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Abstract. Maximal frequent itemsets mining is one of the most fundamental 
problems in data mining. In this paper, we present CfpMfi, a new depth-first 
search algorithm based on CFP-tree for mining MFI. Based on the new data 
structure CFP-tree, which is a combination of FP-tree and MFI-tree, CfpMfi 
takes a variety pruning techniques and a novel item ordering policy to reduce 
the search space efficiently. Experimental comparison with previous work re-
veals that, on dense datasets, CfpMfi prunes the search space efficiently and is 
better than other MFI Mining algorithms on dense datasets, and uses less main 
memory than similar algorithm. 

1   Introduction 

Since the frequent itemsets mining problem (FIM) was first addressed [1], frequent 
itemsets mining in large database has become an important problem. And the number 
of frequent itemsets increases exponentially with the increasing of frequent itemsets’ 
length. So the large length of frequent itemset leads to no feasible of FI mining. Fur-
thermore, since frequent itemsets are upward closed, it is sufficient to discover only 
all maximal frequent itemsets. As a result, researchers now turn to find MFI (maximal 
frequent itemsets) [4,5,6,7,9,10,13]. A frequent itemset is called maximal if it has no 
frequent superset. Given a set of MFI, it is easy to analyze some interesting properties 
of the database, such as the longest pattern, the overlap of the MFI, etc. There are also 
applications where the MFI is adequate, for example, the combinatorial pattern dis-
covery in biological applications [3].  

This paper introduces a new algorithm for mining MFI. We use a novel combined 
FP-tree in the process of mining, where the right represents sub database containing 
all relevant frequency information, and the left stores information of discovered MFI 
that is useful for superset frequency pruning. Based on the combined FP-tree, our 
algorithm takes a novel item ordering policy, and integrates a variety of old and new 
prune strategies. It also uses a simple but fast superset checking method along with 
some other optimizations.  
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The organization of the paper is as follows: Section 2 describes the basic concepts 
and the pruning techniques for mining MFI. Section 3 gives the MFI mining algo-
rithm, CfpMfi, which does the MFI mining based on the combined FP-tree. In section 
4, we compare our algorithm with some previous ones. Finally, in section 5, we draw 
the conclusions. 

2   Preliminaries and Related Works 

This section will formally describe the MFI mining problem and the set enumeration 
tree that represents the search space. Also the related works will be introduced in this 
section. 

2.1   Problem Statement 

The problem of mining maximal frequent itemsets is formally stated by definitions 1-
4 and lemmas 1-2. 

Let I = {i1, i2,…, im}be a set of m distinct items. Let D denote a database of trans-
actions, where each transaction contains a set of items.  

Definition 1:(Itemset) 
A set X⊆ I is called an itemset. An itemset with k items is called a k-itemset. 

Definition 2:(Itemset’s Support) 
The support of an itemset X, denoted as δ(X), is defined as the number of transactions 
in which X occurs as a subset. 

Definition 3:(Frequent Itemset) 
For a given D, Let ξ be the threshold minimum support value specified by user. If 
δ(X)≥  ξ, itemset X is called a frequent itemset. 

Definition 4:(Maximal Frequent Itemset) 
If δ(X)≥  ξ and for any Y⊇X, we have δ(Y)<ξ, then X is called a maximal frequent 
itemset.  

According to definitions 3-4, the following lemmas hold. 

Lemma 1: A proper subset of any frequent itemset is not a maximal frequent itemset. 

Lemma 2: A subset of any frequent itemset is a frequent itemset, a superset of any 
infrequent itemset is not a frequent itemset. 

Given a transactional database D, supposed I is an itemset of it, then any combina-
tion of the items in I would be frequent and all these combinations compose the 
search space, which can be represented by a set enumeration tree [5]. The root of the 
tree represents the empty itemset, and the nodes at level k contain all of the k-
itemsets. The itemset associated with each node, n, will be referred as the node’s head 
(n). A complete set enumeration tree of {a,b,c,d,e,f} in given order of a,b,c,d,e is 
shown in figure 1. 
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The possible extensions of the itemset is denoted as ctail(n), which is a set of 
items after the last item of head(n). The frequent extensions denoted as ftail(n) is a set 
of items that can be appended to head(n) to build the longer frequent itemsets. In 
depth-first traversal of the tree, ftail(n) contains just the frequent extensions of n. The 
itemset associated with each children node of node n is set up by appending one of 
ftail(n) to head (n). If a children node of n is formed by appending item i to head(n), 
the children node is called a child of n at i.  

 

Fig. 1. A Complete Set Enumeration tree of {a,b,c,d,e,f} 

The process of mining is a searching process of the enumeration tree, and it is im-
portant to prune the tree efficiently while searching. According to the lemmas 1-2, we 
introduce theorem 1-3 on pruning. 

Theorem 1:(Subset Infrequency Pruning) 
If head(n) ∪ {i} is infrequent(i∈ctail(n)), the node that is the child of n at i can be 
pruned from the enumeration tree. 

Theorem 2:(Superset Frequency Pruning) 
If head(n) ∪ ftail(n) is frequent, all the children nodes of n can be pruned from the 
enumeration tree, and so do all the offspring nodes of n. 

Superset frequency pruning is also called looksahead pruning in MaxMiner. Here 
we called it looksahead pruning with frequent extensions. If head(n) ∪ ctail(n) is 
frequent, there is a looksahead pruning with candidate extensions. 

Theorem 3:(PEP) 
If δ(head(n)∪ {i})=δ(head(n)), the node that is the child of n at i can be pruned from 
the enumeration tree.  

Proof: As each transaction contains head(n) will  also contain item i, we can say that  
any frequent itemset Z containing head(n) but not i, has the frequent superset Z∪ {i}, 
and i can be moved from ftail(n) to head(n). PEP (Parent Equivalence Pruning) can 
also be seen as that the children node of n at i is been composed into n and does not 
need to been searched any more. 
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2.2   Related Work 

Based on the set enumeration tree, we can describe the most recent approaches to 
MFI mining problem. 

The MaxMiner [5] employs a breadth-first traversal policy for the searching. To 
reduce the search space, it introduced a new pruning technique named as lookaheads 
pruning. To increase the effectiveness of lookaheads pruning, MaxMiner dynamically 
reorders the children nodes, which was used in most of the MFI algorithms after that 
[4,6,7,9,10].  

Mafia [7] is a depth-first algorithm. It uses a vector bitmap representation as in 
[6], where the count of an itemset is based on the column in the bitmap. All the three 
pruning methods mentioned in section 2.1 are used in Mafia.  

Both MaxMiner and Mafia mine a superset of the MFIs, and require a post-
pruning to eliminate non-maximal frequent itemsets. GenMax [9] integrates the prun-
ing with mining to finds the exact MFIs by using two strategies. First, just like that 
transaction database is projected on current node, the discovered MFI set can also be 
projected on the node and thus yields fast superset checking; Second, GenMax uses 
Diffset propagation to do fast support computation.  

AFOPT [3] uses a data structure called AFOPT tree in which items are ascending 
frequency ordered to store the transactions in conditional databases with top-town 
tree traversal strategy. It employs MFI projection generated by pseudo projection 
technique to test whether a frequent itemset is a subset of one of the discovered 
MFIs.FPMax* is an extension of the FP-growth method, for MFIs mining only. It 
uses a FP-tree to store the transaction projection of the original database for each 
node in the tree. In order to test whether a frequent itemset is the subset of any dis-
covered MFI in lookaheads pruning, another tree structure, named MFI-tree, is util-
ized to keep the track of all discovered MFI, which makes effective superset check-
ing. FPMax* uses an array for each node to store the counts of all 2-itemsets that is a 
subset of the frequent extensions itemset, this makes the algorithm scan each FP-tree 
only once for each recursive call emanating from it. The experiment results in 
FIMI’03 [10] shows that FPMax* has the best performance then for almost all the 
tested database. FIMfi [13] is also an algorithm base on FP-tree and MFI-tree, and it 
employs a new item ordering policy and a new method to do superset checking to 
improve performance. 

3   Mining Maximal Frequent Itemsets by CfpMfi 

In this section, we discuss algorithm CfpMfi in details. 

3.1   Combined FP-Tree 

For each node to be searched in the enumeration tree, CfpMfi builds a CFP-tree 
(combined FP-tree) that is a combination of FP-tree and MFI-tree. The right of the 
CFP-tree is a FP-tree that stores all relevant frequency information in database and 
the left of the CFP-tree is a MFI-tree which is used to keep the track of discovered 
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MFIs for current node. And in the left of the CFP-tree, there is not the field level for 
each node as in MFI-tree of FPMax*. There is also a header for each CFP-tree, and 
each head entry of CFP-tree has five fields: item-name, right-node-link, left-node-link, 
maximal-level and maximal-type. Fields maximal-level and maximal-type are used for 
subset testing and what they record is defined by definition 5. For an item i in header, 
we can define the maximal subset of i in CFP-tree as follows. 

Definition 5: (i’s Maximal Subset in CFP-Tree) 
Let S1 be the itemset represented by the maximal conditional pattern base of i in the 
left of CFP-tree, for all the conditional pattern bases of i in which the last item’s count 
is more than the threshold ξ in the right of the CFP-tree, and let S2 be the itemset rep-
resented by the maximal base. If | S2|>| S1|, S2 is called the right maximal subset of i in 
CFP-tree, otherwise S1 is called the left maximal subset of i in CFP-tree.  

The field maximal-level at each header entry represents the items’ number in S1 or 
S2, and the field maximal-type records the type of the maximal subset of the item in 
CFP-tree. Figure 2 shows an example of CFP-tree of root when considering extending 
to the child node {e} of root. In the header of the tree, the “T” means the correspond-
ing item that has one left maximal subset, and the “F” means the corresponding item 
has one right maximal subset. 

 

Fig. 2. Example of CFP-tree 

According to definition 5, the theorem is given as follows. 

Theorem 4:  
For a node n, let i be the last item in head(n) and S be its maximal subset in n’s CFP-
tree, then head(n)∪ S is frequent. Furthermore, if S is the right maximal subset of i in 
the CFP-tree, head(n)∪ S is a new maximal frequent itemset. 

The building process of the CFP-tree of node n in search space is as follows: (1) 
The header is built after having found all the items that is frequent after combined 
with head(n). (2) The right part of the CFP-tree associated with the parent node of n 
is scanned once, the items that do not occur in the header are removed from each 
conditional pattern base, then the base is inserted into the right of current CFP-tree 
after being reordered according the order of the header, the extra work needed to be 
done in the insertion is that the two maximal fields in header entries of the items in 
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the base will be updated after the insertion. (3) Building of the left of CFP-tree is 
similar to the building of the right in the second step. The first step and the second 
step are described in procedure 1, and the third step is shown in procedure 2. Figure 
3(a) gives the examples of the building of CFP-tree. 

Procedure 1: RightBuild 
Input    :  n : current node  
                 i :  the item needed to be extended currently 
                 fretail: the frequent extensions itemset for the child of n at i 

pepset: a null itemset to store PEP items 
Output :  the new CFP-tree with initialized header and left  

(1) Sort the items in fretail in the increasing order of support  
(2) pepset = {i | δ(head(n)∪{i}) = δ(head(n)) and i is a frequent extension of  

head(n)} 
(3) Build a head entry for each item in fretail but not in pepset for the new CFP-tree       
(4) For each itemset s according to a conditional pattern base of i in the right of 

n.cfptree 
(5)       Delete the items in s but not in  fretail  
(6)       Sort the remaining items in s according to the order of fretail 
(7)       Insert the sorted itemset into the right of the new CFP-tree 
(8) Return the new CFP-tree 

Procedure 2: LeftBuild 
Input    :  n : current node  
                  i :  the item needed to be extended currently 
                  n’: the child of n at i 
Output:  the CFP-tree with the left initialized 

(1) For each itemset s according to a conditional pattern base of i in the left of 
n.cfptree 

(2)       Delete the items in s but not in n’.cfptree.header 
(3)       Sort the remaining items in s according to the order of n’.cfptree.header 
(4) Insert the sorted itemsets into the left of n’.cfptree 
(5) Return n’.cfptree 

 

Fig. 3. Examples of constructing CFP-tree 

If a new MFI is found, it is used to update the CFP-trees’ left of each node within 
the path from root to current node in search space tree. For example, after considering 
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the node {f}, {f,d,c,a}-{f} is inserted to the left of CFP-trees of root, and after consid-
ering the node {d}, {d,b}-{d} is inserted to the left of CFP-trees of root, the left of 
root’s CFP-tree is null when it is initialized, after the two insertion, the CFP-tree is 
shown as in Figure 2. 

3.2   CfpMfi 

The pseudo-code of CfpMfi is shown in Figure 6. In each call procedure, each newly 
found MFI maybe be used in superset checking for ancestor nodes of the current 
node, so we use a global parameter called cfpTreeArray to access the Cfp-trees of 
ancestor nodes. And when the top call (CfpMfi(root,φ)) is over, all the MFIs to be 
mined are stored in the left of root’s Cfp-tree in the search space tree. 

Lines (4), (9) and (20) are the simple superset checking that will be described in 
detail in section 3.3. When x is the end item of the header, there is no need to do the 
checking, for the checking has already been done by the procedure calling current one 
in line (9) and/or line (20). Lines from (7) to (8) use the optimization array technique 
introduced in section 3.5. The PEP technique is used by call procedure rightbuild in 
line (18). Lines (5)-(6) and lines (21)-(24) are two lookaheads prunings with candi-
date extensions. The lookaheads pruning with frequent extensions is done in lines 
from (14) to (20). When the condition in lines (11), (15) and (22) is true, all the chil-
dren nodes of n’ are pruned and ftail(n’) or ctail(n’) need not to be inserted into  the 
left of n.CFP-tree any more. The novel item ordering policy will be introduced in 
section 3.4 and is used in procedure 1 in line (1). Line (18) builds the header and the 
right of n’.CFP-tree. The return statements in line (5), (6), (12), (16) and (23) mean 
that all the children nodes after n’ of n are pruned there. And the continue statements 
in line (13), (17) and (24) tell us that node n’ will be pruned, then we can go to con-
sider the next child of n. The left of n’.CFP-tree is built by call procedure leftbuild in 
line (25). After the constructing of the whole n’.CFP-tree and the updating of 
cfpTreeArray, CfpMfi will be called recursively with the new node n’ and the new 
cfpTreeArray. 

Note CfpMfi doesn’t employ single path trimming used in FPMax* and AFOPT. 
If, by having constructed the right of n’.CFP-tree, we find out that the right of 
n’.CFP-tree has a single path, the superset checking in line (20) will return true, there 
will be a lookaheads pruning instead of a single path trimming. 

Procedure: CfpMfi  
Input:  

n: a node in search space tree ; 
cfpTreeArray: CFp-trees of all ancestor nodes of n in the path of search space tree 
from root to n. 

( 1)For each item x from end to beginning in header of n.CFP-tree  
( 2)  h'=h ∪{x}                                                         //h' identifies n' 
( 3)  if x is not the end item of the header 
( 4)      if | ctail(n') | == n.CFP-tree.header.x.maximal-level             
( 5)          if  n.CFP-tree.header.x.maximal-type == “T”                              return 
( 6)          else insert h'∪ ctail(n') into cfpTreeArray                               return 
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( 7)  if  n.array is null    count ftail(n') using the n.array 
( 8)  else                         count ftail(n') by a scan of the right of n.CFP_tree 
( 9)  if | ftail(n') | == n.CFP-tree.header.x.maximal-level             
(10)     if  n.CFP-tree.header.x.maximal-type == “T” 
(11)     if the number of items before x in the n.CFP-tree.header is | ftail(n')| 
(12)           return 
(13)        else   continue   
(14)     insert h'∪ ftail(n') into cfpTreeArray  
(15)   if the number of items before x in the n.CFP-tree.header is | ftail(n')|             
(16)             return  
(17)     else  insert ftail(n') into n.CFP-tree                                           continue 
(18)  pepset =φ; n'.CFP-tree = rightbuild(n,x, ftail(n'),pepset)  
(19)  h' = h'∪ pepset 
(20)  if | n'.header | == n'.CFP-tree.header.lastitem.maximal-level 
(21)    insert h' ∪ ftail(n') into cfpTreeArray 
(22)     if the number of items before x in the n.CFP-tree.header is | ftail(n')|   
(23)          return  
(24)    else    insert ftail(n') into n.CFP-tree                                         continue 
(25)  n'.CFP-tree = leftbuild(n, n',x) 
(26)  cfpTreeArray = cfpTreeArray ∪ {n.CFP-tree}                          
(27)  call CfpMfi(n' , cfpTreeArray) 

3.3   Implementation of Superset Checking  

According to Theorem 2, if head(n) ∪ ftail(n) or head(n) ∪ ctail(n) is frequent, there 
will be a lookaheads pruning, There are two existing methods for determining 
whether the itemset head(n)∪ ftail(n) or head(n) ∪ ctail(n) is frequent. The first one 
is to count the support of head(n)∪ ftail(n) directly, and this method is normally used 
in an bread-first algorithms such as in MaxMiner. The second one is to check whether 
a superset of head(n)∪ ftail(n) has already been in the discovered MFIs, which is 
used by the depth-first MFI algorithms commonly [4,7,9,10]. When implementing the 
superset checking, GenMax uses LMFI to store all the relevant MFIs, and the map-
ping item by item for ftail(n) in the LMFI is needed; In MFI-tree, FPMax* needs only 
map ftail(n) item by item in all conditional pattern bases of head(n). The simple but 
fast superset checking for head(n)∪ ctail(n) or head(n)∪ ftail(n) is firstly introduced 
in [13]. In CfpMfi, the implementation of superset checking is based on the theorems 
as follows: 

Theorem 5: Let n' be the child of n at i, if the size of i’s maximal subset in CFP-tree 
of n is equal to the size of ftail(n') or ctail(n'), then head(n')∪ftail(n') or  
head(n') ∪ ctail(n') is frequent. 

Proof: Let S be i’s maximal subset in CFP-tree of n. (1): If S is in the left of the CFP-
tree, head(n') ∪ S is an subset of some discovered MFIs, then head(n)∪ S is fre-
quent; According to theorem 4, when S is in the right of the CFP-tree, head(n)∪ S is 
frequent too. (2): According to the definition of frq_tail and ctail, we have ftail(n') = 
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{x| x is a item that is bigger than i in header of n’ CFP-tree and head(n') ∪ {x} is 
frquent} and ftail(n')⊆  ctail(n'), then S ⊆ ftail(n')⊆  ctail(n'). According to (1) and 
(2), when the assumption in theorem 5 is right, S = ftail(n') or S = ctail(n') can be 
hold. Hence, we obtain the theorem. 

According to theorem 5, in Cfp-tree, the field maximal-level of each header entry 
records the size of the maximal subset, so the superset checking becomes very simple 
and only needs to check the field with the size of ftail(n') or ctail(n'). Note that super-
set checking is a frequent operation in the process of mining MFIs. It is because that 
each new MFI needs to be checked before being added into the discovered MFIs. 
Then the implementation of superset checking can improve the performance of loo-
kaheads pruning efficiently. Furthermore, when the superset checking returns true 
and the maximal subset is in the right of CFP-tree, it is no need to construct the CFP-
trees of n' and n'’ offspring nodes, there is a lookaheads pruning, but the itemset 
head(n') ∪ ftail(n') or head(n') ∪ ctail(n') is a new MFI, and, as described in proce-
dure 3 in lines (6),(14),(17),(21) and (24), it is used to update the relevant CFP-trees. 

3.4   Item Ordering Policy 

Item ordering policy appears firstly in [5], and is used by almost all the following 
MFI algorithms for it can increase the effectiveness of superset frequency pruning. In 
general, this type of item ordering policy works better in lookaheads by scanning the 
database to count the support of head(n)∪ ftail(n) in breath-first algorithms, such as 
in MaxMiner. All the recently proposed depth-first algorithms do the superset check-
ing instead to implement the lookaheads pruning, for the counting support of 
head(n)∪ ftail(n) costs high in depth-first policy.  

FIMfi tries to find a maximal subset of ftail(n), then let the subset in ftail(n) ahead 
when ordering to gain maximal pruning at a node in question. In CfpMfi, the maxi-
mal subset S in definition 5 is the exact subset, and it can be used for this purpose 
without any extra cost. For example, when considering the node n identified by {e}, 
we know ftail (n)={a,c,b}, S={a,c}, then the sorted items in ftail(n) is in sequence of 
a,c,b, the CFP-tree will be constructed as in figure 2(b),  the old decreasing order of 
supports is b,a,c, the CFP-tree will be constructed as in figure 2(a). In the old order 
policy, the CFP-trees for nodes {e}, {e,a}, and {e,c} will have to be build, but 
CFpMfi with the new order policy only need to build FP-trees for nodes {e} and 
{e,b}. Furthermore, for the items in ftail(n)-S, we also sort them in the decreasing 
order of sup(head(n)∪ {x}) (x∈ ftail(n)-S). 

4   Experimental Evaluations 

In the first Workshop on Frequent Itemset Mining Implementations (FIMI'03) [11], 
which took place at ICDM’03, there are several algorithms presented recently, which 
are good for mining MFI, such as FPMax*, AFOPT, Mafia and etc, and FIMfi is a 
newly presented algorithm in ER 2004 [14], we now present the performance com-
parisons between CfpMfi and them. All the experiments are conducted on 2.4 GHZ 
Pentium IV with 1024 MB of DDR memory running Microsoft Windows 2000 Pro-
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fessional. The codes of other three algorithms were downloaded from [12] and all 
codes of the four algorithms were complied using Microsoft Visual C++ 6.0. Due to 
the lack of space, only the results for four real dense datasets are shown here. The 
datasets we used are also selected from all the 11 real datasets of FIMI’03[12], they 
are chess, Connect, Mushroom and Pumsb_star, and their data characteristics can be 
found in [11]. 

4.1   The Pruning Performance of CfpMfi  

CfpMfi adopts the new item ordering policy, along with the PEP and lookaheads 
pruning with frequent extensions and candidate extensions, to prune the search space 
tree. Since FPMax* is nearly the best MFI mining algorithm in FIMI’03 and employs 
FP-tree and MFI-tree structures similar to CFP-tree, we select FPMax* as a bench-
mark algorithm to test the performance of CfpMfi in pruning. The comparison of the 
number of CFP-tree’ rights built by CfpMfi and FP-trees created by FPMax* is 
shown in figure 4, in which the number of CFP-tree’s rights in CfpMfi is less half of 
that of FP-trees in FPMax* on all the four dense datasets at all supports. And figure 5 
reveals the comparison of the number of CFP-tree’ lefts built by CfpMfi and MFI-
trees created by FPMax*. And in figure 5, the number of CFP-tree’s lefts in CfpMfi is 
about 30% -70% of that of MFI-trees in FPMax* on all the four dense datasets at all 
supports. Hence, it is not difficult to conclude from the two figures that by using the 
new item ordering policy and the pruning techniques, CfpMfi makes the pruning 
more efficient. 

 

Fig. 4. Comparison of FP-trees’ Number 

4.2   Performance Comparisons 

Figure 6 gives the results of comparison among the five algorithms on the selected 
dense datasets. For all supports on dense datasets Connect, Mushroom and 
Pumsb_star, CfpMfi has the best performance. CfpMfi runs around 40% -60% faster 
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than FPMax* on all of the dense datasets. AFOPT is the slowest algorithm on Chess, 
Mushroom and Pumsb_star and runs 2 to 10 times  worse than  CfpMfi  on  all  of  the  

 

Fig. 5. Comparison of MFI-trees’ Number 

datasets across all supports. Mafia is the slowest algorithm on Connect, it runs 2 to 5 
times slower than CfpMfi on Mushroom and Connect across all supports. On 
Pumsb_star, Mafia is outperformed by CfpMfi for all the supports though it outperforms 
FPMax* at lower supports, and on chess CfpMfi outperforms Mafia for the supports no 
less than 30% but Mafia outperforms FPMax* for the supports no less than 50%. 
CfpMfi outperforms FIMfi slightly until the lower supports where they cross over. In 
fact, with the lowest supports 10%, 2.5%, 0.025% and 1% for Chess, Connect, Mush-
room and Pumsb_star, CfpMfi is %3, %25, %15 and 30% better than FIMfi  
respectively. 

 

Fig. 6. Performance of Total Time 
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4.3   Maximal Main Memory Usage Comparisons 

Figure 7 gives the results of maximal main memory used by the five algorithms on 
the selected dense datasets. From the figure, we can see that CfpMfi uses main 
memory more than FPMax* but less than FIMfi. The figure reveals that by using 
the compact data structure, CFP-tree, CfpMfi saves more main memory than FIMfi 
does. 
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Fig. 7. Performance of Maximal Main Memory Usage 

5   Conclusions 

We presented CfpMfi, an algorithm for finding maximal frequent itemsets. Our ex-
perimental result demonstrates that, on dense datasets, FpMfi is more optimized for 
mining MFI and outperforms FPMax* by 40% averagely, and for lower supports it is 
about 10% better than FIMfi. The pruning performance and running time perform-
ance comparisons verify the efficiency of the novel ordering policy and the new 
method for superset checking that presented in [13], and the study of maximal main 
memory used indicates the compactness of CFP-tree structure. Thus it can be con-
cluded that the new tree data structure, CFP-tree, along with the new ordering policy 
and some pruning techniques are well integrated into CfiMfi.  
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