] then established the specific rules suitable for QBF evaluation).

2. Embedding memoization to overcome mentioned duplication problem (to avoid
solving the same subproblem repeatedly).

Figure 4 displays the pseudocode for MQDPLL, which stands for our ’DPLL with
memoization’ procedure. This procedure forms the search strategy used by ZQSAT.
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Boolean MQDPLL( Prenex-CNF F )
{
1 if ( F is Primitive or AlreadySolved ) return Solution;
2 S=Simplify F by repeated Unit-Resolution, removal of

subsumed clauses and possible MonoLiteral-Reductions;
3 if ( S is Primitive or AlreadySolved )

{Add F along with the Solution to SolvedTable;
return Solution; }

4 F0,F1=choose x as the splitting variable then Split S;
5 Solution=DPLL(F0); // Why this branch? Read in text !!
6 if (F0==F1) or

(Solution==TRUE and Existential-Literal(x) ) or
(Solution==FALSE and Univarsal-Literal(x) )
{Add F along with the Solution to SolvedTable;
return Solution; }

7 Solution=DPLL(F1);
8 Add F along with the Solution to SolvedTable;

return Solution;
}

Fig. 4. MQDPLL: Our ’DPLL with memoization’ procedure

MQDPLL is different from QDPLL in some aspects. Firstly, it benefits from a memo-
ization strategy (dynamic programming tabulation method) to store and reuse the results
of already solved subproblems (lines 1, 3, 6, 8 in the above pseudocode). Secondly,
the situation where the two subfunctions f0 and f1 are equal can be detected and the
subproblem would be solved only once (line 6).

In line 4, the algorithm needs to choose a variable for the splitting operation. At this
point we must respect the order of iterations of quantification blocks, but when we are
working with a quantification block we are allowed to choose any variable order. In our
implementation we used the order which appears in the initial QBF formula. In fact we
tried to investigate other possibilities, but since we obtained no benefits in our first effort
we did not continue to investigate the issue in detail. We believe in this regard we can
potentially find useful heuristics in our future research.

In line 5, the algorithm needs to choose the next branch (F0 or F1) to continue the
search process. There are a number of possibilities like: always F0 first, always F1 first,
random choice, according to the number of nodes in the ZDDs representing F0 and
F1, according to the indices appearing in the root nodes of the ZDDs representing F0
and F1, Considering the number of positive/negative appearance of the variables in F0
and F1 clauses and so on. We tried most of these possibilities and realized that in our
implementation they behave more or less the same, but we still believe that at this point
we can potentially improve the performance of our algorithm.

Storing all already solved subproblems and detecting the equality of two subproblems
(functions) is usually very expensive. We managed to overcome these difficulties thanks
to ZDDs. This data structure lets us to store the QBF matrix very efficiently and allowed



Embedding Memoization to the Semantic Tree Search for Deciding QBFs 687

us to store every subfunction created in the splitting step or obtained after the simplifi-
cation operations, with no or very little overheads (see Figure 5).

3.1 Using ZDDs to Represent a CNF Formula

A ZDD can be used to represent a set of subsets. We use this property to represent the
body of the QBF, which is supposed to be a propositional function in CNF. Since each
propositional CNF formula φ can be represented as a set of sets of literals [φ] we can
represent a CNF formula by means of a ZDD. In ZDDs, each path from the root to the
1-terminal corresponds to one clause of the set. In a path, if we pass through xi = 1
(toward its ’Then-child’), then xi exists in the clause, but if we pass through xi = 0
(toward its ’Else-child’) or we don’t pass through xi, then xi does not exist in the clause.

To represent the sets of clauses, i.e., a set of sets of literals, we assign two successive
ZDD indices to each variable, one index for positive and the next for its complemented
form [8]. Figure 5 shows how this idea works for a small CNF formula [10, 2]. In ZDDs
(like BDDs), the variable order can considerably affect the shape and size of the resulting
graph. As we pointed out earlier, in evaluating QBFs, the variable selection is strongly
restricted. In general the order of the prefix must be respected. In representing and
evaluating a QBF like Φ = ∃x1 . . .∀xnφ using ZDDs, we consider the extended literal
order x1 ≤ ¬x1 ≤ . . . ≤ xn ≤ ¬xn. The following theorem [8] gives a good estimate
for the size of the ZDD representing a CNF formula in the mentioned method.

Fig. 5. ZDD encoding of a CNF formula

Theorem 1. Let f be a formula in conjunctive normal form. The number of nodes of
the ZDD Γf encoding the set of clauses of f is always at most equal to the total number
of literals of f .

Due to the page limit we removed the proof (please contact the authors for the proof).
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3.2 Benefits of Using ZDDs Along Our MQDPLL-Algorithm

In Figure 5, we can also see another interesting characteristic of the ZDDs, that is,
their possibility of sharing nodes and subgraphs. In fact each node in a ZDD stands for a
unique function. In our search procedure, after the simplification operations and after the
splitting step, new functions arise. We noticed that many of these functions are the same,
therefore we let ZQSAT to retain all already produced functions along their solutions, to
prevent resolving the same functions (memoization). We mentioned earlier, this idea is
embedding dynamic programming/memoization to the DPLL Algorithm. In fact, after
inserting this possibility, ZQSAT managed to solve the instances known to be hard for
DPLL-based methods very fast (see Table 1).

Considering ZDDs as the data structure holding the formula affects the search algo-
rithm and its complexity considerably. Operations like detecting the unit clauses, detect-
ing mono variables, performing the unit/mono resolution and detecting the SAT/UNSAT
conditions depend strongly on the data structure holding the formula. Here we give some
rules concerning these operations. The rules can be derived from the basic properties
known for QBFs, some lemmas presented in [7] and the properties of representing CNF
clauses in a ZDD. Performing these operations with other data structures is often much
slower. Reminding that Minato [17] has presented efficient algorithms for set opera-
tions on ZDDs. His algorithms are mostly based on dynamic programming and efficient
caching techniques. We used them (through the CUDD package) in our research work.

In the following rules we suppose we have read the clauses and represented them in
a ZDD Γ . The rules are applicable when we are examining the satisfiability of Γ :

Rule 1 (Finding All Unit Clauses): A unit clause is a clause with exactly one literal.
If the literal is universally quantified, then the clause and subsequently the QBF is
unsatisfiable. If the literal is existentially quantified, then the truth value of the literal
can be determined uniquely. Let Γ = P (l1, Γ1, Γ2) be a ZDD where l1 is the topmost
literal in the variable order, then the literal l2 is a unit clause in Γ iff:

l2 = l1 and Γ1 contains the empty set. In other words, the literal appearing in the root
of the ZDD is a unit clause if moving to its Then-child followed by moving always
toward the Else-child leads us to the 1-terminal.

l2 ∈ var(Γ2) and l2 is a unit clause in Γ2. Note: if l2 ∈ var(Γ1) then it can not be a
unit clause.

Finding all unit clauses can be accomplished in at most (2 · n − 1)/2 steps, where n
is the number of variables in the set of clauses represented by Γ .

Rule 2 (Trivial UNSAT): If x is a unit-clause and it is universally quantified, then the
QBF formula is unsatisfiable. This operation needs only one comparison instruction and
can be done during the step of finding the unit clauses.

Rule 3 (Trivial UNSAT): If x is an existentially quantified unit-clause and its comple-
mentary literal is also a unit clause, then the QBF formula is unsatisfiable. This operation
can be performed during the identification of unit clauses.
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Rule 4 (Variable Assignment/Splitting Operation): Let Γ = (x, Γ1, Γ2) be our ZDD.
Considering x to be true, simplifies Γ to Union(Then(Γ2),Else(Γ2)). Similarly
considering x to be false, simplifies Γ to Union(Γ1,Else(Γ2)). This operation is
quadratic in the size of the ZDD.

Rule 5 (Propagation of a Unit Clause): If x is a unit clause and is located in the root
node then Γ can be simplified to Γ2. If Γ2 has complement of x in its root then the result
will be: Union(Then(Γ2),Else(Γ2)). On the other hand, if x is a unit clause but not
located in the root node then, first we must remove all the clauses including x as a literal
from Γ by Γ ′ = Subset0 (Γ, x). After this we must remove the complementary literal
of x, denoted by x from Γ ′ by Γ ′′ = Union(Subset1 (Γ ′, x),Subset0 (Γ ′, x)).

Rule 6 (Mono Variables): A literal l is monotone if its complementary literal does not
appear in the QBF. If l is existentially quantified we can replace it by true, which
simplifies Γ to Γ2, but if l is universally quantified we must replace it by false, which
simplifies Γ to Union(Γ1, Γ2).

Rule 7 (Detecting SAT/UNSAT): If the ZDD reduces to the 1-terminal then the QBF is
SAT. Similarly, if the ZDD reduces to 0-terminal then the QBF is UNSAT. This operation
needs only one comparison instruction.

These rules are the basic stones in implementing the operations needed in ZQSAT,
specially the unit resolution and mono literal reduction in MQDPLL procedure.

4 Experimental Results

We evaluated our algorithm by different known benchmarks presented in QBFLIB (QBF
satisfiability LIBrary) [19]. We run ZQSAT along the best existing QBF-Solvers such
as QuBE [12], Decide [20], Semprop [14] and QSolve [11]. The platform was a Linux
system on a 3000-Mhz, 2G-RAM desktop computer. We also considered 1G-RAM limit
which were never used totally by any of the above programs, and a 900 second timeout
which was enough for most solvers to solve many of benchmark problems.

The results we obtained show that ZQSAT is very efficient and in many cases better
than state-of-the-art QSAT solvers. It solves many instances which are known hard for
DPLL (semantic-tree) method, in a small fraction of a second (see Table 1 and Table 2).
Like almost all other QSAT solvers it is inefficient in solving random QBFs.According to
the well known counting theorem, the representation and evaluation of random instances
could not be done efficiently [16]. In the following we give more detailed information.

Structured Formulas: Most structured Formulas come form real word problems rep-
resented as a QBF. We used the benchmarks of Letz [19] and Rintanen [20]. The bench-
marks of Letz include instances known to be hard for DPLL (tree-based) QBF solvers.
ZQSAT is also a DPLL based algorithm, but it manages to solve those instances very
fast. In a real problem there are always some connections between its components, which
remain in some form in its corresponding QBF representation. This feature causes sim-
ilar subproblems to be generated during the search step, also assignment of values to
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Table 1. Comparison of the runtimes of different QBF solvers over a number of QBFs. The
instances are hard for tree-based QBF solvers (see Letz [19])

Problem QuBE Nr. Lookup No. Mem.
tree-exa- ZQSAT BJ Rel Decide Semprop QSolve Z Total Succ Rec.Calls

10-10 < .01 < .01 < .01 < .01 < .01 < .01 1 49 14 1277
10-15 < .01 < .01 < .01 0.06 0.01 < .01 1 79 24 40957
10-20 < .01 < .01 0.01 1.89 0.27 < .01 1 109 34 1310717
10-25 < .01 0.01 0.07 63.95 8.51 < .01 1 139 44 not solved
10-30 < .01 0.11 0.75 (?) 273.28 0.03 1 169 54 not solved
2-10 < .01 < .01 < .01 < .01 < .01 < .01 1 31 6 not solved
2-15 < .01 < .01 < .01 0.01 < .01 < .01 1 51 11 not solved
2-20 < .01 0.01 < .01 0.1 0.01 < .01 1 71 16 not solved
2-25 < .01 0.12 < .01 1.16 0.1 0.04 1 91 21 not solved
2-30 < .01 1.29 < .01 12.9 1.06 0.53 1 111 26 not solved
2-35 < .01 14.42 < .01 144.16 11.98 5.85 1 131 31 not solved
2-40 < .01 158.41 < .01 (?) 130.19 65.73 1 151 36 not solved
2-45 < .01 (?) < .01 (?) (?) 729.7 1 171 41 not solved
2-50 < .01 (?) < .01 (?) (?) (?) 1 191 46 not solved
(?): Not solved in 900 seconds

variables causes sharp simplification on generated subformulas. Therefore, our memo-
ization idea helps very much in these circumstances. Table 1 shows how ZQSAT is faster
than other recent QBF solvers in evaluating these benchmark problems.

The four rightmost columns in the table are provided to show the role and effect
of our memoization idea. The two columns which stand for the number of lookups
(total, successful) give us an estimate of the hit ratio, i.e. ’successful lookups’ versus ’all
lookups, which in our implementation is the same as the total recursive DPLL calls’.
We must be careful analyzing these numbers, because the number of total calls depends
strongly (sometimes exponentially) on the number of successful lookups. In order to
avoid such a misinterpretation we provided the rightmost column which displays the
number of DPLL recursive calls when no memoization is considered. In this condition
our implementation only managed to solve three smallest instances of Letz benchmarks
(in above mentioned platform and our 900 second time out). The column labeled with ’Z’
is in connection with construction of the initial ZDD for the formula. In fact we realized
that even in failing benchmarks, ZQSAT managed to make the initial ZDD soon.

Next, we considered the benchmarks of Rintanen, where some problems from AI
planning and other structured formulas are included. They include some instances form
blocks world problem, Towers of Hanoi, long chains of implications, as well as the
bw-large.a and bw-large.b blocks world problems. The experimental results for these
benchmarks are presented in Table 2. This table shows that ZQSAT works well on most
instances. We are comparable and in many cases better than other solvers. Let us mention
that ’Decide’ is specially designed to work efficiently for planning instances.

In Table 2 we see that our implementation could not solve any instance of blocks-
world. We observed that MQDPLL benefited very few times from the already solved
subformulas. In other words, our pruning method was not successful for this problem.
In fact this is a matter of pruning strategy, different pruning strategies behave differently
facing various sets of QBF benchmarks.
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Table 2. Comparison of different QBF solvers on a number of QBFs from the set of benchmarks
of Rintanen [20, 19]

Problem QuBE Nr. Lookup No. Mem.
tree-exa- ZQSAT BJ Rel Decide Semprop QSolve Z Total Succ Rec.Calls
B*3i.5.4 (?) (?) (?) 1.84 (?) (?) 1 (?) (?) not solved
B*3ii.4.3 (?) 0.81 0.01 0.01 2.25 (?) 1 (?) (?) not solved
B*3ii.5.2 (?) 23.25 0.41 0.02 65.76 (?) 1 (?) (?) not solved
B*3ii.5.3 (?) (?) 33.12 0.36 160.93 (?) 1 (?) (?) not solved
B*3iii.4 (?) 0.25 0.01 < .01 12 (?) 1 (?) (?) not solved
B*3iii.5 (?) (?) 0.48 0.1 0.53 (?) 1 (?) (?) not solved
B*4i.6.4 (?) (?) 264.76 1.28 (?) (?) 1 (?) (?) not solved
B*4ii.6.3 (?) (?) 27.64 1.1 (?) (?) 1 (?) (?) not solved
B*4ii.7.2 (?) (?) (?) 2.28 (?) (?) 1 (?) (?) not solved
B*4iii.6 (?) (?) 13.62 0.59 (?) (?) 1 (?) (?) not solved
B*4iii.7 (?) (?) (?) 67.28 (?) (?) 1 (?) (?) not solved
C*12v.13 2.66 0.12 1.41 0.19 0.06 1.96 1 72 11 12310
C*13v.14 3.76 0.26 3.44 0.38 0.13 6.52 1 78 12 24600
C*4v.15 5.27 0.55 9.17 0.77 0.27 21.98 1 84 13 49178
C*15v.16 7.08 1.22 24.21 1.62 0.54 62.53 1 90 14 98332
C*16v.17 9.43 3.09 60.68 3.31 1.14 205.72 1 96 15 196638
C*17v.18 12.49 5.86 148.58 6.9 2.43 633.44 1 102 16 393248
C*18v.19 16.2 12.87 352.21 14.4 5.12 (?) 1 108 17 786466
C*19v.20 21.01 31.93 840.26 30.29 10.59 (?) 1 114 18 1572900
C*20v.21 26.69 91.23 (?) 61.93 22.24 (?) 1 120 19 3145766
C*21v.22 33.17 195.12 (?) 129.24 46.61 (?) 1 126 20 not solved
C*22v.23 40.8 494.26 (?) 272.24 98.53 (?) 1 132 21 not solved
C*23v.24 50.24 (?) (?) 571.12 202.3 (?) 1 138 22 not solved
i*02 < .01 < .01 < .01 < .01 < .01 < .01 1 8 0 8
i*04 < .01 < .01 < .01 < .01 < .01 < .01 1 14 0 14
i*06 < .01 < .01 < .01 0.01 < .01 < .01 1 20 0 20
i*08 < .01 < .01 < .01 0.14 0.02 0.01 1 26 0 26
i*10 < .01 0.01 < .01 1.12 0.14 0.07 1 32 0 32
i*12 < .01 0.04 < .01 8.69 1.04 0.5 1 38 0 38
i*14 < .01 0.18 < .01 65.27 7.74 3.69 1 44 0 44
i*16 < .01 0.74 < .01 482.97 56.88 27.04 1 50 0 50
i*18 < .01 3.12 < .01 (?) 423.41 200.82 1 56 0 56
i*20 < .01 13.06 < .01 (?) (?) (?) 1 62 0 62
T*10.1.iv.20 2.65 (?) (?) 0.58 (?) (?) 1 43 0 43
T*16.1.iv.32 26.08 (?) (?) 7.38 (?) (?) 1 66 0 66
T*2.1.iv.3 < .01 < .01 < .01 < .01 < .01 < .01 1 10 0 10
T*2.1.iv.4 < .01 < .01 < .01 < .01 < .01 < .01 1 10 0 10
T*6.1.iv.11 (?) 2.1 205.75 4.78 2.25 3.66 1 (?) (?) not solved
T*6.1.iv.12 0.24 0.79 29.44 0.04 0.4 2.65 1 27 0 27
T*7.1.iv.13 (?) 37.45 (?) 63.87 39.7 134.02 1 (?) (?) not solved
T*7.1.iv.14 0.5 12.25 521.59 0.09 5.22 64.17 1 30 0 30
(?): Not solved in 900 seconds

Random Formulas: For random formulas we used the benchmarks of Massimo Nar-
izzano [19]. ZQSAT is inefficient in big unstructured instances. ZDDs are very good in
representing sets of subsets, but they are less useful, if the information is unstructured.
ZDDs explore and use the relation between the set of subsets. Therefore if there is no
relation between the subsets (clauses) then it could not play its role very well. Fortu-
nately, in real word problems there are always some connections between the problem
components. In our effort to investigate why ZQSAT is slow on the given instances, we
found that in these cases the already solved subformulas were never or too few times
used again, also the mono and unit resolution functions could not reduce the size of the
(sub)formula noticeably.
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5 Conclusion

In this paper we have presented ZQSAT, an algorithm to evaluate quantified Boolean
formulas. The experimental results show how it is comparable and in some cases faster
than the best existing QBF solvers. However, we still do not claim ZQSAT is the best con-
ceivable algorithm, but it shows how ZDDs along memoization can be used successfully
in QBF evaluation.
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