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Abstract. In this paper, we propose a new neighborhood structure
based on the improvement graph for solving the Robust Graph Coloring
Problem, an interesting extension of classical graph coloring. Different
from the traditional neighborhood where the color of only one vertex is
modified, the new neighborhood involves several vertices. In addition,
the questions of how to select the modified vertices and how to modify
them are modelled by an improvement graph and solved by a Dynamic
Programming method. The experimental results clearly show that our
new improvement graph based k-exchange cycle neighborhood improves
the accuracy significantly, especially for large scale heuristic search.

1 Introduction

The graph coloring problem is a well-known NP-hard problem, which has nu-
merous applications in the real engineering and business world [18]. The goal of
the graph coloring problem is to use the minimal number of colors to color the
vertices of a given graph, with the constraint that a pair of adjacent vertices
must receive different colors. Since it has been proved that the graph coloring
problem is an NP-hard problem [9], a lot of heuristic algorithms have been pro-
posed, such as the greedy coloring algorithm [15], successive augmentation [2],
tabu search based algorithm [6], simulated annealing based algorithm [11] [4]
and evolutionary based algorithm [5]. Furthermore, the well-known second DI-
MACS challenge benchmarks have also been set up to compare different problem
solving methods [12].

The Robust Graph Coloring Problem (RGCP), is a widely used extension in
uncertainty management from the classical graph coloring problem, which was
first introduced in [19]. RGCP focuses on building robust coloring for a given
graph by a fixed number of colors, taking into consideration the possibility of
penalizing those coloring where both vertices of an missing edge having the same
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color. The penalty function depends on the application domain. One case study
of RGCP application, namely “airline crew robust assignment” motivated from
an airline, is presented in [14].

We have presented a genetic algorithm to solve the RGCP [14]. In that paper,
the major contribution is the new effective partition based encoding method and
the genetic algorithm. Different with that paper, in this paper, we focus on cre-
ating effective neighborhood structures. A new improvement graph based neigh-
borhood structure is presented, comparing with the traditional operator where
we just modify the color of a single vertex every time. A local search algorithm is
then developed to compare the performances of such two neighborhoods. From
the experimental results for various sizes of graph, the new improved graph based
neighborhood obtains better accuracy.

This paper is organized as follows: in Section 2, the RGCP is stated formally.
In Section 3, the encoding method of search space is discussed. The two neigh-
borhood structures are then presented in Section 4. We develop a local search
algorithm in Section 5 and provide the experimental results in Section 6. Finally,
Section 8 presents the conclusions.

2 Problem Statement

The RGCP can be defined formally as follows: Given the graph G = (V, E) with
|V | = n, a positive integer c and a penalty set P = {pij , (i, j) ∈ E}, the objective
function of RGCP is to find

min R(G) ≡
∑

(i,j)∈E,C(i)=C(j)

pij (1)

where C is a coloring mapping, i.e., C : V → 1, 2, · · · , c satisfying C(i) �=
C(j),∀(i, j) ∈ E. Any RGCP instance is characterized by (G, c, P ). Depending
on various application domains, the penalty set may have different definitions.

Since the NP-hardness of RGCP has been proved in (Yanez 2003), the above
binary programming method can only solve very small instances optimally in
acceptable computing time.

3 Search Algorithm

3.1 Encoding

A partition approach is applied to the search space encoding, where a set of
vertices belonging to a class will be assigned the same color [14]. In other words,
a solution can be present as {V1, V2, · · · Vc}, where Vi = {j|C(j) = i, 1 ≤ j ≤
n}, 1 ≤ i ≤ c. It is definite that partition based encoding can represent any
coloring solutions, feasible or unfeasible.

3.2 Neighborhood 1: Single Vertex Coloring Modification

The first method for neighborhood construction is Single Vertex Color Modifica-
tion. The operator first randomly selects one vertex vi(1 ≤ i ≤ n) among all n
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vertices in the graph. Then, the new color of vi is assigned a fixed or random color,
e.g. Cnew(vi) = c′, c′ �= C(vi) where c′ is given by randomization or determination.

3.3 Neighborhood 2: Improvement Graph

We first define the improvement graph transformed from a given graph with a
fixed coloring mapping. For a given graph G = (V, E) and a coloring mapping
C, C : V → 1, 2, ..., c, we define the improvement graph G′ = (V ′, E′) as follows:
1. V ′ = V ;
2. (i, j) ∈ E′, iff C(i) �= C(j);
3. The weight of the directed edge (i, j), w(i, j), is defined as the reduction

(positive or negative) of R(G) when we empty the color of vertex i and
change the color of vertex j from C(j) to C(i).
Then, we define the “k-exchange cycle” in an improvement graph G′: a k-

exchange cycle is a simple cycle in G′, which consists of exact k successive
edges, e.g. {(si, ei)|(si, ei) ∈ E′,∀1 ≤ i ≤ k} satisfying that (1) (si, ei) �=
(sj , ej),∀1 ≤ i, j ≤ k, i �= j; and (2) s1 = ek, si = ei−1 ∀1 < i ≤ k. We call
the sum of the weights of all k edges along the cycle the weight of the k-cycle,
e.g.

∑
∀(si,ei)∈EC w(si, ei). By a k-exchange cycle in an improvement graph, we

have a new neighborhood operator for the coloring mapping of the corresponding
graph, where we C(ei) = C(si) for all i from 1 to k. In the mean while, the reduc-
tion of R(G) is equal to the weight of the exchange cycle. It is easy to know that
the advantage of this new neighborhood is that the color distribution K is kept
unchanged. On the other hand, compare with the previous “single vertex coloring
modification”, this new operator can affect more vertices in the same operation.

Since there are a lot of k-exchange cycles in an improvement graph, we need
to find the optimal one with the maximum reduction of R(G). A Dynamic Pro-
gramming (DP) method is developed to find the optimal k-exchange cycle.

A few denotations are first defined:
pk: a path, e.g. the consequence of k vertices vi1, vi2, ..., vik covers the edges

(vi1, vi2), (vi2, vi3) · · · and (vi(l−1), vik).
Length(pk): the length of the path pk, e.g. k
cycle(pk): the cycle corresponding to the path pk, e.g. the cycle along vi1,

vi2, ..., vik, vi1
w(cycle(pk)): the total reduction of R(G) along the cycle pk. In other words, it

is the sum of the weights of all edges belonging to cycle(pk), e.g. w(cycle(pk)) =∑
(vi,vj)∈cycle(pk) w(vi, vj)
s(pk): the first vertex of the path pk, e.g. vi1
e(pk): the last vertex of the path pk, e.g. vik

pk+v: the new path with an added vertex v at the end of the original path pk.
Based on the definition of the k-exchange cycle, the following DP formula is

applied to obtain the best k-exchange cycle, where the pk represents the path of
the best k-exchange cycle, cycle(pk).

pk+1 = max−1
pk+v{w (cycle(pk + v)) |∀v ∈ Ω} for all pk, k ≥ 2 (2)

where Ω = {v|v ∈ V (G′) and (e(pk), v) ∈ E(G′) and C(vi) �= C(vj) ∀vj ∈ pk}



A New Neighborhood Based on Improvement Graph for RGCP 639

We illustrate the DP algorithm for seeking the best k∗-exchange cycle as
Algorithm 1. Here, k∗-exchange cycle is marked as the best cycle among all h-
exchange cycles where h is from 1 to k. The DP constructs the best exchange
cycle in the order of length k. First, all single edges with negative weight are
added into the search candidate list - List. They are considered as all possible
best paths with length k = 1. Then, the best paths with length from 2 to k are
obtained by iteration based on the DP equation(2). During the DP iteration, the
best path with the maximum reduction of R(G) is remarked. Finally, the best
k∗-exchange cycle is determined.

Since the “longest path problem” is NP-complete [9], the computational com-
plexity should be exponential if the above DP search covers the whole search
space. To balance the solution accuracy with the running time, we create a can-
didate list management scheme (Algorithm 2) similar to the Beam Search. We
set List to be a sorted doubly linked list where the elements represent the can-
didate paths in decreasing order of w. In each time a new candidate path is
found, it will be inserted into List by sort. There is an importation parameter
to control the maximum size of the List, MaxListLength. Once the length of
the List exceeds the fixed maximum length, the last element of the List will
be removed to keep the length. If the MaxListLength is big enough, the DP
can guarantee to produce the optimal solution for the k∗-exchange cycle. On the
other hand, a small MaxListLength may lose the optimal solution. However, it
can reduce the search space efficiently.

3.4 Local Search

We illustrate the local search algorithm for solving the RGCP in Algorithm 3.
The basic idea of the local search is that it starts from an initial solution and
repeatedly replaces it with a better solution in its neighborhood until a better
solution could not be found in the neighborhood structure.

Algorithm 3 Local search for solving RGCP

1: coloring ← Call Initial Solution Generation;
2: Improvement← true; remarks if there is a new better solution found
3: repeat
4: construct the neighborhood structure N(coloring) of coloring;
5: if find any solution coloring′ from N(coloring) so that R′(coloring) <

R(coloring) then
6: coloring ← coloring′;
7: else
8: Improvement← false;
9: end if

10: until Not Improvement
11: return coloring, R;
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Algorithm 1 DP Algorithm for find best k-exchange cycle

1: List← φ;
2: wbest ← 0;
3: for all (vi, vj) such that (vi, vj) ∈ E(G′), w(vi, vj) > 0 do
4: Add(List, (vi, vj));
5: if w(cycle(vi, vj)) > wbest then
6: wbest = w(cycle(vi, vj))
7: end if
8: end for
9: for l = 1 to k − 1 do

10: p← Pop(List);
11: for all v such that (e(p), v) ∈ E(G′) and w(p + v) > 0 and color[vj ] �=

color[v] ∀vj ∈ p do
12: p′ ← p + v;
13: if (v, s(p)) ∈ E(G′) and w(cycle(p′)) > wbest then
14: wbest ← w(cycle(p′));
15: pbest ← p′;
16: end if
17: if Length(p) ≤ k − 1 then
18: Add(List, p′);
19: end if
20: end for
21: end for
22: return cycle(pbest), wbest;

Algorithm 2 Algorithm of candidate list management - Add(List, p)

1: Insert p into List in the decreasing order of w(cycle(p));
2: if Length(List) > MaxListLength then
3: delete List[Length];
4: end if

4 Experimental Results

4.1 Test Data And Experimental Environment

We have designed four sizes of test data to evaluate the performance of various
meta-heuristics in different sizes of graph: Small Size (n = 10, 15, 20), Middle
Size (n = 50, 100), Large Size (n = 250, 500) and Huge Size (n = 1000). There
are 15 test sets in total, 7 sets for Small Size, 3 sets for Middle Size, 4 sets
for Large Size and 1 set for Huge Size. For each test set, we have randomly
generated 50 instances where the missing edge penalties are generated with the
uniform distribution in the interval [0,1]. The graph density is fixed to be 0.5.
For our experiments, we use a Pentium 4 personal computer with a 1GHz CPU
and 256MB RAM.
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4.2 Comparison of Neighborhood Structures

In Table 1, the performance comparison between single vertex color modification
and improvement graph based k-exchange cycle are provided for Small, Middle,
Large and Huge Size, in terms of accuracy (R(G)) and running time. These
computational results are obtained when we give enough time for running the
different methods, where the stopping criteria is that the search is finished when
there is no improvement on R(G) for five continual iterations.

Table 1. Comparison on neighborhood structure

single vertex color modification k-exchange cycle
n c R(G) Runing Time R(G) Running Time
10 4 3.67 0.00s 2.96 0.00s
10 5 2.36 0.00s 1.54 0.02s
15 5 7.63 0.01s 6.62 0.01s
15 6 5.68 0.01s 3.99 0.01s
20 5 15.92 0.00s 14.22 0.01s
20 8 7.15 0.02s 3.81 0.02s
20 10 3.86 0.01s 1.46 0.06s
50 18 18.62 0.02s 7.28 0.37s
100 35 32.79 0.14s 10.87 1.04s
100 50 8.40 3.00s 1.55 0.45s
250 70 93.98 5.23s 44.27 9.57s
250 90 51.18 6.58s 15.39 7.59s
500 150 113.50 68.02s 52.37 88.37s
500 250 23.67 69.65s 1.27 78.79s
1000 400 61.33 552.34s 18.40 687.19s

For the above results, it is clear that the new improvement graph based
neighborhood outperforms the single vertex color modification. Especially for
Large Size and Huge Size, the new neighborhood obtains much better accuracy.
For instance, for the case (n, c) = (1000, 400), the new neighborhood achieves
R(G) = 18.40, improving 70% relatively. In addition, the running time of such
two neighborhood are in the same level.

Configuration of k-Exchange Cycle. As presented in Section 4, a DP method
is applied to find the best k-exchange cycle under several configurations includ-
ing k setting and the management scheme of the candidate list. In Table 2,
the performance of the local search with k-exchange cycle are illustrated where
k is set from 3 to 7 with the sort candidate list management (the maximum
length is 10). The corresponding running time is shown in Table 3. The note
k − sort/unsort − MaxListLength remarks one configuration.

From the results of performance vs. k, running time increases with the in-
crease of k slowly. The performance in accuracy for different k is not diverse.
Hence, k = 4 with the shortest running time is the best choice.
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Table 2. Performance of k-exchange cycle with different k on R(G)

n c 3-sort-100 4-sort-100 5-sort-100 6-sort-100 7-sort-100
10 4 2.96 2.96 2.96 2.96 2.96
10 5 1.55 1.54 1.54 1.54 1.54
15 5 6.62 6.62 6.62 6.62 6.62
15 6 4.01 3.99 3.93 3.96 3.96
20 5 14.22 14.22 14.22 14.22 14.22
20 8 4.04 3.81 3.85 3.85 3.83
20 10 1.56 1.46 1.46 1.46 1.46
50 18 7.85 7.28 7.35 7.14 7.13

100 35 11.99 10.87 10.73 10.56 10.56
100 50 1.68 1.55 1.56 1.53 1.52
250 70 46.97 44.27 43.24 42.12 42.35
250 90 16.17 15.39 14.48 14.29 13.76
500 150 53.86 52.37 49.96 48.30 48.53
500 250 1.11 1.27 1.13 1.01 1.04

1000 400 16.16 18.40 17.44 16.53 15.89

Table 3. Average Running Time Per Instance of k-exchange Cycle with Different k’s
(in second)

n c 3-sort-100 4-sort-100 5-sort-100 6-sort-100 7-sort-100
10 4 0.00 0.00 0.00 0.00 0.01
10 5 0.02 0.02 0.02 0.02 0.01
15 5 0.01 0.00 0.00 0.00 0.02
15 6 0.02 0.00 0.00 0.02 0.00
20 5 0.00 0.00 0.00 0.00 0.00
20 8 0.04 0.02 0.02 0.02 0.02
20 10 0.02 0.06 0.05 0.06 0.06
50 18 0.50 0.37 0.53 0.34 0.41

100 35 0.76 1.04 0.90 0.70 1.06
100 50 0.76 0.45 0.51 0.84 0.90
250 70 9.48 9.57 8.07 7.81 7.33
250 90 11.45 7.59 8.47 8.27 7.58
500 150 114.18 88.37 96.11 94.04 78.17
500 250 134.62 78.79 77.01 71.77 61.58

1000 400 2261.62 687.19 725.49 738.55 733.65

To asses the efficiency of the management of candidate list to balance ac-
curacy and running time, in Table 4 and Table 5, accuracy and running time
comparison among three management schemes are presented for k = 4, includ-
ing unlimited candidate list (4-unsort), sort candidate list with maximum size of
100 (4-sort-100) and sort candidate list with maximum size of 200 (4-sort-200).
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Table 4. Performance of different candidate list management on R(G)

n c 4-unsort 4-sort-100 4-sort-200
10 4 2.96 2.96 2.96
10 5 1.54 1.54 1.69
15 5 6.62 6.62 7.23
15 6 3.99 3.99 4.19
20 5 14.22 14.22 14.22
20 8 3.81 3.81 3.82
20 10 1.46 1.46 1.60
50 18 7.24 7.28 7.32

100 35 10.79 10.87 10.56
100 50 1.51 1.55 1.52
250 70 42.16 44.27 44.33
250 90 14.08 15.39 14.82
500 150 47.71 52.37 49.26
500 250 0.83 1.27 1.08

1000 400 13.44 18.40 15.58

Table 5. Average running time per instance of k-exchange cycle with different candi-
date list management (in second)

n c 4-unsort 4-sort-100 4-sort-200
10 4 0.00 0.00 0.03
10 5 0.01 0.02 0.00
15 5 0.00 0.00 0.00
15 6 0.02 0.00 0.02
20 5 0.00 0.00 0.00
20 8 0.02 0.02 0.06
20 10 0.05 0.06 0.26
50 18 0.65 0.37 0.62

100 35 1.36 1.04 1.80
100 50 1.32 0.45 0.33
250 70 13.01 9.57 9.00
250 90 12.51 7.59 11.48
500 150 159.68 88.37 108.61
500 250 148.38 78.79 111.80

1000 400 3010.93 687.19 1452.32

It is clear that the order of running time from the slowest to the fastest is
4-unsort, 4-sort-200 and 4-sort-100. However, the order of accuracy from the
best to the worst is also 4-unsort, 4-sort-200 and 4-sort-100. In other words, the
larger size of the candidate list (the more running time), the higher accuracy in
terms of management scheme of k-exchange cycle.
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5 Conclusions

In this paper, we have proposed a new neighborhood structure based on the im-
provement graph for solving the Robust Graph Coloring Problem, an interesting
extension of classical graph coloring. Different from the traditional neighborhood
where the color of only one vertex is modified, the new neighborhood involves
several vertices. In addition, the questions of how to select the modified vertices
and how to modify them are modelled by an improvement graph and solved by a
Dynamic Programming method. A local search algorithm has been developed to
provide the computational results of performance comparison on various sizes of
graph. The experimental results clearly show that our new improvement graph
based k-exchange cycle neighborhood obtains much better performance than the
traditional neighborhood, especially for large scale heuristic search.
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