
 G.I. Webb and Xinghuo Yu (Eds.): AI 2004, LNAI 3339, pp. 475–487, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Mining Maximal Frequent ItemSets
Using Combined FP-Tree

Yuejin Yan†, Zhoujun Li, Tao Wang, Yuexin Chen, and Huowang Chen

School of Computer Science, National University of Defense Technology,
Changsha 410073, China

† Corresponding author: Phn 86-731-4532956
yanyuejin2003@hotmail.com
http://www.nudt.edu.cn

Abstract. Maximal frequent itemsets mining is one of the most fundamental
problems in data mining. In this paper, we present CfpMfi, a new depth-first
search algorithm based on CFP-tree for mining MFI. Based on the new data
structure CFP-tree, which is a combination of FP-tree and MFI-tree, CfpMfi
takes a variety pruning techniques and a novel item ordering policy to reduce
the search space efficiently. Experimental comparison with previous work re-
veals that, on dense datasets, CfpMfi prunes the search space efficiently and is
better than other MFI Mining algorithms on dense datasets, and uses less main
memory than similar algorithm.

1 Introduction

Since the frequent itemsets mining problem (FIM) was first addressed [1], frequent
itemsets mining in large database has become an important problem. And the number
of frequent itemsets increases exponentially with the increasing of frequent itemsets’
length. So the large length of frequent itemset leads to no feasible of FI mining. Fur-
thermore, since frequent itemsets are upward closed, it is sufficient to discover only
all maximal frequent itemsets. As a result, researchers now turn to find MFI (maximal
frequent itemsets) [4,5,6,7,9,10,13]. A frequent itemset is called maximal if it has no
frequent superset. Given a set of MFI, it is easy to analyze some interesting properties
of the database, such as the longest pattern, the overlap of the MFI, etc. There are also
applications where the MFI is adequate, for example, the combinatorial pattern dis-
covery in biological applications [3].

This paper introduces a new algorithm for mining MFI. We use a novel combined
FP-tree in the process of mining, where the right represents sub database containing
all relevant frequency information, and the left stores information of discovered MFI
that is useful for superset frequency pruning. Based on the combined FP-tree, our
algorithm takes a novel item ordering policy, and integrates a variety of old and new
prune strategies. It also uses a simple but fast superset checking method along with
some other optimizations.

476 Y. Yan et al.

The organization of the paper is as follows: Section 2 describes the basic concepts
and the pruning techniques for mining MFI. Section 3 gives the MFI mining algo-
rithm, CfpMfi, which does the MFI mining based on the combined FP-tree. In section
4, we compare our algorithm with some previous ones. Finally, in section 5, we draw
the conclusions.

2 Preliminaries and Related Works

This section will formally describe the MFI mining problem and the set enumeration
tree that represents the search space. Also the related works will be introduced in this
section.

2.1 Problem Statement

The problem of mining maximal frequent itemsets is formally stated by definitions 1-
4 and lemmas 1-2.

Let I = {i1, i2,…, im}be a set of m distinct items. Let D denote a database of trans-
actions, where each transaction contains a set of items.

Definition 1:(Itemset)
A set X⊆ I is called an itemset. An itemset with k items is called a k-itemset.

Definition 2:(Itemset’s Support)
The support of an itemset X, denoted as δ(X), is defined as the number of transactions
in which X occurs as a subset.

Definition 3:(Frequent Itemset)
For a given D, Let ξ be the threshold minimum support value specified by user. If
δ(X)≥ ξ, itemset X is called a frequent itemset.

Definition 4:(Maximal Frequent Itemset)
If δ(X)≥ ξ and for any Y⊇X, we have δ(Y)<ξ, then X is called a maximal frequent
itemset.

According to definitions 3-4, the following lemmas hold.

Lemma 1: A proper subset of any frequent itemset is not a maximal frequent itemset.

Lemma 2: A subset of any frequent itemset is a frequent itemset, a superset of any
infrequent itemset is not a frequent itemset.

Given a transactional database D, supposed I is an itemset of it, then any combina-
tion of the items in I would be frequent and all these combinations compose the
search space, which can be represented by a set enumeration tree [5]. The root of the
tree represents the empty itemset, and the nodes at level k contain all of the k-
itemsets. The itemset associated with each node, n, will be referred as the node’s head
(n). A complete set enumeration tree of {a,b,c,d,e,f} in given order of a,b,c,d,e is
shown in figure 1.

Mining Maximal Frequent ItemSets Using Combined FP-Tree 477

The possible extensions of the itemset is denoted as ctail(n), which is a set of
items after the last item of head(n). The frequent extensions denoted as ftail(n) is a set
of items that can be appended to head(n) to build the longer frequent itemsets. In
depth-first traversal of the tree, ftail(n) contains just the frequent extensions of n. The
itemset associated with each children node of node n is set up by appending one of
ftail(n) to head (n). If a children node of n is formed by appending item i to head(n),
the children node is called a child of n at i.

Fig. 1. A Complete Set Enumeration tree of {a,b,c,d,e,f}

The process of mining is a searching process of the enumeration tree, and it is im-
portant to prune the tree efficiently while searching. According to the lemmas 1-2, we
introduce theorem 1-3 on pruning.

Theorem 1:(Subset Infrequency Pruning)
If head(n) ∪ {i} is infrequent(i∈ctail(n)), the node that is the child of n at i can be
pruned from the enumeration tree.

Theorem 2:(Superset Frequency Pruning)
If head(n) ∪ ftail(n) is frequent, all the children nodes of n can be pruned from the
enumeration tree, and so do all the offspring nodes of n.

Superset frequency pruning is also called looksahead pruning in MaxMiner. Here
we called it looksahead pruning with frequent extensions. If head(n) ∪ ctail(n) is
frequent, there is a looksahead pruning with candidate extensions.

Theorem 3:(PEP)
If δ(head(n)∪ {i})=δ(head(n)), the node that is the child of n at i can be pruned from
the enumeration tree.

Proof: As each transaction contains head(n) will also contain item i, we can say that
any frequent itemset Z containing head(n) but not i, has the frequent superset Z∪ {i},
and i can be moved from ftail(n) to head(n). PEP (Parent Equivalence Pruning) can
also be seen as that the children node of n at i is been composed into n and does not
need to been searched any more.

478 Y. Yan et al.

2.2 Related Work

Based on the set enumeration tree, we can describe the most recent approaches to
MFI mining problem.

The MaxMiner [5] employs a breadth-first traversal policy for the searching. To
reduce the search space, it introduced a new pruning technique named as lookaheads
pruning. To increase the effectiveness of lookaheads pruning, MaxMiner dynamically
reorders the children nodes, which was used in most of the MFI algorithms after that
[4,6,7,9,10].

Mafia [7] is a depth-first algorithm. It uses a vector bitmap representation as in
[6], where the count of an itemset is based on the column in the bitmap. All the three
pruning methods mentioned in section 2.1 are used in Mafia.

Both MaxMiner and Mafia mine a superset of the MFIs, and require a post-
pruning to eliminate non-maximal frequent itemsets. GenMax [9] integrates the prun-
ing with mining to finds the exact MFIs by using two strategies. First, just like that
transaction database is projected on current node, the discovered MFI set can also be
projected on the node and thus yields fast superset checking; Second, GenMax uses
Diffset propagation to do fast support computation.

AFOPT [3] uses a data structure called AFOPT tree in which items are ascending
frequency ordered to store the transactions in conditional databases with top-town
tree traversal strategy. It employs MFI projection generated by pseudo projection
technique to test whether a frequent itemset is a subset of one of the discovered
MFIs.FPMax* is an extension of the FP-growth method, for MFIs mining only. It
uses a FP-tree to store the transaction projection of the original database for each
node in the tree. In order to test whether a frequent itemset is the subset of any dis-
covered MFI in lookaheads pruning, another tree structure, named MFI-tree, is util-
ized to keep the track of all discovered MFI, which makes effective superset check-
ing. FPMax* uses an array for each node to store the counts of all 2-itemsets that is a
subset of the frequent extensions itemset, this makes the algorithm scan each FP-tree
only once for each recursive call emanating from it. The experiment results in
FIMI’03 [10] shows that FPMax* has the best performance then for almost all the
tested database. FIMfi [13] is also an algorithm base on FP-tree and MFI-tree, and it
employs a new item ordering policy and a new method to do superset checking to
improve performance.

3 Mining Maximal Frequent Itemsets by CfpMfi

In this section, we discuss algorithm CfpMfi in details.

3.1 Combined FP-Tree

For each node to be searched in the enumeration tree, CfpMfi builds a CFP-tree
(combined FP-tree) that is a combination of FP-tree and MFI-tree. The right of the
CFP-tree is a FP-tree that stores all relevant frequency information in database and
the left of the CFP-tree is a MFI-tree which is used to keep the track of discovered

Mining Maximal Frequent ItemSets Using Combined FP-Tree 479

MFIs for current node. And in the left of the CFP-tree, there is not the field level for
each node as in MFI-tree of FPMax*. There is also a header for each CFP-tree, and
each head entry of CFP-tree has five fields: item-name, right-node-link, left-node-link,
maximal-level and maximal-type. Fields maximal-level and maximal-type are used for
subset testing and what they record is defined by definition 5. For an item i in header,
we can define the maximal subset of i in CFP-tree as follows.

Definition 5: (i’s Maximal Subset in CFP-Tree)
Let S1 be the itemset represented by the maximal conditional pattern base of i in the
left of CFP-tree, for all the conditional pattern bases of i in which the last item’s count
is more than the threshold ξ in the right of the CFP-tree, and let S2 be the itemset rep-
resented by the maximal base. If | S2|>| S1|, S2 is called the right maximal subset of i in
CFP-tree, otherwise S1 is called the left maximal subset of i in CFP-tree.

The field maximal-level at each header entry represents the items’ number in S1 or
S2, and the field maximal-type records the type of the maximal subset of the item in
CFP-tree. Figure 2 shows an example of CFP-tree of root when considering extending
to the child node {e} of root. In the header of the tree, the “T” means the correspond-
ing item that has one left maximal subset, and the “F” means the corresponding item
has one right maximal subset.

Fig. 2. Example of CFP-tree

According to definition 5, the theorem is given as follows.

Theorem 4:
For a node n, let i be the last item in head(n) and S be its maximal subset in n’s CFP-
tree, then head(n)∪ S is frequent. Furthermore, if S is the right maximal subset of i in
the CFP-tree, head(n)∪ S is a new maximal frequent itemset.

The building process of the CFP-tree of node n in search space is as follows: (1)
The header is built after having found all the items that is frequent after combined
with head(n). (2) The right part of the CFP-tree associated with the parent node of n
is scanned once, the items that do not occur in the header are removed from each
conditional pattern base, then the base is inserted into the right of current CFP-tree
after being reordered according the order of the header, the extra work needed to be
done in the insertion is that the two maximal fields in header entries of the items in

480 Y. Yan et al.

the base will be updated after the insertion. (3) Building of the left of CFP-tree is
similar to the building of the right in the second step. The first step and the second
step are described in procedure 1, and the third step is shown in procedure 2. Figure
3(a) gives the examples of the building of CFP-tree.

Procedure 1: RightBuild
Input : n : current node
 i : the item needed to be extended currently
 fretail: the frequent extensions itemset for the child of n at i

pepset: a null itemset to store PEP items
Output : the new CFP-tree with initialized header and left

(1) Sort the items in fretail in the increasing order of support
(2) pepset = {i | δ(head(n)∪{i}) = δ(head(n)) and i is a frequent extension of

head(n)}
(3) Build a head entry for each item in fretail but not in pepset for the new CFP-tree
(4) For each itemset s according to a conditional pattern base of i in the right of

n.cfptree
(5) Delete the items in s but not in fretail
(6) Sort the remaining items in s according to the order of fretail
(7) Insert the sorted itemset into the right of the new CFP-tree
(8) Return the new CFP-tree

Procedure 2: LeftBuild
Input : n : current node
 i : the item needed to be extended currently
 n’: the child of n at i
Output: the CFP-tree with the left initialized

(1) For each itemset s according to a conditional pattern base of i in the left of
n.cfptree

(2) Delete the items in s but not in n’.cfptree.header
(3) Sort the remaining items in s according to the order of n’.cfptree.header
(4) Insert the sorted itemsets into the left of n’.cfptree
(5) Return n’.cfptree

Fig. 3. Examples of constructing CFP-tree

If a new MFI is found, it is used to update the CFP-trees’ left of each node within
the path from root to current node in search space tree. For example, after considering

Mining Maximal Frequent ItemSets Using Combined FP-Tree 481

the node {f}, {f,d,c,a}-{f} is inserted to the left of CFP-trees of root, and after consid-
ering the node {d}, {d,b}-{d} is inserted to the left of CFP-trees of root, the left of
root’s CFP-tree is null when it is initialized, after the two insertion, the CFP-tree is
shown as in Figure 2.

3.2 CfpMfi

The pseudo-code of CfpMfi is shown in Figure 6. In each call procedure, each newly
found MFI maybe be used in superset checking for ancestor nodes of the current
node, so we use a global parameter called cfpTreeArray to access the Cfp-trees of
ancestor nodes. And when the top call (CfpMfi(root,φ)) is over, all the MFIs to be
mined are stored in the left of root’s Cfp-tree in the search space tree.

Lines (4), (9) and (20) are the simple superset checking that will be described in
detail in section 3.3. When x is the end item of the header, there is no need to do the
checking, for the checking has already been done by the procedure calling current one
in line (9) and/or line (20). Lines from (7) to (8) use the optimization array technique
introduced in section 3.5. The PEP technique is used by call procedure rightbuild in
line (18). Lines (5)-(6) and lines (21)-(24) are two lookaheads prunings with candi-
date extensions. The lookaheads pruning with frequent extensions is done in lines
from (14) to (20). When the condition in lines (11), (15) and (22) is true, all the chil-
dren nodes of n’ are pruned and ftail(n’) or ctail(n’) need not to be inserted into the
left of n.CFP-tree any more. The novel item ordering policy will be introduced in
section 3.4 and is used in procedure 1 in line (1). Line (18) builds the header and the
right of n’.CFP-tree. The return statements in line (5), (6), (12), (16) and (23) mean
that all the children nodes after n’ of n are pruned there. And the continue statements
in line (13), (17) and (24) tell us that node n’ will be pruned, then we can go to con-
sider the next child of n. The left of n’.CFP-tree is built by call procedure leftbuild in
line (25). After the constructing of the whole n’.CFP-tree and the updating of
cfpTreeArray, CfpMfi will be called recursively with the new node n’ and the new
cfpTreeArray.

Note CfpMfi doesn’t employ single path trimming used in FPMax* and AFOPT.
If, by having constructed the right of n’.CFP-tree, we find out that the right of
n’.CFP-tree has a single path, the superset checking in line (20) will return true, there
will be a lookaheads pruning instead of a single path trimming.

Procedure: CfpMfi
Input:

n: a node in search space tree ;
cfpTreeArray: CFp-trees of all ancestor nodes of n in the path of search space tree
from root to n.

(1)For each item x from end to beginning in header of n.CFP-tree
(2) h'=h ∪{x} //h' identifies n'
(3) if x is not the end item of the header
(4) if | ctail(n') | == n.CFP-tree.header.x.maximal-level
(5) if n.CFP-tree.header.x.maximal-type == “T” return
(6) else insert h'∪ ctail(n') into cfpTreeArray return

482 Y. Yan et al.

(7) if n.array is null count ftail(n') using the n.array
(8) else count ftail(n') by a scan of the right of n.CFP_tree
(9) if | ftail(n') | == n.CFP-tree.header.x.maximal-level
(10) if n.CFP-tree.header.x.maximal-type == “T”
(11) if the number of items before x in the n.CFP-tree.header is | ftail(n')|
(12) return
(13) else continue
(14) insert h'∪ ftail(n') into cfpTreeArray
(15) if the number of items before x in the n.CFP-tree.header is | ftail(n')|
(16) return
(17) else insert ftail(n') into n.CFP-tree continue
(18) pepset =φ; n'.CFP-tree = rightbuild(n,x, ftail(n'),pepset)
(19) h' = h'∪ pepset
(20) if | n'.header | == n'.CFP-tree.header.lastitem.maximal-level
(21) insert h' ∪ ftail(n') into cfpTreeArray
(22) if the number of items before x in the n.CFP-tree.header is | ftail(n')|
(23) return
(24) else insert ftail(n') into n.CFP-tree continue
(25) n'.CFP-tree = leftbuild(n, n',x)
(26) cfpTreeArray = cfpTreeArray ∪ {n.CFP-tree}
(27) call CfpMfi(n' , cfpTreeArray)

3.3 Implementation of Superset Checking

According to Theorem 2, if head(n) ∪ ftail(n) or head(n) ∪ ctail(n) is frequent, there
will be a lookaheads pruning, There are two existing methods for determining
whether the itemset head(n)∪ ftail(n) or head(n) ∪ ctail(n) is frequent. The first one
is to count the support of head(n)∪ ftail(n) directly, and this method is normally used
in an bread-first algorithms such as in MaxMiner. The second one is to check whether
a superset of head(n)∪ ftail(n) has already been in the discovered MFIs, which is
used by the depth-first MFI algorithms commonly [4,7,9,10]. When implementing the
superset checking, GenMax uses LMFI to store all the relevant MFIs, and the map-
ping item by item for ftail(n) in the LMFI is needed; In MFI-tree, FPMax* needs only
map ftail(n) item by item in all conditional pattern bases of head(n). The simple but
fast superset checking for head(n)∪ ctail(n) or head(n)∪ ftail(n) is firstly introduced
in [13]. In CfpMfi, the implementation of superset checking is based on the theorems
as follows:

Theorem 5: Let n' be the child of n at i, if the size of i’s maximal subset in CFP-tree
of n is equal to the size of ftail(n') or ctail(n'), then head(n')∪ftail(n') or
head(n') ∪ ctail(n') is frequent.

Proof: Let S be i’s maximal subset in CFP-tree of n. (1): If S is in the left of the CFP-
tree, head(n') ∪ S is an subset of some discovered MFIs, then head(n)∪ S is fre-
quent; According to theorem 4, when S is in the right of the CFP-tree, head(n)∪ S is
frequent too. (2): According to the definition of frq_tail and ctail, we have ftail(n') =

Mining Maximal Frequent ItemSets Using Combined FP-Tree 483

{x| x is a item that is bigger than i in header of n’ CFP-tree and head(n') ∪ {x} is
frquent} and ftail(n')⊆ ctail(n'), then S ⊆ ftail(n')⊆ ctail(n'). According to (1) and
(2), when the assumption in theorem 5 is right, S = ftail(n') or S = ctail(n') can be
hold. Hence, we obtain the theorem.

According to theorem 5, in Cfp-tree, the field maximal-level of each header entry
records the size of the maximal subset, so the superset checking becomes very simple
and only needs to check the field with the size of ftail(n') or ctail(n'). Note that super-
set checking is a frequent operation in the process of mining MFIs. It is because that
each new MFI needs to be checked before being added into the discovered MFIs.
Then the implementation of superset checking can improve the performance of loo-
kaheads pruning efficiently. Furthermore, when the superset checking returns true
and the maximal subset is in the right of CFP-tree, it is no need to construct the CFP-
trees of n' and n'’ offspring nodes, there is a lookaheads pruning, but the itemset
head(n') ∪ ftail(n') or head(n') ∪ ctail(n') is a new MFI, and, as described in proce-
dure 3 in lines (6),(14),(17),(21) and (24), it is used to update the relevant CFP-trees.

3.4 Item Ordering Policy

Item ordering policy appears firstly in [5], and is used by almost all the following
MFI algorithms for it can increase the effectiveness of superset frequency pruning. In
general, this type of item ordering policy works better in lookaheads by scanning the
database to count the support of head(n)∪ ftail(n) in breath-first algorithms, such as
in MaxMiner. All the recently proposed depth-first algorithms do the superset check-
ing instead to implement the lookaheads pruning, for the counting support of
head(n)∪ ftail(n) costs high in depth-first policy.

FIMfi tries to find a maximal subset of ftail(n), then let the subset in ftail(n) ahead
when ordering to gain maximal pruning at a node in question. In CfpMfi, the maxi-
mal subset S in definition 5 is the exact subset, and it can be used for this purpose
without any extra cost. For example, when considering the node n identified by {e},
we know ftail (n)={a,c,b}, S={a,c}, then the sorted items in ftail(n) is in sequence of
a,c,b, the CFP-tree will be constructed as in figure 2(b), the old decreasing order of
supports is b,a,c, the CFP-tree will be constructed as in figure 2(a). In the old order
policy, the CFP-trees for nodes {e}, {e,a}, and {e,c} will have to be build, but
CFpMfi with the new order policy only need to build FP-trees for nodes {e} and
{e,b}. Furthermore, for the items in ftail(n)-S, we also sort them in the decreasing
order of sup(head(n)∪ {x}) (x∈ ftail(n)-S).

4 Experimental Evaluations

In the first Workshop on Frequent Itemset Mining Implementations (FIMI'03) [11],
which took place at ICDM’03, there are several algorithms presented recently, which
are good for mining MFI, such as FPMax*, AFOPT, Mafia and etc, and FIMfi is a
newly presented algorithm in ER 2004 [14], we now present the performance com-
parisons between CfpMfi and them. All the experiments are conducted on 2.4 GHZ
Pentium IV with 1024 MB of DDR memory running Microsoft Windows 2000 Pro-

484 Y. Yan et al.

fessional. The codes of other three algorithms were downloaded from [12] and all
codes of the four algorithms were complied using Microsoft Visual C++ 6.0. Due to
the lack of space, only the results for four real dense datasets are shown here. The
datasets we used are also selected from all the 11 real datasets of FIMI’03[12], they
are chess, Connect, Mushroom and Pumsb_star, and their data characteristics can be
found in [11].

4.1 The Pruning Performance of CfpMfi

CfpMfi adopts the new item ordering policy, along with the PEP and lookaheads
pruning with frequent extensions and candidate extensions, to prune the search space
tree. Since FPMax* is nearly the best MFI mining algorithm in FIMI’03 and employs
FP-tree and MFI-tree structures similar to CFP-tree, we select FPMax* as a bench-
mark algorithm to test the performance of CfpMfi in pruning. The comparison of the
number of CFP-tree’ rights built by CfpMfi and FP-trees created by FPMax* is
shown in figure 4, in which the number of CFP-tree’s rights in CfpMfi is less half of
that of FP-trees in FPMax* on all the four dense datasets at all supports. And figure 5
reveals the comparison of the number of CFP-tree’ lefts built by CfpMfi and MFI-
trees created by FPMax*. And in figure 5, the number of CFP-tree’s lefts in CfpMfi is
about 30% -70% of that of MFI-trees in FPMax* on all the four dense datasets at all
supports. Hence, it is not difficult to conclude from the two figures that by using the
new item ordering policy and the pruning techniques, CfpMfi makes the pruning
more efficient.

Fig. 4. Comparison of FP-trees’ Number

4.2 Performance Comparisons

Figure 6 gives the results of comparison among the five algorithms on the selected
dense datasets. For all supports on dense datasets Connect, Mushroom and
Pumsb_star, CfpMfi has the best performance. CfpMfi runs around 40% -60% faster

Mining Maximal Frequent ItemSets Using Combined FP-Tree 485

than FPMax* on all of the dense datasets. AFOPT is the slowest algorithm on Chess,
Mushroom and Pumsb_star and runs 2 to 10 times worse than CfpMfi on all of the

Fig. 5. Comparison of MFI-trees’ Number

datasets across all supports. Mafia is the slowest algorithm on Connect, it runs 2 to 5
times slower than CfpMfi on Mushroom and Connect across all supports. On
Pumsb_star, Mafia is outperformed by CfpMfi for all the supports though it outperforms
FPMax* at lower supports, and on chess CfpMfi outperforms Mafia for the supports no
less than 30% but Mafia outperforms FPMax* for the supports no less than 50%.
CfpMfi outperforms FIMfi slightly until the lower supports where they cross over. In
fact, with the lowest supports 10%, 2.5%, 0.025% and 1% for Chess, Connect, Mush-
room and Pumsb_star, CfpMfi is %3, %25, %15 and 30% better than FIMfi
respectively.

Fig. 6. Performance of Total Time

486 Y. Yan et al.

4.3 Maximal Main Memory Usage Comparisons

Figure 7 gives the results of maximal main memory used by the five algorithms on
the selected dense datasets. From the figure, we can see that CfpMfi uses main
memory more than FPMax* but less than FIMfi. The figure reveals that by using
the compact data structure, CFP-tree, CfpMfi saves more main memory than FIMfi
does.

Figure7(a) chess

0

100

200

300

020406080100
Minimum Support(%)

M
ax

im
al

 M
ai

n

M
e
m
o
r
y
(
M
)

FPMax*

Mafia

AFOPT

CfpMfi

FIMfi

Fi gur e7(b) connect

0
20
40
60
80

050
Minimum Support(%)

M
ax

im
al

 M
ai

n
M

em
or

y(
M

)

FPMax*

Mafia

AFOPT

CfpMfi

FIMfi

Figure7(c) mushroom

0

3

6

9

12

0.010.1110
Minimum Support(%)

M
ax

im
al

 M
ai

n
M

em
or

y(
M

)

FPMax*

Mafia

AFOPT

CfpMfi

FIMfi

Figure7(d) pumsb_star

0

100

200

300

400

01020304050
Minimum Support(%)

M
ax

im
al

 M
ai

n
M

em
or

y(
M

)

FPMax*

Mafia

AFOPT

CfpMfi

FIMfi

Fig. 7. Performance of Maximal Main Memory Usage

5 Conclusions

We presented CfpMfi, an algorithm for finding maximal frequent itemsets. Our ex-
perimental result demonstrates that, on dense datasets, FpMfi is more optimized for
mining MFI and outperforms FPMax* by 40% averagely, and for lower supports it is
about 10% better than FIMfi. The pruning performance and running time perform-
ance comparisons verify the efficiency of the novel ordering policy and the new
method for superset checking that presented in [13], and the study of maximal main
memory used indicates the compactness of CFP-tree structure. Thus it can be con-
cluded that the new tree data structure, CFP-tree, along with the new ordering policy
and some pruning techniques are well integrated into CfiMfi.

Acknowledgements

We would like to thank Guimei Liu for providing the code of AFOPT and Doug Bur-
dick for providing the website of downloading the code of Mafia.

Mining Maximal Frequent ItemSets Using Combined FP-Tree 487

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proceedings
of the 20th VLDB Conference, Santiago, Chile, 1994.

[2] J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation, Proc.
2000 ACM-SIGMOD Int. Conf. on Management of Data (SIGMOD'00), Dallas, TX,
May 2000.

[3] L. Rigoutsos and A. Floratos: Combinatorial pattern discovery in biological sequences:
The Teiresias algorithm.Bioinformatics 14, 1 (1998), 55-67.

[4] Guimei Liu, Hongjun Lu, Jeffrey Xu Yu, Wei Wang and Xiangye Xiao. AFOPT: An
Efficient Implementation of Pattern Growth Approach. In Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations, Melbourne, Florida,
USA, November 19, 2003.

[5] Roberto Bayardo. Efficiently mining long patterns from databases. In ACM SIGMOD
Conference, 1998.

[6] R. Agarwal, C. Aggarwal and V. Prasad. A tree projection algorithm for generation of
frequent itemsets. Journal of Parallel and Distributed Computing, 2001.

[7] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA: A Performance Study of Mining
Maximal Frequent Itemsets. In Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations Melbourne, Florida, USA, November 19, 2003.

[8] M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algorithm for closed association rule
mining. TR 99-10, CS Dept., RPI, Oct. 1999.

[9] K. Gouda and M. J. Zaki. Efficiently Mining Maximal Frequent Itemsets. Proc. of the
IEEE Int. Conference on Data Mining, San Jose, 2001.

[10] Gösta Grahne and Jianfei Zhu. Efficiently Using Prefix-trees in Mining Frequent Item-
sets. In Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Imple-
mentations, Melbourne, Florida, USA, November 19, 2003.

[11] Bart Goethals and M. J. Zaki. FIMI'03: Workshop on Frequent Itemset Mining Imple-
mentations. In Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining
Implementations, Melbourne, Florida, USA, November 19, 2003.

[12] Codes and datasets available at :http://fimi.cs.helsinki.fi/.
[13] Yuejin Yan, Zhoujunli and Huowang Chen. Fast Mining Maximal Frequent ItemSets

Based on Fp-tree. In Proceedings of the 23rd International Conference on Conceptual
Modeling (ER2004), ShangHai, China, November 8, 2004. (Accepted)

[14] ER 2004: http://www.cs.fudan.edu.cn/er2004/.

	Introduction
	Preliminaries and Related Works
	Problem Statement
	Related Work

	Mining Maximal Frequent Itemsets by CfpMfi
	Combined FP-Tree
	CfpMfi
	Implementation of Superset Checking
	Item Ordering Policy

	Experimental Evaluations
	The Pruning Performance of CfpMfi
	Performance Comparisons
	Maximal Main Memory Usage Comparisons
	Conclusions

	Acknowledgements
	References

