
 G.I. Webb and Xinghuo Yu (Eds.): AI 2004, LNAI 3339, pp. 513–525, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Towards Efficient Imputation by Nearest-Neighbors:
A Clustering-Based Approach

Eduardo R. Hruschka1, Estevam R. Hruschka Jr.2, and Nelson F. F. Ebecken3

1 Universidade Católica de Santos (UniSantos), Brasil
erh@unisantos.br

2 Universidade Federal de São Carlos (UFSCAR), Brasil
estevamr@terra.com.br

3 COPPE / Universidade Federal do Rio de Janeiro, Brasil
nelson@ntt.ufrj.br

Abstract. This paper proposes and evaluates a nearest-neighbor method to sub-
stitute missing values in ordinal/continuous datasets. In a nutshell, the K-Means
clustering algorithm is applied in the complete dataset (without missing values)
before the imputation process by nearest-neighbors takes place. Then, the
achieved cluster centroids are employed as training instances for the nearest-
neighbor method. The proposed method is more efficient than the traditional
nearest-neighbor method, and simulations performed in three benchmark data-
sets also indicate that it provides suitable imputations, both in terms of predic-
tion and classification tasks.

1 Introduction

Missing values are a critical problem for data mining methods, which are usually not
able to cope with them in an automatic fashion (without data preparation). In general,
there are many approaches to deal with the problem of missing values: i) Ignore the
instances/attributes containing missing values; ii) Substitute the missing values by a
constant; iii) Use the mean or the mode of the instances as a substitution value; and
iv) Get the most suitable value to fill the missing ones. The first approach involves
removing the instances and/or attributes with missing values. Doing so, the waste of
data may be considerable and incomplete datasets can lead to biased statistical analy-
ses. The second approach assumes that all missing values represent the same value,
usually leading to considerable distortions. The substitution by the mean/mode value
is a common practice and sometimes can even lead to reasonable results. However, it
does not take into consideration the between-variable relationships, which are impor-
tant to the process of missing values substitution. Therefore, the best approach in-
volves filling the missing values with the most suitable ones.

The substitution of missing values, also called imputation, should not change
important characteristics of the dataset. In this sense, it is necessary to define the
important characteristics to be maintained. Data mining methods usually explore
relationships between variables and, thus, it is critical to preserve them, as far as pos-

E.R. Hruschka, E.R. Hruschka Jr., and N.F.F. Ebecken

514

sible, when replacing missing values [1]. In other words, the imputation goal is to
carefully substitute missing values, trying to avoid the imputation of bias in the data-
set. When imputation is performed in a suitable way, higher quality data are pro-
duced, and the data mining outcomes can even be improved.

Several imputation methods have been proposed in the literature, and good refer-
ences can be found in [2]. Some recent works suggest that K-Nearest Neighbors
(KNN) methods [3] can be useful for imputation [4,5]. KNN can be defined as a lazy
memory-based learning process [6] in which the training data is stored in memory and
analyzed to find answers to specific queries. As far as the whole training dataset is
stored in memory, the computational effort may be high when maintaining a global
model to process all queries. To alleviate this problem, a local model can be used to
fit the training data only in a region around the location of the query to be answered.
This approach originates the usually called local learning KNN methods. In addition,
indexing methods [3] can also be useful to minimize the computational cost of KNN
methods.

In this work, we propose and evaluate an imputation method based on the K-
Means clustering algorithm [7,8], which is employed to improve the computational
efficiency of imputations based on nearest-neighbors. The paper is organized as fol-
lows. The next section describes how the K-Means can be incorporated into the clas-
sical KNN, originating our proposed imputation method. Besides, Section 2 also
describes advantages and disadvantages of such approach, both in terms of efficacy
and efficiency. Section 3 reports simulation results in prediction and classification
tasks. Finally, Section 4 describes our conclusions and points out some future work.

2 Incorporating K-Means into the Nearest-Neighbor Method

In this section, we first review how to employ the classical KNN for imputation. Then,
it is theoretically compared, in terms of efficacy (imputation quality) and efficiency
(computational cost), with a clustering-based KNN method. Imputation methods based
on KNN assume that missing values of an instance can be substituted by means of the
corresponding attribute values of similar complete instances. More specifically, let us
consider that each instance is described by a set of N continuous/ordinal attributes.
Thus, each instance can be represented by a vector x=[x1,x2,...,xN]. The distance be-
tween two vectors (instances) x and y will be here called d(x,y). Besides, let us sup-
pose that the i-th attribute value (1≤i≤N) of vector u is missing. Imputation methods
based on nearest-neighbors compute distances d(u,y), for all y≠u, y representing a
complete instance, and use these distances to compute the value to be imputed in ui.
The Euclidean metric is commonly used to compute distances between instances and,
considering that the value of the i-th attribute is missing, it is given by:

d(u,y)E =
22

11
2

11
2

11)(...)()(...)(NNiiii yuyuyuyu −++−+−++− ++−− . (1)

In equation (1), the i-th attribute is not considered, because it is missing in u. After
computing the distances d(u,y) for all y≠u, y representing a complete instance, one or

Towards Efficient Imputation by Nearest-Neighbors: A Clustering-Based Approach 515

more instances (the more similar ones, which are the neighbors of u) are employed to
complete ui. In addition, although equation (1) just considers one missing value (in the
i-th attribute), one observes that it can be easily generalized for instances with more
missing values.

The imputation process by the K-Nearest Neighbor (KNN) method is simple, but it
has provided encouraging results [4,5,9]. In clustering problems, this approach is
particularly interesting, because in general the clustering process is also based on
distances between vectors. In these cases, the inductive bias of the clustering and
imputation methods is equal. Besides, KNN methods can be easily adapted to datasets
formed by discrete attributes. To do so, one can, for example, substitute the Euclidean
distance function by the Simple Matching Approach. However, depending on the
dimensionality of the dataset in hand, it can become computationally time consuming.
In this sense, it is memory intensive since the entire training set is stored. Besides,
classification/estimation is slow since the distance between input (query) instances and
those in the training set must be computed. Thus, KNN typically performs better for
lower dimensional problems [12].

In this paper, we focus on classification problems, describing a more efficient
KNN algorithm for missing values imputation that can be employed in datasets
formed by continuous/ordinal attributes. In a nutshell, the K-Means algorithm is first
applied in the complete instances y, leading to a set of clusters, whose mean vectors
(centroids) are, in turn, used as training instances for the traditional KNN. From now
on, we will call our method KMI (K-Means Imputation), and we propose to apply it
separately in the instances of each class (further details in Section 2.4). In summary,
the main steps of KMI are:

Algorithm KMI

1 Employ the K-Means Algorithm in the instances without
missing values (complete dataset), obtaining KM cluster
centroids (mean vectors);

2 According to the KM obtained centroids, find the corre-
sponding nearest one for each instance with missing val-
ues - equation (1) considering y as the centroids and u
as the instance with missing values;

3 Complete each missing value with the corresponding at-
tribute value of the nearest centroid.

2.1 Brief Review of the K-Means Algorithm

Clustering algorithms that involve the calculation of the mean (centroid) of each clus-
ter are often referred to as K-Means algorithms [7]. These algorithms partition a data-
set of N instances into KM clusters, minimizing the sum of distances among instances
and their corresponding cluster centroids. The value of KM (number of clusters) is
usually specified by the user. The distances can be calculated by means of equation
(1), but since K-Means is applied in the complete dataset, all attributes are considered.
In this work, we employ the K-Means algorithm depicted in Fig.1, where the conver-
gence criterion can be defined either as the maximum number of iterations (t) of steps

E.R. Hruschka, E.R. Hruschka Jr., and N.F.F. Ebecken

516

2 and 3 or as a function of the difference between centroids of two consecutive
iterations.

1. Generate a random initial partition of instances into KM nonempty clusters;
2. Compute the cluster centroids (mean vectors) of the current partition;
3. Assign each instance to the cluster with the nearest centroid;
4. If the convergence criterion has been satisfied, then stop; else, go to step 2.

Fig. 1. Employed K-Means Algorithm

2.2 Efficacy of KNN and KMI

In order to visualize possible advantages and disadvantages of KNN and KMI, let us
consider the pedagogical dataset (formed by 4 Gaussian distributions, each one com-
posed by 10 instances) depicted in Fig. 2. Both KNN and KMI are designed to fulfill
the missing value (represented by ?) of instance u=[u1,u2,?]. To do so, these methods
take into consideration the available information, i.e., the values of attributes 1 and 2
depicted in Fig. 2, where {G1,…,G4} represent four natural groups of similar in-
stances. These groups can be viewed as four different classes. It is clear that u is more
similar to the instances of G1 (as indicated by the arrow) than to the instances of the
other groups. Therefore, it is assumed that one or more instances of this group should
be employed to impute u3.

0

4

8

12

0 4 8

G1

G2

G3

G4

u

Fig. 2. Hypothetical dataset

Considering KNN, the most similar KN instances (neighbors) are employed to im-
pute u3. For instance, the mean vector of KN instances could be used to impute u3. Let
us call this mean vector as m=[m1,m2,m3]. In this particular case, the third attribute
value of the mean vector is imputed in u3, i.e. u3=m3. In the hypothetical situation
depicted in Fig. 2, a value of KN more than 10 may cause problems for KNN, because
instances very dissimilar of u (belonging to other groups) would contribute to the
imputation of u3. This problem can be lessened by using the weighted imputation
function expressed in Equation (2), where yi are the KN most similar instances in rela-
tion to u and j is the attribute index of the missing value (j=3 in our hypothetical
case). Doing so, a vector y contributes to the imputation of u3 according to its similar-
ity to u. If d(u,yi)=0, then only instance yi is employed to impute the missing value in

Towards Efficient Imputation by Nearest-Neighbors: A Clustering-Based Approach 517

u, because in this case u=yi. Equation (2) also lessens the problem caused by overes-
timated values of KN (number of neighbors in the traditional KNN). However, KNN
computational cost continues high (this subject is addressed in Section 2.3).

∑

∑
=

=

=

N

N

K

i
i

K

i

i
ji

j

d

y
d

u

1

1

)(

1

)(

1

yu,

yu,
 (2)

Let us now consider what happens with the application of KMI (K-Means +
KNN). In principle, we will consider just the most similar cluster (according to its
centroid) for the imputation process. In an ideal situation, the four groups depicted
in Fig. 2 would be found by K-Means, and KMI would impute a suitable value in
u3, i.e. the corresponding value of the mean vector (centroid) of the most similar
group (G1). In this case, if KN≤10, KNN would perform a more accurate imputation
- by Equation (2) – than KMI. However, for KN>10, imputation by KMI would be
more accurate. Suppose now that KM≤4 or that K-Means has not found the natural
clusters {G1,…,G4}. In both cases, instances from different natural groups could
be classified in the same cluster. For example, let us suppose that instances of G1
and G3 are classified in a single cluster. Under the perspective of imputing u3, this
single cluster would be interesting only if these two groups (G1 and G3) have simi-
lar values for y3. To reduce this problem (without considering computational effi-
ciency issues), one can overestimate (to a certain extent) the value of KM for two
reasons: (i) it favors more compact clusters, formed by few instances, thus provid-
ing more accurate imputations; (ii) K-Means may decrease KM, mainly in relation
to particular centroid initializations. More specifically, K-means can find less than
KM clusters when, in a set of KM centroids, at least one is farther from all instances
than the others. In some situations, it can be interesting to employ more than one
cluster for imputation. For example, let us consider the scenario in which two or
more clusters have an equal distance from u. In this case, it would be interesting to
consider all these clusters for imputation. Another alternative involves the applica-
tion of equation (2) in the K-Means based imputation.

In theory, the challenge is to find suitable values for KN and KM, because, in this
case, both methods can provide good results. In practice, however, this is a hard task.
Considering KNN, if KN is set too high, many dissimilar instances in relation to u are
taken into consideration to impute its missing values. That could deteriorate the qual-
ity of the imputed value. On the other hand, if KN is set too low, the imputation could
become badly biased, not appropriately reflecting sampling variability. Similarly,
when KMI is concerned, if too high values of KM are chosen, small clusters are likely
to be found, favoring imputations based on small subsets of instances. However, if KM
is set too low, the number of instances in each cluster tends to be high, and very dis-
similar instances in relation to u may be considered to impute its missing values. In
summary, it is really difficult to find the optimal values for KM and KN. Under this
perspective, it is also important to evaluate the computational costs of KMI and KNN.
This subject is addressed in the next section.

E.R. Hruschka, E.R. Hruschka Jr., and N.F.F. Ebecken

518

2.3 Computational Costs of KNN and KMI

In order to evaluate the computational costs of KNN and KMI, let us call: M as the
amount of instances with at least one missing value; C as the amount of instances
without missing values (complete dataset); KN as the number of neighbors for KNN;
KM as the number of clusters for the K-Means Algorithm; and t as the number of itera-
tions for K-Means.

Both methods require the computation of distances between vectors. These dis-
tances – given by equation (1) - represent the main computational cost of both KNN
and KMI. The required comparisons do not represent significant computational costs
when compared with the computation of distances. Thus, the estimated computational
cost of KNN is O(M⋅C), whereas for KMI it is O(t⋅KM⋅C+M⋅KM). In practice, M and C
are a priori known, and the values of both KM and t are usually defined by the user.
With a little notation abuse, the estimated value of KM that equals the computational
costs of KNN and KMI for a fixed t is:

)(
'

MCt

CM
K M +⋅

⋅= (3)

Equation (3) states that if KM>K’M then KNN is computationally more efficient
than KMI, whereas if KM<K’M then KMI is more efficient. Similarly, it would be
interesting to estimate K’N. However, the number of neighbors (KN) only affects the
comparison phase, in which the nearest-neighbors are defined. Therefore, it does not
significantly influences the computational cost of KNN and, in principle, K’N could
not be estimated. One alternative to circumvent this problem involves comparing the
computational costs of KNN and KMI in a situation in which both methods would
provide the same efficacy. As previously described (Section 2.2), the efficacy of each
method basically depends on the amount of instances employed for imputation. When
KMI is concerned, in general it is interesting to consider only the most similar cluster
in relation to u for imputation. Therefore, in order to provide a fair comparison be-
tween KNN and KMI, the value of KN should be equal to the number of instances of
the most similar cluster. However, it is not easy to estimate this number, because it
depends on the K-Means result. In this context, a reasonable approach involves as-
suming that K-Means would provide clusters formed by an equal number of instances,
leading to the following relation:

N
M K

C
K = (4)

In other words, equation (4) relates the number of clusters to the number of
neighbors in a way such that both methods take into account approximately the same
number of instances to impute the missing values. Now, similarly to the estimation of
K’M

 - equation (3) - and using equation (4), it is possible to estimate K’N:

M

MCt
K N

+⋅=' (5)

Towards Efficient Imputation by Nearest-Neighbors: A Clustering-Based Approach 519

Where K’N equals the computational cost of KNN and KMI, in such a way that
both consider approximately an equal number of instances to perform the imputation
of missing values. In summary, the computational costs of KNN and KMI depend on
the proportion of instances with missing values in relation to the complete dataset, and
on K-Means parameters.

2.4 Proposed Method

As described in Sections 2.2 and 2.3, KNN and KMI present advantages and disad-
vantages concerning both efficacy and efficiency, depending on the characteristics of
the dataset in hand and on their parameter values (KM, t, and KN). In classification
problems, we propose to separate the instances according to their corresponding
classes before applying KMI. In this context, let us suppose a classification problem
in which there are X classes. Thus, X pairs of {Missing,Complete} datasets {(M1,C1),
(M2,C2),…,(MX,CX)} are employed for imputation. In this scenario, the hard task of
choosing the value for KM is attenuated, because K-Means is employed in a super-
vised way, i.e., the information about the class is indirectly inserted in the imputation
process. In other words, missing values are imputed only considering corresponding
instances of the same class. In this sense, a reasonable approach is to set KM=2, which
is the minimum value for this parameter. Doing so, complete instances of each class
are summarized by two cluster centroids (mean vectors), and the most similar cen-
troid in relation to each instance with missing values is used for imputation.

Let us see what happens when the computational costs are concerned. To do so, it
is not necessary to change the terminology defined in section 2.3. Instead, we assume
that the imputation process is being performed in the instances of a single class I, and
the concepts described in section 2.3 still remain valid for each pair (MI,CI). The only
difference is that now we are evaluating KNN and KMI considering the instances of a
single class. Anderberg [8] observes that, in general, a number of iterations t≤5 usu-
ally will suffice to get suitable solutions by K-Means. Under this perspective,
{t=5,KM=2}<<{C,M} and, consequently, KMI becomes of O(C+M), i.e. more effi-
cient than KNN. Obviously, there is a trade-off between efficiency and efficacy (ac-
curacy), and it is necessary to evaluate to what extent it is advantageous to employ
more efficient algorithms like KMI. This assessment is highly dependent of the classi-
fication problem in hand. Thus, it is useful to perform empirical evaluation in some
benchmark datasets. To do so, imputation results are evaluated both in terms of pre-
diction and classification tasks.

3 Simulation Results

3.1 Theoretical Aspects

We are interested in evaluating our imputation method for classification problems in
the context of data mining applications. In general, a dataset D is formed by instances
with and without missing values. Remember that we call C (complete) the subset of
instances of D that do not have missing values, and M (missing) the subset of in-

E.R. Hruschka, E.R. Hruschka Jr., and N.F.F. Ebecken

520

stances of D with at least one missing value. In this context, imputation methods
should carefully complete the missing values of M, originating a filled dataset F. In an
ideal situation, the imputation method should fill the missing values, originating filled
values, without inserting bias in the dataset. In a more realistic view, one tries to de-
crease the amount of inserted bias to acceptable levels, in a way that a dataset
D’={C+F}, probably containing more information than D (in the sense that the attrib-
utes without missing values in M may contain important information), can be used for
data mining (e.g. considering issues such as feature selection, combining multiple
models, and so on).

There are two ways of measuring the bias inserted by an imputation method: in a
prediction task and in a classification task. In a prediction task, one simulates missing
values in C. Some known values are removed and then imputed. In this way, it is
possible to evaluate how close the imputed values are to the real, known ones. The
closer the imputed value to the real one, the better the imputation method is. This
alternative is very efficient to compare different imputation methods, because it re-
quires few computations after imputing values, but it does not allow estimating the
classifier performance in D’. In other words, although this procedure is valid, the
prediction results are not the only important issue to be analyzed. In this sense, the
substitution process must also generate values that least distort the original character-
istics of D, which are given by the between-variable relationships, defined by each
particular classification algorithm. In a more practical view, the known values in M
can contain important information, which, in turn, would be lost if their correspond-
ing instances were discarded.

In practical data mining applications, one usually employs different classifiers,
choosing the best one according to some criterion of model quality. In this work, we
are interested in evaluating the influence of the proposed imputation method in
relation to the Average Correct Classification Rate (ACCR) criterion. In fact, the
assumption is that the best classifier (BC) - in relation to D and to the available classi-
fiers – provides a suitable model for classifying instances of D. Therefore, it is also
important to assess to what extent the imputed values adjust themselves to the BC
model(s).

It is a common practice to evaluate classifier performance in a test set. The same
concept can be adapted to evaluate the missing values substitution, considering C as
the training set and F as the test set. In this context, one can measure the inserted bias
by the following procedure:

1) Evaluate the classifier in a cross-validation process, using dataset C;
2) Evaluate the classifier in dataset F (test set) considering that C is the training set;
3) The estimated inserted bias is the difference between the results achieved in 2) and 1).

Fig. 3. Evaluating the imputation method in a classification context

Looking at Fig. 3, a positive bias is achieved when the Average Correct Classifi-
cation Rate (ACCR) in F (step 2) is higher than in the cross validation process in C
(step 1), i.e. the imputed values are likely to improve the classifier ACCR in D’. By

Towards Efficient Imputation by Nearest-Neighbors: A Clustering-Based Approach 521

the same token, a negative bias is inserted when the imputed values are likely to
worsen the classifier ACCR. Finally, no bias is likely inserted when the accuracies in
F and in the cross-validation process are equal (ideal situation).

One could argue that a cross-validation process should be performed in both
datasets (C and F), comparing the corresponding results. However, it is possible to
get different models in C and F. For instance, different decision trees (in terms of
selected attributes), but with similar accuracies in a cross-validation process, may
be obtained in C and F. In this case, a similar ACCR may not be achieved in D’. In
addition, we are interested in evaluating if the imputation process preserves the
between-variable relationships, which are defined by each particular classification
model. In this sense, the complete dataset is more trustable and, consequently, is its
associated model. In other words, verifying how the data in F adjust themselves to
the model obtained in C allows estimating the classifier ACCR in D’. Besides,
performing cross-validation in both datasets (C and F) is computationally more
expensive, because it is necessary to get and evaluate each classifier several times
for both C and F.

3.2 Methodology

The KMI was evaluated both in prediction and classification tasks, comparing the
obtained results with the traditional KNN for imputation. In order to verify the
efficacy of the proposed method (KMI), we compared it to KNN with weighted
imputations – equation (2) – and assuming that KN=C/KM provides fair comparisons
– equation (4). Both methods were evaluated in three scenarios, simulating miss-
ing values in proportions of 30%, 50% and 70%, i.e. M=30%C, M=50%C and
M=70%C. To do so, we simulated missing values in complete datasets, eliminating
some values that are a priori known. In this sense, for each class some instances
were randomly chosen, and one of their attribute values was randomly eliminated.
Thus, the proportion of instances of each class is maintained in the employed data-
sets. After inserting missing values, the known values of each attribute were
normalized into the range [0,1] to give attributes an equal weight. We performed
simulations in 3 datasets that are benchmarks for data mining methods [10] (Iris
Plants, Wisconsin Breast Cancer, and Pima Indians Diabetes) and Table 1 summa-
rizes their main characteristics.

Table 1. Summary of Dataset Characteristics

Dataset (# classes) # instances/class # attributes Attribute Type
Iris Plants (3) {50,50,50} 4 Continuous

Wisconsin Cancer (2) {444,239} 9 Ordinal
Pima Diabetes (2) {500,268} 8 Ordinal/Continuous

The simulation results in the prediction task are shown in Table 2, where one ob-
serves that KNN has provided slightly better results (smaller average absolute differ-
ences between original and imputed values) in most of the performed simulations. As

E.R. Hruschka, E.R. Hruschka Jr., and N.F.F. Ebecken

522

it can be seen in the sequel, these differences have not significantly influenced classi-
fication results, which is the most important aspect to be analyzed.

Table 2. Prediction Results: average values for abs(original-imputed)

Metho
d

30%
Iris

50%
Iris

70%
Iris

30%
Wisc.

50%
Wisc.

70%
Wisc.

30%
Pima

50%
Pima

70%
Pima

KNN 0.22 0.19 0.26 1.15 1.12 1.05 12.65 14.85 17.38
KMI 0.21 0.21 0.28 1.22 1.14 1.11 12.73 15.52 17.33

The imputation process must also generate values that least distort the original
characteristics of D, which are given by the between-variable relationships, defined
by each particular classifier. To evaluate this aspect, we employ the methodology
described in Section 3.1, using five classifiers: One Rule, Naïve Bayes, J4.8 Decision
Tree, PART and Multilayer Perceptrons. These classifiers are popular in the data
mining community, and make part of the WEKA System [11], which was used to
perform our simulations, using its default parameters. In a nutshell, One Rule (1R) is
a very efficient and simple method that often produces good rules for characterizing
the structure in the data. It generates a one-level decision tree, which is expressed in
the form of a set of rules that test just one selected attribute. Naive Bayes (NB) uses
all attributes and allows them to make contributions to the decision that are equally
important, and independent of one another given the class, leading to a simple scheme
that works well in practice. J4.8 is the Weka´s implementation of an improved ver-
sion of the popular C4.5 decision tree learner. PART is a method that provides rules
from pruned partial decision trees built using C4.5. It combines the divide-and-
conquer strategy of decision trees learning with the separate-and-conquer strategy for
rule learning. In essence, to make a single rule, a pruned decision tree is built for the
current set of instances. Then, the leaf with the largest coverage is made into a rule
and the tree is discarded. Finally, Multilayer Perceptrons are feedforward neural net-
works (NN) that learn by means of backpropagation algorithms.

In order to estimate the classifier ACCR (Average Correct Classification Rate) in
the complete datasets (C), we performed a ten-fold-cross validation (CV) process.
Figures 4, 5, and 6 show the simulation results in each dataset, considering the em-
ployed classifiers. In these figures, 30%, 50% and 70% represent the proportion of
missing values in each simulation, whereas F stand for the datasets filled by either
KNN or KMI.

Figures 4, 5, and 6 show that KNN and KMI have provided good and similar clas-
sification results in the filled datasets. Since KMI is a more efficient algorithm, our
most important results concern about the efficacy of KMI, which is similar to the one
provided by KNN. Indeed, KNN has provided better classification results just in 40%
of our simulations. Indeed, the most important differences, in terms of classification
results in the filled datasets, were equal to 2.22%, 0.63%, and 3.90% in Iris, Wiscon-
sin and Pima respectively. Considering the inserted bias (Fig. 3) both methods (KMI
and KNN) have provided equal results in 44.44% of our simulations, whereas KMI

Towards Efficient Imputation by Nearest-Neighbors: A Clustering-Based Approach 523

has provided better results in 31.11% of our simulations, indicating that KMI pro-
vides imputations as suitable as KNN, but in a more efficient way.

90

92

94

96

98

100

J 4.8

30%

P a rt

30%

NB

30%

1R

30%

NN

30%

J 4.8

50%

P a rt

50%

NB

50%

1R

50%

NN

50%

J 4.8

70%

P a rt

70%

NB

70%

1R

70%

NN

70%

CV (C) KNN (F) KMI (F)

Fig. 4. Average Correct Classification Rate (ACCRs) - Iris Plants

90

91

92

93

94

95

96

97

98

99

100

J 4.8

30%

P a rt

30%

NB

30%

1R

30%

NN

30%

J 4.8

50%

P a rt

50%

NB

50%

1R

50%

NN

50%

J 4.8

70%

P a rt

70%

NB

70%

1R

70%

NN

70%

CV (C) KNN (F) KMI (F)

Fig. 5. Average Correct Classification Rate (ACCRs) - Wisconsin Breast Cancer

65

70

75

80

J 4.8

30%

P a rt

30%

NB

30%

1R

30%

NN

30%

J 4.8

50%

P a rt

50%

NB

50%

1R

50%

NN

50%

J 4.8

70%

P a rt

70%

NB

70%

1R

70%

NN

70%

CV (C) KNN (F) KMI (F)

Fig. 6. Average Correct Classification Rates (ACCRs) - Pima Indians Diabetes

E.R. Hruschka, E.R. Hruschka Jr., and N.F.F. Ebecken

524

Considering the most important estimated inserted biases, Figures 4, 5, and 6 also
show that KNN and KMI provided similar performances. Table 3 details the most
important inserted biases (positive and negative ones), indicating that KMI has shown
worse results just in Pima.

Table 3. Most Important Estimated Inserted Bias in Each Dataset: Bias (bold); imputation
method(s) (KNN/KMI/both); classifier; proportion of missing values

Bias (%) Iris Plants (Fig. 4) Wisconsin (Fig. 5) Pima (Fig. 6)
Positive 5.33; both; NN; 50%. 3.97; both; NN; 70%. 9.38; KMI; J4.8; 50%

Negative 7.62; both; J4.8/PART; 70%. 2.16; both; 1R; 70%. 7.29; KMI; 1R; 50%

4 Conclusions

This paper proposed modifications towards improving the efficiency of imputation
methods based on nearest-neighbors. In this context, the K-Means algorithm is ap-
plied in the complete dataset (without missing values) before the imputation process
by nearest-neighbors takes place. Subsequently, the cluster centroids obtained by K-
Means are used as training instances for the nearest-neighbor method. Particularly,
we focused on classification problems, for which we proposed to employ K-Means in
a supervised way, i.e., missing values are imputed considering just corresponding
instances of the same class. Performed simulations in three benchmark datasets indi-
cate that the proposed method provides imputations as suitable as those obtained by
means of the traditional K-Nearest Neighbor (KNN) method, both in terms of predic-
tion and classification tasks. Thus, the proposed method is promising.

Our future work will concentrate on performing simulations on real-world data-
sets, comparing the obtained results with other leading imputation methods. We are
also going to evaluate the application of the weighted imputation function in the in-
stances of the clusters found by K-Means. Although it implies in an additional com-
putational cost, the imputations are likely to be even more accurate. In addition, the
computational cost can be further minimized by using other reduction techniques
such as those proposed in [13]. Finally, we are going to investigate the substitution of
K-Means by other efficient algorithms that automatically define the optimal number
of clusters.

Acknowledgments

Eduardo R. Hruschka acknowledges CNPq (proc. 301.353/03-4) for its financial
support. Nelson F.F. Ebecken acknowledges both CNPq and FAPERJ for their finan-
cial support.

Towards Efficient Imputation by Nearest-Neighbors: A Clustering-Based Approach 525

References

1. Pyle, D., Data Preparation for Data Mining. Academic Press, 1999.
2. Little, R. & Rubin, D. B., Statistical Analysis with Missing Data. Wiley, New York, 1987.
3. Mitchell, T. M. Machine Learning. The McGraw-Hill Companies, Inc, 1997.
4. Hruschka, E. R., Hruschka Junior, E. R., Ebecken, N. F. F. Evaluating a Nearest-Neighbor

Method to Substitute Continuous Missing Values. In: The 16th Australian Joint Confer-
ence on Artificial Intelligence, Lecture Notes in Artificial Intelligence, v. 2903, pp. 723-
734, Springer, 2003.

5. Batista, G. E. A. P. & Monard, M. C., An Analysis of Four Missing Data Treatment Meth-
ods for Supervised Learning. Applied Artificial Intelligence. v.17, n.5-6, 519-534, 2003.

6. Atkeson, C. G., Moore, A. W., & Schaal, S., Locally Weighted Learning, Artificial Intel-
ligence Review, 11:11-73, 1997.

7. Everitt, B.S., Landau, S., Leese, M., Cluster Analysis, Arnold Publishers, London, 2001.
8. Anderberg, M. R., Cluster Analysis for Applications, USA, Academic Press, Inc., 1973.
9. Troyanskaya, O. et al., Missing Value Estimation Methods for DNA Microarrays, Bioin-

formatics, v.17, no. 6, pp. 520-525, 2001.
10. Merz, C.J., Murphy, P.M., UCI Repository of Machine Learning Databases,

http://www.ics.uci.edu, Irvine, CA, University of California, Department of Information
and Computer Science.

11. Witten, I. H., Frank, E., Data Mining – Practical Machine Learning Tools and Techniques
with Java Implementations, Morgan Kaufmann Publishers, USA, 2000.

12. Kennedy, R.L., Lee, Y., Roy, B.V., Reed, C.D., Lippmann,R. P., Solving Data Mining
Problems through Pattern Recognition, Prentice Hall PTR, 1997.

13. Wilson, D.R., Martinez, T.R., Reduction Techniques for Instance-Based Learning Algo-
rithms, Machine Learning, 38-3, pp. 257-286, Kluwer Academic Publishers, 2000.

	Introduction
	Incorporating K-Means into the Nearest-Neighbor Method
	Brief Review of the K-Means Algorithm
	Efficacy of KNN and KMI
	Computational Costs of KNN and KMI
	Proposed Method

	Simulation Results
	Theoretical Aspects
	Methodology

	Conclusions
	Acknowledgments
	References

