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Abstract. This paper presents a novel approach to extracting shallow language 
patterns from text. The approach makes use of an attributed string matching 
technique which is based on two major but complementary factors: lexical simi-
larities and sentence structures. The technique takes full advantage of a huge 
number of sentence patterns in a Treebank, while preserving robustness, with-
out being bogged down into a complete linguistic analysis. The ideas described 
are implemented and an evaluation of 5,000 Chinese sentences is examined in 
order to justify its statistical significances. 

1   Introduction 

Identifying language patterns is a fundamental task in natural language processing. 
Competent speakers of a language hardly ever fail to recognize the language patterns, 
like verb-object pairs, various phrases structures, semi-idiomatic expressions, and 
platitudes of that language. Even though these patterns have been found useful in 
various application areas, including information extraction, textual summarization, 
and even bilingual alignment, the demands for a highly efficient sentence patterns 
extraction system are still mounting. 

One of the most important sentence patterns is the case frame which can be used 
to represent the meaning of sentences [10]. In general, a case frame is to be under-
stood as an array of slots, each of which is labelled with a case name, and eventually 
possibly filled with a case filler, the whole system representing the underlying struc-
ture of an input sentence. Certainly, one approach to extracting the case frames is to 
obtain a full parse of a sentence. However, having a complete parse tree for a sen-
tence is difficult in many cases. An alternative approach is the shallow parsing which 
tries to circumvent the complexity of full parsing and analyzes a sentence at the level 
of phrases and the relations between them [1]. As a branch in shallow parsing, data-
oriented parsing (DOP) models embody the assumption that humans produce and 
interpret natural language utterances by invoking representations of their concrete 
past language experiences, rather than the rules of a consistent and non-redundant 
competence grammar [3]. DOP models usually maintain large corpora of sentences 
annotated with syntactic and semantic structures. New input sentences are analyzed 
by combining partial structures from the corpus. The occurrence frequencies of these 
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structures are employed to estimate which of the resulting analyses are the most suit-
able patterns for the input sentence. 

In this research, a shallow but effective sentence chunking process is designed and 
developed. This sentence chunking process is to extract all the phrases from the input 
sentences, without being bogged down into deep semantic parsing and understanding. 
On the other hand, while several criteria for recognizing sentence patterns, such as 
case frames, in sentences have been considered in the past, none of the criteria serves 
as a completely adequate decision procedure. Most of the studies in computational 
linguistics do not provide any hints on how to map input sentences into case frames 
automatically, particularly in Chinese [6]. Our second objective is to assign the ex-
tracted phrases into their corresponding case roles based on a corpus of utterances 
annotated with labeled trees or subtrees. One of our primary goals in this research is 
to design a shallow but robust mechanism which can extract Chinese sentence pat-
terns [14, 15, 4, 5]. Even though the classical syntactic and semantic analysis in Chi-
nese is extremely difficult, if not impossible, to systematize in the current computa-
tional linguistics research, this DOP does not require any deep linguistic analysis to 
be formalized. Consequently, the annotated sentences will give piecemeal the under-
lying semantic representation, without being mired into the formalism. The organiza-
tion of the paper is as follows. The related work in DOP and text chunking are first 
described in Section 2. We have employed a corpus annotated with the labeled trees. 
The characteristics of the Treebank that supports our approach will also be explained. 
In this research, each Chinese token will have two attributes, namely Part-of-Speech 
(POS) and Semantic Classes (SC). Any input sentence can be viewed as an attributed 
string. The detailed discussion on how an attributed string matching algorithm can be 
used in the shallow patterns extraction is shown in Section 3. The system has already 
been implemented using Java language. In order to demonstrate the capability of our 
system, an experiment with 5,000 sentences is conducted. It is explained in Section 4 
followed by a conclusion. 

2   Related Work 

A number of systems have been developed to perform shallow parsing. The early 
approaches in shallow parsing that mainly came out of the Message Understanding 
Conferences (MUC) have demonstrated their capabilities for extracting noun groups, 
verb groups, and particles [11]. For example, the FASTUS is a system which is de-
signed for extracting information from free text. One of the applications is to mark 
text with annotations that indicate items of interest, such as names of people or com-
panies. It also fills up database templates with information that could be then entered 
into a relational database [2]. Similarly, the SPARKLE (Shallow PARsing for acqui-
sition of Knowledge for Language Engineering) aims to develop shallow parsing 
technology in four European languages together with corpus-based lexical acquisition 
techniques, and deploy parsers in multilingual information retrieval and speech dia-
logue systems (http://www.informatics.susx.ac.uk/research/nlp/ 
sparkle/sparkle.html). Their shallow parsing is carried out by a generalized 



S.W.K. Chan 576 

LR parser, which uses a unification-based phrasal grammar of POS tags. The result-
ing parses will serve for acquiring lexical information.  

Extracting shallow language patterns involves chunking sentences into segments. 
Motivated by the psycholinguistic evidence which demonstrates that intonation 
changes or pauses would affect the language understanding processes in humans [12], 
Abney proposes the concept of text chunking as a first step in the full parsing [1]. A 
typical chunk of a text is defined as consisting of a single content word surrounded by 
a constellation of function words, matching a fixed template. Church also uses a sim-
ple model for finding non-recursive NPs in sequence of POS tags [9]. Turning the 
sentence chunking as a bracketing problem, Church calculates the probability of in-
serting both the open and close brackets between POS tags. Each chunking alternative 
is ranked and the best alternative is selected. In a somewhat similar vein, using trans-
formation-based learning with rule-template referring to neighboring words, POS tags 
and chunk tags, Ramshaw and Marcus identify essentially the initial portions of non-
recursive noun phrases up to the head, including determiners [18]. These chunks are 
extracted from the Treebank parses, by selecting NPs that contain no nested NPs. 
While the above approaches have been proposed to recognize common subsequences 
and to produce some forms of chunked representation of an input sentence, the rec-
ognized structures do not include any recursively embedded NPs. As the result, the 
resultant fragments bear little resemblance to the kind of phrase structures that are 
normally appeared in linguistics.  

While the state of the art in computational linguistics is to make use of the knowl-
edge encoded in Treebank to analyze sentence structures, two major issues have to be 
clarified beforehand. First, what formalism do we assume to annotate the corpus ut-
terances? Second, what kinds of trees do we extract from the corpus, and how do we 
recombine them? In this paper, we address the first issue by adopting the Sinica Chi-
nese Treebank [7]. In contrast to the English and Chinese Penn Treebank which takes 
a straightforward syntactic approach [16, 21], the Information-based Case Grammar 
(ICG) in Sinica Chinese Treebank stipulates that each lexical entry contains both 
semantic and syntactic features. The grammar indicates the way that lexical tokens in 
the sentences are related to each other. That is, grammatical constraints are expressed 
in terms of linear order of thematic roles and their syntactic and semantic restrictions. 
This tree structure has the advantage of maintaining phrase structure rules as well as 
the syntactic and semantic dependency relations. The latest version of Sinica Tree-
bank (v.2.1), released in early 2004, contains about 55,000 trees with 300,000 words. 
The Treebank contains a compact bundle of syntactic and semantic information, with 
more than 150 different types of POS and 50 semantic roles.  

On the other hand, while it may be too computationally demanding to have a full 
syntactic and semantic analysis of every sentence in every text, Sima’an addresses the 
second issue and presents a Tree-gram model, a typical example of DOP, which inte-
grates bilexical dependencies, and conditions its substitutions based on the structural 
relations of the trees that are involved [19]. The basic ideas of the Tree-gram model 
are to (i) take a corpus of utterances annotated with labeled trees; (ii) decompose 
every corpus tree into a set of subtrees; (iii) perform parsing as the union of the best 
possible subtrees based on a stochastic tree substitution grammar. In this research, we 
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propose an algorithm in extracting shallow language patterns by matching any input 
Chinese sentence with the trees in the Treebank using an approximate pattern match-
ing technique. Different from the stochastic tree substitution grammar proposed in the 
Tree-gram model, our approach, characterized by an optimization technique, looks 
for a transformation with a minimum cost, or called edit distance. While the concept 
of edit distance is commonly found in the conventional pattern matching techniques 
[13, 20], we take a step further in applying the technique in data-oriented parsing. 
The detailed discussion of the algorithm is shown as follows.  

3   Shallow Language Patterns Extraction Using Attributed String 
Matching Algorithm 

The algorithm is essentially accomplished by applying a series of edit operations to 
an input sentence to change it to every tree in the Treebank. Every edit operation has 
been associated with a cost and the total cost of the transformation can be calculated 
by summing up the costs of all the operations. This edit distance reflects the dissimi-
larity between the input sentence and the trees. Instead of analyzing the exact Chinese 
tokens appearing in the sentence, extended attributes of each token in both input sen-
tence and the trees, with their POS and semantic classes, are used. The closely 
matched tree, i.e., the one with minimum cost or edit distance, is selected and the 
corresponding phrase structures and semantic role tags delineated in the tree are uni-
fied with the input sentence.  

Let two given attributed strings A and B denoted as A = a1a2a3... am and  
B = b1b2b3... bn, where are ai, bj the ith and jth attributed symbols of A and B  
respectively. Each attributed symbol represents a primitive of A or B. Generally 
speaking, to match an attributed string A with another B means to transform or edit 
the symbols in A into those in B with a minimum-cost sequence of allowable edit 
operations. In general, the following three types of edit operations are available for 
attributed symbol transformation.  

(a) Change: to replace an attributed symbol ai with another bj, denoted as ai→bj. 
(b) Insert: to insert an attributed symbol bj into an attributed string, denoted as  

λ→bj where λ denotes a null string. 
(c) Delete: to delete an attributed symbol ai from an attributed string, denoted as  

ai→λ.  

[Definition 1] 
An edit sequence is a sequence of ordered edit operations, s1, s2,... sp where si is any of 
the following three types of edit operations, Change, Insert, Delete. 

[Definition 2] 
Let R be an arbitrary nonnegative real cost function which defines a cost R(ai→bj) for 
each edit operation ai→bj. The cost of an edit sequence S = s1, s2,... sp to be 

( ) ( )∑
=

=
p

i
isRSR

1

 (1) 



S.W.K. Chan 578 

[Definition 3] 
For two strings A ad B with length m and n respectively, D(i, j) denotes the edit dis-
tance, which is the minimum number of edit operations, needed to transform the first 
i characters of A into first j characters of B, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. In other 
words, if A has m letters and B has n letters, then the edit distance of A and B is pre-
cisely the value D(m, n).  

The following algorithm has been proposed for computing every edit distances  
D(i, j) [13]. 

[Algorithm A] 
D(0, 0) := 0; 
for i := 1 to m do D(i, 0):=D(i-1, 0)+R(ai →λ); 
for j := 1 to n do D(0, j):=D(0, j-1)+R(λ →bj); 
for i := 1 to m do 

for j := 1 to n do 
begin 
 m1 := D(i, j-1) + R(λ →bj); 
 m2 := D(i-1, j) + R(ai →λ); 
 m3 := D(i-1, j-1) + R(ai →bj); 
 D(i, j) := min (m1, m2, m3); 
end 

Our attributed string matching in case role annotation is to make use of the algo-
rithm above and modify the cost function R(.) for various edit operations. In our ap-
proach, each Chinese token has two attributes, i.e., Part-Of-Speech (POS) and Seman-
tic Class (SC). Let S be an input sentence and the T be a tree in the Sinica Treebank, si 
and tj be two tokens in S and T with attribute 〈POSi, SCi〉 and 〈POSj, SCj〉 respectively. 
We define the cost function for a change operation si → tj to be 

( ) ),(),( jijiji SCSCvPOSPOSutsR +=→  (2) 

where u(POSi, POSj) defines the partial cost due to the difference between the POS of 
the tokens. The POS tags from the Chinese Knowledge Information Processing Group 
(CKIP) of Academia Sinica are employed [8]. The tags involve 46 different types of 
POS which can further refine into more than 150 subtypes. In order to figure out the 
cost function u(⋅,⋅), in our system, all the POS tags are organized into a tree structure 
using XML with an associated hard-coded cost function. Figure 1 shows a fragment 
of XML of the nouns (Na) which is divided into in-collective (Nae) and collective 
(Na1) nouns which are then divided ultimately into in-collective concrete uncount-
able nouns (Naa), in-collective concrete countable nouns (Nab), in-collective ab-
stract countable nouns (Nac), in-collective abstract uncountable nouns (Nad). The 
cost function u(⋅,⋅) will reflect the difference based on the tag Toll encoded in the 
XML as shown in Figure 1. For example, the cost for changing a word having POS 
from Naa to Nab,  

u(Naa, Nab) = Toll(Naa→Na11) + Toll(Na11→Nab) = 1 + 1 = 2 
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     Similarly,  
u(Naa, Naea) =  Toll(Naa→Na11)+Toll(Na11→Na1)+Toll(Na1→Na)+ 

Toll(Na→Nae)+Toll(Nae→Naea)= 7 

 

Fig. 1. Tree structure of Nouns (Na) based on the CKIP Academia Sinica 

The function u(⋅,⋅) partially indicates the alignment of the syntactic structure of the 
input sentence and the sentence appeared in the Treebank. The second term in equa-
tion (2) defines the other partial cost due to the semantic differences. In our approach, 
the lexical tokens in the both sentences are identified using a lexical source similar to 
the Roget’s Thesaurus. The lexical source is a bilingual thesaurus with an is-a hierar-
chy. An is-a hierarchy can be viewed as a directed acyclic graph with a single root. 
Based on the is-a hierarchy in the thesaurus, we define conceptual distance d between 
two notional words by their shortest path lengths [17].  

 

Fig. 2. is-a hierarchy in the bilingual thesaurus 

<Na Toll="4" Level="2"> 
<Na1 Toll="2" Level="3"> 

<Na11 Toll="1" Level="4"> 
      <Naa Toll="1" Level="5" /> 
      <Nab Toll="1" Level="5" /> 

</Na11> 
<Na12 Toll="1" Level="4"> 

      <Nac Toll="1" Level="5" /> 
      <Nad Toll="1" Level="5" /> 

</Na12> 
  </Na1> 
  <Nae Toll="2" Level="3"> 

<Naea Toll="1" Level="4" /> 
<Naeb Toll="1" Level="4" /> 

  </Nae> 
</Na> 
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Figure 2 shows one of our is-a hierarchies in our bilingual thesaurus using our 
Tree Editor. While the upward links correspond to generalization, the specialization is 
represented in the downward links. For example, the upward link from 幼稚園 (pre-
school) to 學校 (school) indicates that 學校 (school) is more general than 幼稚園 
(preschool) and the lexical tokens in the same terminal subclass, such as 幼稚園 (pre-
school), 幼兒園 (nursery school), or 幼兒中心 (day-care centre), are of the same 
meaning. The hierarchies demonstrated in the thesaurus are based on the idea that 
linguists classify lexical items in terms of similarities and differences. They are used 
to structure or rank lexical items from more general to the more special. Given two 
tokens t1 and t2 in an is-a hierarchy of the thesaurus, the distance d between the items 
is defined as follows: 

d(t1, t2) =     minimal number of is-a relationships in the shortest path between 
t1 and t2  

(3) 

The shortest path lengths in is-a hierarchies are calculated. Initially, a search 
fans out through the is-a relationships from the original two nodes to all nodes 
pointed to by the originals, until a point of intersection is found. The paths from the 
original two nodes are concatenated to form a continuous path, which must be a 
shortest path between the originals. The number of links in the shortest path is 
counted. Since d(t1, t2) is positive and symmetric, d(t1, t2) is a metric which means (i) 
d(t1, t1) = 0; (ii) d(t1, t2) = d (t2, t1); (iii) d(t1, t2) + d(t2, t3)  ≥  d(t1, t3). At the same time, 
the semantic similarity measure between the items is defined by: 

⎩
⎨
⎧ ≤

=
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where dmax is proportional to the number of lexical items in the system and MaxInt is a 
maximum integer of the system. This semantic similarity measure defines the degree 
of relatedness between tokens. Obviously, strong degree of relatedness exists between 
the lexical tokens under the same nodes. For the cost of the insert and delete opera-
tions, we make use the concept of collocation which measures how likely two tokens 
are to co-occur in a window of text. To better distinguish statistics based ratios, work 
in this area is often presented in terms of the mutual information, which is defined as  
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where tj-1 and tj are two adjacent tokens. While P(x, y) is the probability of observing x 
and y together, P(x) and P(y) are the probabilities of observing x and y anywhere in 
the text, whether individually or in conjunction. Note that tokens that have no asso-
ciation with each other and co-occur together according to chance will have a mutual 
information number close to zero. This leads to the cost function for insertion and 
deletion shown in equation (6) and (7) respectively. 

( )
⎩
⎨
⎧ >≥×

=→
otherwise

0if
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λ  (6) 
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where z =min {MI(tj-1 , tj), MI(tj , tj+1)} 

( )
⎩
⎨
⎧ >≥×=→ +−+−

otherwise

),(0if),( 1111

MaxInt

ttMIttMIL
tR jjjj

j

ελ  
(7) 

where K, L, ε are three constants relied on the size of the corpus. 
Obviously, the insertion operation will be penalized if the co-occurrence between 

the newly inserted token and its neighbors is low. Similarly, the deletion operation is 
most likely to happen if there is a high co-occurrence between the adjacent pairs after 
the deletion. Using the above cost functions for the three edit operations, the tree in 
the Treebank with minimum cost is identified to best approximation of the input sen-
tence S and its relevant case roles tags will be adopted. Shallow language patterns, 
with all the recursively embedded structures, are then extracted based on the case role 
tags appeared in the Treebank. Experimental results and an illustration of the patterns 
extracted are shown in the following section. 

4   Experimental Results 

We have implemented the system using Java JDK1.4.2 under Sun Microsystems. The 
whole system development is designed under Unified Modeling Language (UML) 
using Rational Rose. To show the efficiency of the proposed algorithm, a series of 
experiments are performed.  

 

Fig. 3. Graphical User Interface (GUI) in the shallow language patterns extraction 

In our experiment, for every input sentence, the best matching tree with minimum 
edit distance in the Treebank is calculated as shown in Algorithm A. The Information 
Case Grammar (ICG) of the best matching tree in the Treebank will be adopted. Fig-
ure 3 shows the graphical user interface which includes the cost matrix generated and 
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the corresponding ICG structure of the input sentence. We have tested the system 
with 5,000 input sentences. The detailed results are shown in Table 1. The average 
sentence length is around 10.5 characters per sentence. In order to let the readers to 
visualize the relevance of the edit distance with the underlying tree structure, Figures 
4 and 5 show two sentences clearly with edit distance equal to 15 and 64 respectively. 
The sentence 

議員商討總統出兵一事   

(in English, The senators discuss the issue on sending troops initiated by the 
president) 

(S1) 

has a small edit distance, equal to 15, with the tree shown in Figure 4. 

Table 1. Analysis of 5,000 sentences in the experiment 

Edit 
distance 

# of sentences Average # of 
tokens 

Average edit 
distance 

% of sentences 
having incomplete 
semantic classes 

0-25 336 5.24 21.06 2.32 

0-50 1556 6.15 34.42 9.01 

0-75 2841 6.67 46.94 11.08 

0-100 5000 6.62 65.94 11.93 

爸媽
ba4 ma1
parents

討論
tao3 lun4
discuss

小明
siao3
ming2
SiuMing

打
da3
hit

人
ren2
a person

一
yi1
one

事
shi4
issue

Head
Naea

Head
VE2

Head
Nba

Head
VC2

Head
Nab

Head
Neu

Head
Nac

agent
NP

agent
NP

goal
NP

quantifier
NP

apposition
S

Head
NP

goal
NP

S  

 

Fig. 4. Tree in the Treebank which closely matches, edit distance equal to 15, with the input 
sentence shown in (S1) 

The sentence is then chunked into phrases, 〈議員〉 (The senators), 〈商討〉 (discuss), 

and 〈總統出兵一事〉 (the issue on sending troops initiated by the president), which 

are further tagged with agent, act, and goal respectively by taking the advantage of 
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annotation in the Treebank. Certainly, the phrase 〈總統出兵一事〉 (the issue on send-

ing troops initiated by the president) can be further chunked into more details 〈總統

出兵〉 (sending troops initiated by the president), 〈一事〉 (the issue).  

Table 2. Language patterns extracted from the input sentence (S1) 

@SP[ 
議員商討總統出兵一事 The senators discuss the issue on send-

ing troops initiated by the president 
Agent 〈議員〉 The senators 

Act 〈商討〉 discuss 

Goal @AP[〈總統出兵 〉]AP, 

@NP[〈一事〉]NP  

@AP[(sending troops initiated by the 
president)]AP,@NP[(the issue)]NP 

]SP   
@AP[ 

總統出兵 sending troops initiated by the president 

Agent 
總統 the president 

Act 
出 sending 

Goal 
兵 troops 

]AP   

This chunking not only provides the basic semantic tag for each constituent, it 
also reflects the language patterns of the input sentence. The corresponding pattern 
extracted is shown in Table 2. As shown in Table 2, the language patterns extracted 
are indicated by the square brackets together with the explicit semantic tags. While 
the sentence pattern is marked with @SP[…], the embedded phrases are marked by 
different tags, such @AP[…] for apposition phrase, or @PP[…] for position phrase. 
Similarly, in Figure5, the upper sentence is coming from the Treebank T while the 
lower one represents the input sentences S. Due to the similarity, in terms of the edit 
distance, of the matched pair, the syntactic structure of the sentence from the  
Treebank is transplanted to the input sentence. As a result, each token in the input 
sentence will inherit the associated roles from the target sentence. For example, the 
Chinese sentence shown in Figure 5, 

可惜國家財政萬分困難  
(in English: Unfortunately, the national budget is so tight) 

(S2) 

The sentence is chunked into 〈可惜〉 (unfortunately), and 〈國家財政萬分困難〉 
(the national budget is so tight) which is further chunked into 〈國家財政〉 (national 
budget), 〈萬分〉 (so), 〈困難〉 (tight). At the same time, 〈國家財政萬分困難〉 (national 
budget is so tight), 〈國家財政〉 (national budget), and 〈萬分〉 (so) are annotated as 
the goal, main theme and degree of Sentence S2 respectively. 
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Fig. 5. Sentence with edit distance equal to 64 

As with other text analysis, the effectiveness of the system appears to be dictated 
by recall and precision parameters where recall (R) is a percentage of how many 
correct case roles can be identified while precision (P) is the percentage of case roles, 
tackled by the system, which are actually correct. In addition, a common parameter F 
is used as a single-figure measure of performance as in follows, 

RP

RP
F

+×
××+=

2

2 )1(

β
β  (8) 

We set β =1 to give no special preference to either recall or precision. The recall, 
precision and F value are 0.84, 0.92 and 0.878 respectively. It is worthwhile to men-
tion that, as shown in Table 1, more than 500 sentences have incomplete semantic 
classes which mainly come from proper nouns, unknown words, proverbs or even 
short phrases. While the boundaries between words and phrases in Chinese are not 
easy to differentiate, the performance, due to the coverage of semantic classes in our 
thesaurus, does not deteriorate much in our system. This tolerance ability provides the 
graceful degradation in our case role annotation. While other systems are brittle and 
working only in all-or-none basis, the robustness of our system is guaranteed even 
though more than 10% of tokens having their SC tags missing. 

5    Conclusion 

In this paper, we have illustrated a shallow technique in which language patterns are 
extracted in forms of chunks of phrases or words. The chunks are further tagged with 
case roles. Although the technique does not require a full syntactic parse to pursue 
semantic analysis, the recursively embedded phrases can also be identified without 
pain. While we have demonstrated that it is much easier to work out the approximate 
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parse of individual actual sentences than to try to determine what all possible mani-
festations of a certain rule or grammatical constructs are, our linguistic sequence 
analysis is inspired by the research into bio-molecular sequences, such as DNA and 
RNA in protein. Bio-molecular scientists believe that high sequence similarity usually 
implies significant function or structural similarity. It is characteristic of biological 
systems that objects have a certain form that has arisen by evolution from related 
objects of similar but not identical form. This sequence-to-structure mapping is a 
tractable, though partly heuristic, way to search for functional or structural universal-
ity in biological systems. With the support from the results as shown in this paper, we 
conjecture this sequence-to-structure phenomenon appears in our sentences. The 
sentence sequence encodes and reflects the more complex linguistic structures and 
mechanisms described by linguists. While our system does not claim to deal with all 
aspects of language, we suggest an alternative, but plausible, approach to handle the 
real corpus. 
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