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Abstract. This paper presents some empirical results showing that simple at-
tribute scaling in the data preprocessing stage can improve the performance of
linear binary classifiers. In particular, a class specific scaling method that utilises
information about the class distribution of the training sample can significantly
improve classification accuracy. This form of scaling can boost the performance
of a simple centroid classifier to similar levels of accuracy as the more com-
plex, and computationally expensive, support vector machine and regression clas-
sifiers. Further, when SVMs are used, scaled data produces better results, for
smaller amounts of training data, and with smaller regularisation constant values,
than unscaled data.

1 Introduction

Data preprocessing has been recognised as critically important in data mining to im-
prove both the speed and accuracy of the resultant model [1, 2]. In particular, and as
will be shown, simple manipulations of the range of the input data by attribute scaling
are computationally inexpensive, and can result in significant performance increases.

This paper presents an empirical investigation of the impact of attribute scaling on
the performance of SVM classifiers. We focus on linear binary classifiers (Section 2)
and measure the impact of scaling on the accuracy of the classifiers where accuracy
is measured in terms of a general classifier goodness measure that is independent of
the operating point of the classifier (Section 3). We consider three different scaling
techniques that are linear transformations of the attribute space, and change the range
and origin of the attribute space (Section 4). Using eight large datasets with differing
properties, we study the effect of these scaling methods on classification accuracy when
classifier parameters such as training set size are varied (Section 5). Our results show
that attribute scaling can vastly improve the accuracy of even simple classifiers, and can
thus provide a computationally inexpensive method for achieving high accuracy with a
smaller training set size or a less complex classifier (Section 6).

2 Classifiers

Given a labelled m-sample: −→xym :=
(
(x1,y1), ....,(xm,ym)

)
of patterns xi ∈ X ⊂R

n and
target values yi ∈ [0,1], our aim is to find a “good” discriminating function f : X → R
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that scores the target class instances yi = 1 higher than the background class instances
yi = 0. We focus on linear classifiers, namely two linear support vector machines, one
ridge regression model and a simple centroid classifier.

2.1 Support Vector Machines (SVML1 and SVML2)

Given the training m-sample as described above, a learning algorithm used by SVMs
[3, 4, 5] outputs a model f−→xym : X → R defined as the minimiser of the regularised risk
functional:

f �→ || f ||2H +
m

∑
i=1

L([1− yi f (xi)]+). (1)

Here H denotes a reproducing kernel Hilbert space (RKHS) [5] of real valued func-
tions f : X → R and ||.||H the corresponding norm. L : R → R

+ is a non-negative,
convex loss function penalising for the deviation 1−yi f (xi) of the estimator f (xi) from
target yi and [ξ]+ := max(0,ξ).

The minimisation of (1) can be solved by quadratic programming [3] with the use
of the following expansion known to hold for the minimiser (1):

f−→xym(x) =
m

∑
i=1

αiyik(xi,x)

|| f−→xym ||2H =
m

∑
i, j=1

αiα jyiy jk(xi,x j)

where k : X×X →R is the kernel corresponding to the RKHS H [6, 7]. The coefficients
αi are unique and they are the Lagrange multipliers of the quadratic minimisation prob-
lem corresponding to the constraints yi f−→xym(xi) > 0.

The following two types of loss function yield two different SVMs. In both cases,
c > 0 is a regularisation constant controlling the extent of penalisation:

– SVML1 or L1 with “hinge loss” L(ξ) := cξ is the SVM with linear penalty, and
– SVML2 or L2 with the squared hinge loss L(ξ) := cξ2 is the SVM with quadratic

penalty.

2.2 Ridge Regression (RR)

In addition to the SVMs we also use a regularisation network or ridge regression pre-
dictor, RR [4, 8, 6, 7]. Formally, this predictor is closely related to SVML2, the only
difference being that it minimises a modified risk function (1), with loss c(1−yi f (xi))2

rather than c[1− yi f (xi)]2+.

2.3 Centroid Classifier (CC)

The centroid classifier [9] is a simple linear classifier with the solution,

f−→xym(x) =
∑i,yi=+1 k(xi,x)
2max(1,m+)

− ∑i,yi=−1 k(xi,x)
2max(1,m−)
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where m+ and m− denote the numbers of examples with labels yi = +1 and yi = −1,
respectively. In terms of the feature space, the centroid classifier implements the pro-
jection in the direction of the weighted difference between the centroids of data from
each class. Note that the centroid solution approximates the solution obtained by SVMs
at very low values of the regularisation constant c [10].

3 Performance Measures

We have used AUC, the area under the receiver operating characteristic (ROC) curve
(also known as AROC) as our performance measure. We see this as the natural metric
of general goodness of a classifier, capable of meaningful results even if the target class
is a tiny fraction of the data [11, 12].

We recall that the ROC curve is a plot of the true positive rate, P( f (xi) > θ|yi = 1),
(known as precision), against the false positive rate, P( f (xi) > θ|yi =−1), as a decision
threshold θ is varied. The concept of the ROC curve originates in signal detection but
it is now used in many other areas, including data mining, psychophysics and medical
diagnosis (cf. review [13, 14]). In the last case, AUC is viewed as a measure of the
general “goodness” of a test, formalised as a predictive model f in our context, with a
clear statistical meaning. According to Bamber’s interpretation [15], AUC( f ) is equal
to the probability of correctly ordering two points, one xi from the negative and the
other x j from the positive class, by allocating appropriate scores, i.e. f (xi) < f (x j). An
additional attraction of AUC as a figure of merit is its direct link to the well researched
area of order statistics, via U-statistics and Wilcoxon-Whitney-Mann test [15, 16].

There are some ambiguities in the case of AUC estimated from a discrete set in the
case of ties, i.e. when multiple instances from different classes receive the same score.
Following [15] we implement in this paper the definition

AUC( f ) = P( f (xi) < f (x j)|− yi = y j = 1)
+0.5P( f (xi) = f (x j)|− yi = y j = 1)

expressing AUC in terms of conditional probabilities. Note that the trivial uniform ran-
dom predictor has an AUC of 0.5, while a perfect predictor has an AUC of 1.

4 Scaling Methods

We define scaling as applying a linear transformation to a set of data that changes its
range and origin. Specifically, scaling involves multiplying by a transformation factor
ai, and subtracting a translation factor bi, both of which are scalars. This is always done
relative to each feature, i.e. if the data has m rows of training examples and n columns
of features, each column will be scaled individually. This gives an equation in terms of
the attribute vector x̂i, the ith column of the matrix, ∀i,1 ≤ i ≤ n:

ẑi = aix̂i −bi

It is important to note that the scaling factors ai and bi for each type of scaling are
determined by the training data alone (using only the attribute vector x̂i in the training
set) and that these same factors are subsequently applied to the testing data.
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Note that linear scaling of each feature independently preserves the statistical distri-
bution of the data points for that feature, while discarding information about the range
and location. Classifiers only need information about the statistical distribution of the
positive and negative class data points. Discarding the range and location information
has several advantages:

– The score for a particular test instance requires the calculation of a dot product
with the test instance vector x̂. If one feature has a much larger range than another,
the larger feature will dominate (an effect known as feature swamping [17, 2, 18]).
This will obscure any classification information contained in the feature with the
smaller range. This is a problem if the feature with the larger range is not very
predictive. Also, those classifiers that minimise an error function that is sensitive
to scale (SVML1, SVML2 and RR) will assign more weight to those features with
large ranges at the expense of those features with smaller ranges. Scaling the data
reduces this problem.

– Scaling also improves the numerical conditions for those classifiers that converge
to a solution (SVML1, SMVL2 and RR) [17, 18]. The algorithms have both a cap
on the total number of iterations performed, and a minimum change rate, which
limits the optimisation of the machine. Containing the data within a small range
increases the likelihood that the solution is reached within those limitations.

This paper compares three types of scaling (Mean0Stdev1, PlusMinus1 and Class-
Specific) with unscaled data.

4.1 Mean0Stdev1 Scaling

Mean0Stdev1 scaling transforms the data to have a mean of 0 and a standard deviation
of 1. The transformation and translation factors are as follows:

ai =
1

stdev(x̂i)
bi =

mean(x̂i)
stdev(x̂i)

4.2 PlusMinus1 Scaling

This scale transforms the range of each attribute in the training set to [-1,+1] range.
Note that this may not be the range of the scaled test data since the training set may not
contain the actual minimum and maximum for every attribute. This is not a significant
problem, as there is no requirement that the input data be within this range, however
this scale will perform better the closer the sample maximum and minimum are to the
population statistics. Thus, as the training set is sampled for on a random basis, as the
size of this set increases, so will the performance of this scaling method. The scaling
factors ai and bi are computed as follows:

ai =
2

max(x̂i)−min(x̂i)
bi =

max(x̂i)+min(x̂i)
max(x̂i)−min(x̂i)

4.3 Class-Specific Scaling

This scaling method attempts to prejudice the classifier in favour of those features that
are likely to be predictive. Intuitively, if for a given feature the positive and negative
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classes have small variances and significantly different means, that feature is likely
to be predictive. If this is the case, we can increase its influence on the classifier as
discussed above by increasing the range of its data points. This approach is essentially
about making feature swamping work in favour of the classifier.

The transformation factor for each attribute is based on how predictive the model
estimates that attribute will be. No translation is performed. Thus,

ai =
mean(x̂i+)−mean(x̂i−)

var(x̂i+)+ var(x̂i−)
bi = 0

where x̂i+ and x̂i− represent the attribute vector for feature i for the positive and nega-
tive class instances respectively. Note that the calculation of the ai values for all features
gives a method for determining which are the most predictive features for that data set.
The least predictive features can then be discarded to reduce the amount of computa-
tional resources needed for the problem.

5 Experimental Setup

In order to understand the effect of scaling under different training conditions, we con-
sidered a number of different classifier settings. First, we explored a range of training set
sizes from 50 to 6,400 observations. Next, various values for the regularisation constant
were tested - the ends of range (10 and 100,000), and a mid range value (1,000).

The training sets were obtained by randomly selecting a set of 6,400 examples from
the main data set of 60,000 to act as the master training set. The remaining observations
then became the testing set. Training sets of the appropriate sizes were then randomly
extracted from this master training set (choosing the whole set when the training set
size is 6,400). The training sets were then scaled using the three methods described
above. The testing set was scaled simultaneously, so that the solution produced by the
training set was applicable to the testing data. Each training set was then run through the
four different classifiers, once with each regularisation constant value. The results were
then tested using the appropriately scaled testing set, and the AUC calculated. Note
that all sets of observations extracted were stratified - i.e. the proportion of positive and
negative class observations was maintained.

5.1 Data Sets

Experiments were performed on eight datasets, from different domains and of different
levels of difficulty. The minority class was typically between 10% and 40% of the data.
As some of the data sets were smaller than others, a random, stratified selection of
60,000 observations was taken out of each and used as the data set for this experiment.

Telecommunications Churn (Churn10 and Churn31): Data on mobile phone cus-
tomers of a large telecommunications carrier was used to learn to distinguish between
those that churned to a competitor in the following three months and those that didn’t.
A set of 31 continuous and ordinal variables was used for prediction, including bill and
product information. To create a second task, a subset of 10 of these predictors was se-
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lected via inspection of initial results, none of which were particularly predictive. This
resulted in a difficult to learn task.

Handwritten Digit Recognition (Digit): Data was downloaded from the MNIST hand-
written digit database. Each observation consists of a bitmap of 28× 28 continuous
grayscale values, representing a handwritten digit. This was converted to lower resolu-
tion (7× 7 pixels) to reduce the dimensionality of the problem. The classification task
was to distinguish between the digit ‘0’ and all other digits. To make the problem more
challenging, only the top 3 rows of pixels were used, and pixels near the corners which
contain little information were discarded, resulting in a 17 dimensional set.

Forest Cover Type (Forest): Data was downloaded from the UCI KDD repository.
30×30 metre cells of forest are classified into one of 7 cover types based on the cell’s
dominant tree type. The two most populous classes were extracted, and the classification
task was to distinguish between these classes. 10 continuous predictors were used.

Housing Mortgage (Housing): Data was downloaded from the U.S. Census Bureau
5% Public Use Microdata Sample (PUMS) containing individual records of the charac-
teristics of a 5% sample of housing units for the state of Florida. Amongst all housing
units which had a mortgage, the binary classification task was to distinguish between
those for which the mortgage had been paid off and those for which it hadn’t. There
were 12 continuous or ordinal predictors.

Intrusion Detection (Intrusion): This dataset consists of a random sample of the intru-
sion detection data used for the 1999 KDD Cup competition. The classification task was
to distinguish between normal use and intrusion. The 10 predictors used were a subset
of all continuous predictors available with the data, as certain continuous predictors
were omitted to make the problem more challenging.

Marital Status (Married): Data was again downloaded from the U.S. Census Bureau
PUMS. From this a 1% sample of individual records from the state of California was
extracted. The binary classification task was to distinguish between individuals who
have been married (whether currently married or not), with individuals who have never
been married. The predictors were 11 continuous variables.

Weather Season Prediction (Weather): Data, consisting of 8 continuous or ordi-
nal predictors, was downloaded from the website of the Tropical Atmosphere Ocean
project. It contains meteorological measurements from a grid of weather buoys in the
Pacific Ocean. Hourly measurements for all buoys over the period from May 1999 to
April 2000 were downloaded. The classification task was to distinguish readings made
during the northern hemisphere Autumn months from those made in other months.

6 Results

In order to lend statistical significance to our results, performance measurements for
each experimental setting were obtained using 10 different randomisations for each
setting, computing the mean and standard error of the scores obtained with each set.
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Fig. 1. Impact of scaling on different data sets. Results presented for each of the classifiers: CC
(centroid), L1 (SVML1), L2 (SVML2) and RR (ridge regression) and the four scaling methods
are averaged over all 10 randomisations, over all training set sizes and where appropriate, over
all regularisation constants

Each of the 10 random selections were seeded to ensure that they were consistent across
all other experimental settings, i.e. the test and training sets were the same across all
settings for a particular randomisation, training set size and data set.

6.1 Classifier and Data Set Interactions

Figure 1 shows the effect of scaling on classifier performance for each data set. The
x-axis shows bars grouped into four clusters corresponding to the four classifiers used:
CC (centroid), L1 (SVML1), L2 (SVML2) and RR (ridge regression). Each cluster
contains four scores, one for each different scaling method: unscaled, Mean0Stdev1,
PlusMinus1 and Class-Specific, as shown in the legend. The performance is
measured using the mean of the AUC over all randomisations (y-axis). Scores are
averaged over all training set sizes, and all regularisation constant values (where
appropriate).

Error bars have not been shown in this graph, as the standard error is consistently
low. The mean standard error is 0.28% AUC, and the maximum is 1.28% AUC for
the forest data set, for SVML1, using the Mean0Stdev1 scaling method. Further, the
standard error only exceeds 1% AUC in 3 out of 128 cases.

As seen from Figure 1, there is no single classifier that is the best for all data sets.
However, scaled data results in better performance than unscaled data in 30 of the 32
classifier/data set combinations. In particular, the Class-Specific scaling method tends
to produce consistent improvements in performance compared to unscaled data, for all
classifiers, for six datasets: churn31, forest, housing, intrusion, married and weather.
In general, it tends to be the best scaling choice with best or equal best performance
in 24 out of the 32 experimental situations shown. PlusMinus1 scaling also tends to
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Fig. 2. Impact of scaling and training set sizes on classifier performance for different data sets.
Results presented are the mean AUCs, where the means are computed over all randomisations for
all classifiers and all regularisation constant values

considerably improve classifier performance and produces the best or equal best score
in 10 of the 32 classifier/data set combinations. Overall one of these scales is the best
choice in 29 out of 32 situations, and generally there is not a great difference between
the performance of these two scaling methods.

The centroid classifier performs better when the Class-Specific scale is used in six
data sets, and improves its performance to the point where it is comparable with that
of the SVMs and RR. This is noteworthy as the centroid classifier requires no training
time, and is thus extremely efficient computationally. Indeed, as a general tendency, the
scores for a particular data set are relatively similar over the four classifiers when the
data is scaled using the Class-Specific scale. This type of scaling thus seems to reduce
the impact of classifier choice significantly.

Mean0Stdev1 scaling varies in effect considerably. It tends to produce improved
scores relative to raw data, but not to the same extent as the other two scaling methods.
In some cases (e.g. the housing data set) it impairs classifier performance. However for
certain data set/classifier combinations (e.g. the weather data set) it actually outperforms
the other scaling methods.

Churn10 is the only data set for which scaling has a limited effect. This set per-
forms poorly, with scores only a little better than what a random classification would
produce. As described previously, the churn10 data set contains the 10 least predictive
attributes from the churn31 data set. Thus it is not surprising that the scores are very
low.

6.2 Training Set Size Interactions

Figure 2 shows the effect of training set size increase (x-axis) on AUC (y-axis) for
eight different data sets, with the four different types of scaling: unscaled (dotted line),
Mean0Stdev1 (dot-dash line), PlusMinus1 (dashed line) and Class-Specific (unbroken
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Table 1. Impact of training set size on the standard error of the AUC averaged across all other
experimental conditions

Training Set Size 50 100 200 400 800 1600 3200 6400
Standard Error (×10−2) 5.9 4.2 3.6 2.8 2.7 2.1 1.9 1.5

line). The data shown has been averaged over all randomisations, all classifiers, and all
regularisation constant values. Again, the standard error is very low and as such error
bars are not shown. However, as shown in Table 1, the mean standard error over all
other experimental conditions (as calculated above) drops significantly as the size of
the training sample increases.

The trend across all data sets and all scales is for AUC to increase rapidly over the
first small increases of training set size (50 to 200 samples), then plateau as the training
set size increases further. Scaling seems to have a positive impact on this behaviour,
reducing the amount of training data required before the curve flattens out. In partic-
ular, the Class-Specific scale tends to decrease the training set size at which the curve
plateaus. As such, it is possible to get very good results with small sample sizes.

Raw data is often erratic, depending on the data set (e.g. churn10, churn31, digit,
forest and intrusion). However, in seven of the eight data sets, scaling smoothes the
curve out significantly. The greatest smoothing effect is seen with the Class-Specific
and PlusMinus1 scales. Mean0Stdev1 scaling tends to produce some smoothing effects,
but this is often not as pronounced as the other scaling methods (e.g. churn31, forest).

Note that increasing the training set size improves the classifier performance in two
key ways. Firstly, more information is available to the classifier, presenting it with a
sample that is more representative of the population. Secondly, as the training set size
increases, more information becomes available to calculate the scaling statistics. As
such, they become progressively closer to the the population statistics. This improves
the quality of the scaling method, and thus the classifier performance.

6.3 Effect of Regularisation Constant Values

Figure 3 shows the effect of changing the regularisation constant (c) (x-axis) on AUC
(y-axis) for different scaling methods, data sets and classifiers. Each group of twelve
graphs corresponds to a data set. The three columns correspond to the different regular-
isation machines: L1 (SVML1), L2 (SVML2) and RR (ridge regression). The four rows
show the four different scaling types: unscaled (Raw), Mean0Stdev1 (M0S1), PlusMi-
nus1 (PM1) and Class-Specific (C-S). Data has been averaged over all training set sizes,
and error bars have not been shown as the error is very small.

As we would expect, the trend across all variables is that scores improve as c in-
creases. However, there is significant interaction between the classifier used and the
impact of changing c on the performance. For SVML1, scores are often impaired by
increasing the regularisation constant, particularly when the data has been preprocessed
using the Mean0Stdev1 and PlusMinus1 scaling methods. This is in contrast to SVML2
and RR, which consistently show either improvement or no change as c is increased,
across all scaling methods.
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Fig. 3. Effect of regularisation constant (c) for different scaling methods, data sets and classifiers.
Results presented are AUCs averaged over all training set sizes and correspond to three machines:
L1 (SVML1), L2 (SVML2) and RR (ridge regression) and four scaling methods: unscaled (Raw),
Mean0Stdev1 (M0S1), PlusMinus1 (PM1) and Class-Specific (C-S)

There is no clear trend in the interaction between different scaling methods and
regularisation constant values. Ideally, the results suggest tuning for the regularisation
constant value that gives the best results for a particular data set, classifier and scal-
ing method. However, this requires an investment of time and resources, which is not
always possible. We see that there is no evidence that an increase in AUC is likely
to result from an increase in c, particularly if the data is scaled. As such, and given
that an increase in regularisation constant value correlates to a significant increase in
computational resources required, low values of c are recommended in the general
case.

7 Discussion and Recommendations

Table 2 shows the overall performance of each form of scaling. The mean AUC and
standard error over all experimental conditions is shown in rows 2 and 3 respectively.
The last row shows the percentage of times a scaling method provides the best AUC.
Notably, all methods of scaling significantly improve the mean score and decrease the
mean standard error. Further, scaled data produces the best results in 93.78% of cases. It
is clear that simple attribute scaling greatly improves the performance of linear binary
classifiers. In particular, the Class-Specific scale tends to be the best choice of scale.
It produces the best results in half the experimental conditions, and substantially re-
duces the effect of experimental vaiable (such a training set size), and thus the standard
error.
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Table 2. Performance of the three scaling methods, averaged across all experimental conditions

Scaling Method Unscaled Mean0Stdev1 PlusMinus1 Class-Specific
Mean AUC % 65.05 69.49 74.30 76.63

Standard Error (×10−2) 4.1 2.2 1.6 1.4
Best Method (%) 6.22 18.14 25.65 49.99

7.1 Statistical Significance

To test for the statistical significance of these results, paired one-tailed Student’s t-tests
were used to compare the classification performance of data with and without scaling.
All observations were divided into four sets (SR, SM , SP and SC) based on the form of
scaling that the data was preprocessed with (raw, Mean0Stdev1, PlusMinus1 and Class-
Specific respectively). The observations in any two of these sets were paired based on
the value of the settings of the other experimental variables (data set, classifier, training
set size, regularisation constant value and randomisation).

Three null hypotheses were tested for, HM
0 : µR ≥ µM , HP

O : µR ≥ µP and HC
0 : µR ≥ µC,

where µR, µM , µP and µC are the means of SR, SM , SP and SC respectively. At the signif-
icance level α = 0.001, all three hypotheses were rejected in favour of the alternative
hypotheses, HM

1 : µR < µM , HP
1 : µR < µP and HC

1 : µR < µC. Thus we can say that,
at the 0.1% confidence level, all forms of scaling improve the classification perfor-
mance.

Further, the extent of the percentage improvement from raw data given by scaling
was tested, again using a one tailed Student’s t-test with α = 0.001. The null hypotheses
tested were HM

0 : 8 ≥ 100(µM−µR)
µR

, HP
O : 15 ≥ 100(µP−µR)

µR
and HC

0 : 18 ≥ 100(µC−µR)
µR

. Again,
these hypotheses were rejected, and thus we can be confident that on average, and at
the 0.1% significance level, the three scaling methods, Mean0Stdev1, PlusMinus1 and
Class-Specific, improve the classification performance at baseline by 8%, 15% and 18%
respectively.

7.2 Recommendations

Based on these results, we can put forward several recommendations, as follows. Scal-
ing should generally be used to improve the performance of linear binary classifiers.
Ideally, an initial test run should be performed to determine the optimum scaling method,
however if this is not possible, the Class-Specific scaling method should be used.

If only limited resources are available and it is acceptable to achieve classifications
that are suboptimal, the centroid classifier with Class-Specific scaling should be used.

If there is only limited training data available (less than 400 samples), the Class-
Specific scaling method will typically give the best results.

If the data is scaled, it is generally unnecessary to use large values for the reg-
ularisation constant. This will again reduce the computational resources needed for
the training task. However, note that if resources permit, small improvements in score
can be gained by tuning the value of c to the particular classifier, data set and scaling
method.
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If the feature space is large, the value of the transformation factor for the Class-
Specific scale can be used as a way to choose which features can be discarded. This can
further reduce the resources needed for the training.

8 Conclusions and Future Work

We have shown that simple attribute scaling can significantly improve the performance
of linear binary classifiers. Furthermore, a particular scaling method, introduced here
as the Class-Specific scale, is the best choice of scales to use across all experimental
conditions.

Given the extent of the improvements shown here, it would be useful to investigate
the effect of attribute scaling on the performance of SVMs with different kernels. Other
scaling methods, particularly those that utilise information about the class distribution
of each attribute, would also be worth studying further.
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