
Learning the Grammar of Distant Change
in the World-Wide Web

Dirk Kukulenz

University of Luebeck, Institute of Information Systems,
Ratzeburger Allee 160, 23538 Luebeck, Germany

kukulenz@ifis.uni-luebeck.de

Abstract. One problem many Web users encounter is to keep track of
changes of distant Web sources. Push services, informing clients about
data changes, are frequently not provided by Web servers. Therefore it is
necessary to apply intelligent pull strategies, optimizing reload requests
by observation of data sources. In this article an adaptive pull strategy
is presented that optimizes reload requests with respect to the ’age’ of
data and lost data. The method is applicable if the remote change pattern
may approximately be described by a piecewise deterministic behavior
which is frequently the case if data sources are updated automatically.
Emphasis is laid on an autonomous estimation where only a minimal
number of parameters has to be provided manually.

1 Introduction

Access to the World-Wide Web is currently mainly achieved by keyword-based
search, e.g. through Web search engines, or by browsing, which denotes the pro-
cess of accessing Web objects by the use of hyperlinks. Both strategies assume
the Web to be a static information source that doesn’t change during a search.
However frequently the dynamics of the Web is the focus of the actual search. If
a user wants e.g. to keep track of news, stock prices or satellite images, ’static’
search strategies like browsing or query search are not suitable.
Basically there exist two strategies to acquire this knowledge, denoted as the
push and the pull strategy [13]. The push strategy implies that a data source
itself informs the client about the times of changes. An investigation concerning
the push model is presented in [16]. However a push service is difficult to real-
ize in a heterogenous information system as the World-Wide Web. In the pull
model it is necessary for a client to predict remote changes in order to initiate
reload operations. In order to predict changes it is first necessary to acquire in-
formation about a data source, i.e. to detect changes. Basically two strategies are
available for this purpose. One is to reload the data source periodically and to
compare previous and current data objects. A second strategy in order to detect
data changes is provided by the HTTP protocol [7]. Different strategies were de-
veloped to acquire optimal cache behavior based on http-headers [9], [19]. Since
according to [3] ’last-modified’-headers are only available in 65% of Web pages in

G.I. Webb and Xinghuo Yu (Eds.): AI 2004, LNAI 3339, pp. 462–474, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

mailto:kukulenz@ifis.uni-luebeck.de

Learning the Grammar of Distant Change in the World-Wide Web 463

this article we apply the first method in order to register page changes. The main
problem discussed in this article is to estimate and to predict change behavior
based on an observed history of changes acquired with the above method with a
certain precision. The goal is to find an optimal reload policy of remote sources
according to quality parameters like amount of lost data and age, that will be
introduced in detail in section 2. The reload policy has to minimize costs with
respect to network load and the number of Internet connections. This aspect is
especially important if a large number of remote data objects is considered.

1.1 Related Research

The problem of realizing continuous queries over data streams seems to be sim-
ilar to the described problem. However in this field the data stream is usually
assumed to be already available [2] while the focus in this article is to make the
data stream available, i.e. to optimize the data stream itself. Web prefetching is
an issue well known from the field of intelligent agents and network optimiza-
tion [4]. One method applied in this field is the use of Markov processes [8].
In contrast to this article the main concern is usually to predict different data
objects from recorded sequences of Web accesses, but not to optimize the times
of requests. The consideration of dynamical aspects of the World-Wide Web is a
main issue for the development of Web crawlers, Web archives and Web caches.
With respect to these applications, diverse statistical methods were presented in
order to optimize requests for remote data sources. In [1] an introduction into
search engine design and into the problems related to optimal page refresh is
given. In [6] aspects of optimal (Web-)robot scheduling are discussed from a the-
oretical point of view, modeling page change intervals by independent Poisson
processes. An empirical analysis of Web page dynamics with respect to statistical
properties of intervals between data changes is presented in [3]. One main result
is that the distribution of intervals between changes is similar to an exponential
distribution. In [20] the problem of minimizing the average level of ’staleness’
for web pages and the development of an optimal schedule for crawlers is ana-
lyzed based on the assumption of independent and identically distributed time
intervals. Assuming a Poisson process for intervals between update times, in [5]
an optimized reload frequency estimation is presented.

1.2 Contribution

Many data objects in the Web are updated according to a well defined pattern,
e.g. every working day, not at night and not at weekends. For similar update
patterns, the assumption of an independent and identical distribution of con-
secutive time intervals, which is applied in many statistical approaches, is not
suitable. In this article we present a reload policy which is optimized for similar
’quasi regular’ update patterns. In contrast to a previously presented algorithm
for the realization of continuous queries [15], [14] the presented reload policy
is adaptive and may register, if the remote change behavior changes and adapt
automatically. The estimation depends on specific initial values for the esti-
mation process. One focus in this article is to learn some of these parameters

464 D. Kukulenz

automatically in order to simplify the application of the algorithm for a user.
The sequence of time intervals between updates is piecewise approximated by a
special kind of a regular grammar we will denote as a cyclic regular grammar.
Regular grammar inference is a problem well-known from machine learning [10],
[12]. Many algorithms were presented to learn regular grammars from positive
and negative examples [17], [18]. The cyclic-regular case as defined in section
2 is simpler than the general regular inference problem and may be computed
efficiently. We will apply the grammar estimation for the development of a new
adaptive reload policy in order to optimize local copies of remote sources.

After a description of the applied model in section 2, in section 3 we propose
an algorithm for the grammar estimation and it is shown how this knowledge may
be applied to find optimal reload times. The estimation algorithm is illustrated
by an example in section 4. In section 5 we present experiments concerning the
application of the regular-grammar based reload policy to simulated and real
Web data and in section 6 a summary is given and further aspects are discussed.

2 The Model

Let ui ∈ R
+ denote the points in time at which the ith update of a Web data

object occurs, where 0 ≤ u1 ≤ u2 ≤ u3 ≤ u4 ≤ . . . un ≤ T ∈ R
+, n ∈ N.

The interval of time between the i − 1th and ith update will be denoted by
ti := ui − ui−1, i ∈ N. Let a1, a2, . . . am ∈ R

+ denote the points in time where
reload operations are executed, where 0 ≤ a1 ≤ a2 ≤ a3 . . . ≤ am ≤ T . For
t ∈ R

+ let Nu(t) denote the largest index of an element in the sequence u that
is smaller than t, i.e. Nu(t) := max{n|un ≤ t}. Let Au(t) ∈ R

+ denote the size
of the time interval since the last update, i.e. Au(t) := t−uNu(t). If t is the time
of a reload (t = ai for i ≤ m), we denote Au(t) as the age of ai. The age of a
local copy denotes how much time since the last remote data update has passed
and thus how long an old copy of the data was stored although a new version
should have been considered.1

Let Q := {tj |j ≤ n ∈ N} denote

r

n

n

r1
rn−1r

r1 r2
R1 R R2 n

R0

Fig. 1. Nondeterministic automaton
corresponding to the grammar
(r1r2 . . . rn)◦

the set of time intervals between up-
dates. We assign a symbol si, i ∈ N≤n

to every element of Q. We call the set
of symbols ∆ := {si|i ≤ n} the alpha-
bet of the sequence u.

Let S denote a starting symbol, let
r1, r2, . . . rn denote terminals and the
symbols R1, R2, . . . Rn non-terminals.
In the following we refer to a regular
grammar Γ corresponding to the non-deterministic finite automaton in figure 1
as a cyclic regular grammar. In figure 1, ’R0’ is a starting state which leads to

1 If a local copy is used as an information source for users, in the respective period of
time these users receive the old instead of the new data.

Learning the Grammar of Distant Change in the World-Wide Web 465

any of n states R1, . . . , Rn. After this, the list of symbols is accepted in a cyclic
way. Every state is an accepting state. To abbreviate this definition we will use
the notation: (r1r2...rn)◦ := Γ .

The first problem in the following is to describe a sequence of symbols s1, s2...
corresponding to time intervals by a cyclic regular grammar of minimal size. The
second problem is to predict further states of the automaton and to find optimal
reload times. Finding the optimum means that after each update of the remote
data source, the data should be reloaded as soon as possible, i.e. the sum of
ages sumage :=

∑m
i=1 Au(ai) has to be minimal. The number of reloads should

be as small as possible. No change of the data source should be unobserved.
The number of lost (unobserved) data objects will be denoted as �loss in the
following.

3 Algorithm for Adaptive Reload Optimization

3.1 Overview, Definitions

The presented algorithm for adaptive reload optimization consists mainly of four
components.

A first component is responsible for the estimation of time intervals be-
tween successive updates. For this purpose the data source is downloaded after
constant time periods. One main problem in this context is to find an adequate
time period between reload operations in order to capture all remote updates
as precisely as possible. In the subsequent section we present a method that is
based on the observation of changes in a number of consecutive intervals.

A second component of the algorithm determines a sequence of symbols.
A number of intervals corresponds to the same symbol. As a motivation for
this definition it may be assumed that in many cases in the Web remote update
operations are executed by daemon processes after certain time periods. However
due to a server and network delay, the time intervals that are actually registered
on the client side are slightly different. A symbol represents a cluster which
combines these similar intervals, providing a maximal and a minimal length
estimation for the interval. A symbol is a 3-tuple s = (i, max, min) consisting of
a unique identifier i and two length parameters s.max and s.min.

A third component of the algorithm is responsible for the estimation of a
grammar that represents the update behavior of a remote source. A hypothesis
H = (Γ, s) is a 2-tuple consisting of a cyclic-regular grammar Γ and the cur-
rent state s of the associated finite automaton, according to the enumeration of
states in figure 1. In every step of the algorithm after the detection of a symbol,
the default hypothesis is added to the set of hypotheses. Taking the sequence of
symbols registered by the system so far (ri1 , ri2 , . . . rip

), the default-hypothesis
is the cyclic regular grammar (ri1ri2 . . . rip)◦ with the corresponding automaton
being in the state ’1’ according the enumeration of states in figure 1. This au-
tomaton accepts the sequence of input symbols. The last symbol is accepted by a
transition from the last state to state ’1’. A prediction of a hypothesis which is not

466 D. Kukulenz

in the start state (R0) is the symbol, generated by a transition to the (unique)
state following the current state. A proceed operation applied to a hypothesis H
(H.proceed) which is not in the start state ’0’ converts the current state of H to
the subsequent state.

A fourth component is finally responsible for the application of the estima-
tion result to an optimal reload policy and for the decision when the estimation
becomes false and has to be updated.

3.2 Reload Interval Size and Interval Estimation

Figure 2 shows the basic idea of the interval estimation. The data source is
reloaded after constant time periods ai − ai−1 denoted as sampling interval
(sampsize) in the following. By detecting two remote changes (update 2 and
3 in figure 2a) in subsequent reload intervals (interval [3,4] and [7,8]) we acquire
a maximal and a minimal estimation for the interval length (min and max in
figure 2a).

An obvious problem with

time
update
operations

request
operations

min

max

1 2 3 4

 1 2 3 4 5 6 7 8 9

update
operations

request
operations 1 2 3 4 5 6 7 8

1 2 3 4 5 6

time

b)

a)

Fig. 2. Determination of a maximal and a min-
imal estimate for an interval length

this estimation is that remote
changes taking place between
two successive reload operations
may not be recognized. There-
fore it is necessary to find an
optimal time interval between
successive requests, depending
on the remote update behavior.
One heuristical approach for
this problem is shown in figure
2b. The algorithm is initialized
with a reload interval which is

known to be too large. After each reload operation the algorithm stores the in-
formation whether a change has been detected in the previous interval or not in
a queue of size k. This queue contains information about changes being detected
by the previous k reload operations. If a new change is detected, the algorithm
tests if a previous change is contained in the queue. If this is the case, the reload
interval is divided by 2 and the algorithm proceeds. A further question is when
to stop with the interval size adjustment, i.e. when the interval size is suffi-
ciently small. One heuristics is to stop the size determination after detection of
m successive remote data changes without interval size adjustment.

The reload interval sampsize is sufficiently small if the time interval between
requests aj −aj−1 is small compared to the time between updates (sampsize �
mini ti). It is obvious that the approach above may not lead to optimal results if
the variance of update intervals is high. One possible improvement would be to
analyses the ’fine’ structure after the rough structure (i.e. the large gaps between
updates) is known.

Learning the Grammar of Distant Change in the World-Wide Web 467

Symbol-Estimation(newInterval, symbols)

1 for each symbol s in symbols:
2 if newInterval similar to s

return s
3 define new symbol sn with parameters of newInterval

add sn to symbols
return sn

Fig. 3. Algorithm component for insertion of new symbols or assignment of new
intervals to previously registered symbols by incremental clustering according to
a similarity measure

3.3 Symbol Estimation by Incremental Clustering

The previous algorithm generates a sequence of interval estimations some of
which are similar. The next step is to cluster similar intervals which are assumed
to represent similar remote update intervals. The problem is to find an adequate
similarity measure for intervals and to apply it to the interval sequence in order
to find the set (and the sequence) of symbols. Figure 3 shows the algorithm com-
ponent Symbol-Estimation, responsible for the learning of new symbols or the
assigning of a new interval to a previously registered symbol by incremental clus-
tering of intervals [11]. It depends on the estimation parameters of a new interval
(newInterval) and the set of previously registered symbols (symbols). In step
1 and 2 for each symbol in the set of symbols it is tested if the new parameters
of newInterval are ’significantly different’. For this purpose the maximal and
minimal interval sizes are compared with respect to the sampling size.2 If this
is not true for one symbol, i.e. if the current symbol has already been detected,
the respective symbol is returned i.e. the set of symbols isn’t changed. If the new
interval-parameters are significantly different from all symbols defined so far, a
new symbol is inserted into the set symbols in step 3. The algorithm is executed
for each new detected interval. After the set of symbols has been determined it is
easy to assign the previously registered intervals to the symbols by comparison
and thereby to compute a sequence of symbols (denoted as symbolSequence)
from the interval sequence.

3.4 Grammar Estimation

Based on the sequence of symbols detected so far it is now possible to develop
hypotheses for the time-based grammar that generated the current symbol se-
quence. Figure 4 shows the algorithm which takes the sequence of symbols as
the input. For every position in the sequence, the whole sequence of symbols ob-

2 Different strategies are conceivable to compare the intervals; the applied method is
described in detail in [15].

468 D. Kukulenz

Grammar-Estimation(symbolSequence)

1 set hset = ∅
2 for i=1 to symbolSequence.length()
3 symbol s := symbolSequence.get(i)
4 add the default-hypothesis to hset
5 for each H ∈ hset\{default-hypothesis} do
6 if symbol not equal to prediction of H
7 delete H from hset
8 else
9 apply H.proceed

Fig. 4. Main algorithm component for the estimation of a cyclic regular grammar

served prior to this position is used to create the default-hypothesis (as defined
in section 3.1) in step 4 of the algorithm in figure 4. In steps 5 and 6 it is tested
for each hypothesis H in the set of hypotheses hset if the prediction of H corre-
sponds to the newly observed symbol. If not, the hypothesis is deleted from the
set of hypotheses (step 7). If the prediction is consistent with the observation,
the state of the hypothesis is increased in step 9.

3.5 Optimized Adaptive Reload Policy
In this section based on the previous estimation a reload policy is presented for
optimal data update that is adaptive and may register if the estimation doesn’t
represent the remote update pattern (figure 6). It is assumed that the alphabet
and the grammar have already been determined. We assume that the current
state of the automaton is already known. This state may simply be determined
by observing remote changes with a high reload frequency until the symbol se-
quence observed so far uniquely describes the current state of the automaton
(step 1, figure 6) as described in detail in [15]. In steps 2 to 16 a loop is executed
that determines at first the unique subsequent symbol according to the automa-
ton H in step 4. According to this symbol an optimal reload time is computed in
step 4. The choice of the optimal reload time is depicted in figure 5. The sub-
sequent reload time is chosen

time
update
operations

request
operations

1 2 3 4

 1 2 3 4 5 6 7 8 9

forward

Fig. 5. Determination of an optimal forward
interval

such that it is supposed to oc-
cur before the next remote up-
date, it corresponds roughly to
the estimated minimal interval
length between two remote up-
dates (e.g. request 3 has to oc-
cur before update 2 in figure 5).
Thereby it may be assured that
the (symbol-)estimation is not
too large in step 8.

The system waits for the respective period of time in step 6, and reloads the
remote data. High frequency reload is applied until a change with respect to

Learning the Grammar of Distant Change in the World-Wide Web 469

the current and the previous version of the reloaded data is detected (steps 9
to 14). After the change detection (step 14), the algorithm continues with the
prediction of the subsequent symbol in step 4.

One main aspect is how this algorithm may detect an error in the estimation
and thereby adapt to changes in the update behavior of the data source. For
this purpose the algorithm tests, if a currently predicted symbol corresponds to
the currently observed update times. E.g. in the interval between reload 2 and
3 in figure 5 no change of the remote source should occur. This is tested in step
8 of the reload-control algorithm. A second aspect is if the maximal estimated
interval length is correct. For this purpose the number of required reloads in the
fast forward loop (steps 9 to 14) is counted in step 11. If it is loo large (step
12), the interval estimation is obviously false. If the predicted interval doesn’t
correspond to the observed update-interval the algorithm terminates in step 8
or step 12.

Reload-Control (Input: estimated grammar ∼ H, sampsize)

1 find current state of the automaton
2 set forward := 0
3 do
4 find next symbol according to automaton H
5 compute optimal reload time t
6 wait until t
7 reload
8 confirm equality between old and new data
9 do
10 t := t + sampsize
11 forward + +
12 if forward > 3: stop algorithm
13 wait until t, reload
14 until change detected
15 forward := 0
16 until end of observation

Fig. 6. Algorithm to determine optimal reload times based on the grammar estimation
in section 3

4 Example

4.1 Grammar Estimation

In order to illustrate the Grammar-Estimation algorithm we assume that the
system registers a sequence of symbols ababcab. After detecting the symbol a,
the default hypothesis H1 := (a)◦ is inserted into the empty set hset (table 1)
in step 4 of the Grammar-Estimation component. This hypothesis is state ’1’.
In step 2 in table 1 the second detected symbol is b which is different to the

470 D. Kukulenz

Table 1. Computation steps of the Grammar-Estimation-algorithm for the sequence
ababc...

step input symbol reject hypothesis insert hypothesis hypotheses/state
1 a H1:=(a)◦ H1/state=1
2 b H1 H2:=(ab)◦ H2/state=1
3 a H3:=(aba)◦ H2/state=2

H3/state=1
4 b H3 H4:=(abab)◦ H2/state=1

H4/state=1
5 c H2,H4 H5:=(ababc)◦ H5/state=1
...

Fig. 7. Visualization of the adaptive reload optimization

prediction of H1 (H1.prectict = a). Therefore H1 is deleted from hset. Again,
the default hypothesis H2 := (ab)◦ is added to hset. In step 3 the symbol a is
detected. In this case the prediction of H2 is true. Therefore the state of H2 is
increased. The default hypothesis H3 := (aba)◦ is added to hset. This procedure
continues until in step 5 the symbol c is detected. In this step H2 and H4
have to be rejected and the default hypothesis H5 := (ababc)◦ is added. After
consideration of subsequent symbols this hypothesis turns out to be consistent
with the sequence ababcab and it also turns out to be the smallest one.

4.2 Application Example

Figure 7 shows an application of the complete algorithm. Impulses of length 5
in figure 7 denote times of remote updates. In this example at first the remote
update pattern is (ab)◦ and changes to (aab)◦ at time ∼500 sec (symbol a has

Learning the Grammar of Distant Change in the World-Wide Web 471

a length of 10 seconds; symbol b has a length of 20 seconds). In the first phase
of the algorithm (time 1..100 sec) the sampling interval is determined according
to section 3.2. Impulses of length 2 denote reload requests. Impulses of length
4 denote detected changes. The detected changes in the interval from 70 to 160
seconds are used for the grammar estimation. Next, the state is determined
(impulses of length 1) and the optimized reload is applied (impulses if length 3).
At time 570 the algorithm detects an error in the estimation and starts again
with the sampling interval estimation.

5 Experiments

In this section we demonstrate the advantages of the adaptive regular reload
policy, in the following denoted as the regular method, to the policy based on
a constant reload frequency, denoted as the constant method.3 Optimization
refers to a specific definition of costs, which have to be minimized. For the cost
definition we consider the age of data (sumage) and the number of lost data
objects �loss as defined in section 2. The different quality parameters may eas-
ily be computed from the sequence of reload operations, which is known and
the sequence of remote updates, which is either known or has to be estimated
by high-frequency sampling. In the experiments we select the number of down-
loads of the constant-frequency method such that it is equal to the number of
downloads of the regular method. In these experiments the costs created by the
estimation process are ignored. These costs only occur once at the beginning of
the application. In this respect we consider the costs ’in the limit’ and assume
that changes in the update behavior that result in a re-estimation are sufficiently
rare and therefore don’t create significant costs. Figure 8 shows an experiment
with generated data which demonstrates the basic properties of the new reload
policy. In the experiment a grammar of two symbols (ab)◦ was considered with
a total length of one cycle of 50 seconds (length(a)+length(b)=50 sec). The dif-
ference of the two symbol lengths (|length(a) − length(b)|) is increased in the
experiment (x-axis in figure 8). If e.g. the difference is zero the interval lengths
are identical (length(a)=25 and length(b)=25). Figure 8 a) shows that if the
interval length difference of the two symbols gets larger, the number of lost data
increases when the constant method is applied while it is zero for the regular
method. The reason is that the constant method has to consider a reload in-
terval smaller than the smallest update interval in order to capture all updates.
Since in this method the reload frequence is constant, this may lead to a large
number of (superfluous) reloads; otherwise, if the number of reloads is fix as in
the described experiment, the �loss value is likely to increase. Figure 8 b) shows
that the age of data (sumage) is significantly smaller if the regular method is
applied.

3 This method is currently applied by most Web crawlers, Web caches etc. as described
in section 1.1.

472 D. Kukulenz

(a) �lost for the regular method
and the constant method (dashed
line)

(b) sumage (in seconds) for the
regular method and the constant
method (dashed line)

Fig. 8. The quality parameters �loss and sumage for a cyclic grammar (ab)◦ for dif-
ferent interval differences |length(a) − length(b)|

Table 2. Comparison of reload policies for different Web pages. Page 1
(http://www.oanda.com) provides financial data. Page 2 (http://www.sec.noaa.gov/
rt plots/xray 5m.html) provides data related to space weather. The reduction of
agesum applying the regular method ranges from 50% to 90%

page loss sumage (seconds)
constant method 1 0 24143
regular method 1 0 12960

constant method 2 0 50331
regular method 2 0 6233

The previous result may also be shown for real Web pages. In the following
experiment a time interval of 5 days is defined. In this time interval the two
reload policies are executed and the original update times are determined by fast
sampling in order to compute the quality measure. The number of downloads
are equal for both systems, which requires that the update behavior has already
been determined in an offline step. Table 2 shows the result of a comparison
of the different reload policies for different Web pages. Page 1 has the URL
http://www.oanda.com. It provides information related to currency exchange.
Page 2 (http://www.sec.noaa.gov/rt plots/xray 5m.html) provides data related
to x-radiation from the sun. The results in table 2 show that values for lost
data and superfluous data are very similar if as in this example the number of
downloads is identical (the length of symbols is similar in this case in contrast
to the simulation experiment above). The age of data (sumage) may be reduced
from 50% up to about 80% for different pages.

Learning the Grammar of Distant Change in the World-Wide Web 473

6 Conclusion

The article presents an algorithm to estimate the parameters of the update
behavior of a distant source that may be approximated piecewise by a specific
kind of a regular grammar. The algorithm takes into account that the points
in time where data sources in the Web change may usually not be registered
exactly. The estimated grammar is used to determine optimal points in time for
data reloads with respect to a minimization of the age of data and the amount
of lost data. In the experiments it is shown that the age of data may be reduced
significantly using the adaptive regular reload policy compared to a constant-
frequency based method in the case that changes of the remote update behavior
are rare and the respective costs for a re-estimation may be ignored.

The basic idea concerning this research is to develop a personal information
system that makes the access to the dynamic properties of the Web for a user
as simple as possible. In the article some of the parameters needed for the es-
timation are determined automatically like the sampling size. However several
parameters still have to be provided by a user like the time needed for the sam-
pling size determination, the period of time needed for the grammar estimation,
the initial sampling size etc. If the presented results would be used for a per-
sonal information system it would still be inconvenient to actually use this tool
especially if a large number of data objects has to be considered.

References

1. A.Arasu, J.Cho, H.Garcia-Molina, A.Paepcke, and S.Raghavan. Searching the web.
ACM Trans. Inter. Tech., 1(1):2–43, 2001.

2. Shivnath Babu and Jennifer Widom. Continuous queries over data streams. SIG-
MOD Rec., 30(3):109–120, 2001.

3. Brian E. Brewington and George Cybenko. How dynamic is the Web? Computer
Networks (Amsterdam, Netherlands: 1999), 33(1–6):257–276, 2000.

4. Xin Chen and Xiaodong Zhang. Web document prefetching on the internet. In
Zhong, Liu, and Yao, editors, Web Intelligence, chapter 16. Springer, 2003.

5. Junghoo Cho and Hector Garcia-Molina. Estimating frequency of change. ACM
Trans. Inter. Tech., 3(3):256–290, 2003.

6. E. Coffman, Z.Liu, and R.R.Weber. Optimal robot scheduling for web search
engines. Journal of Scheduling, 1(1):15–29, June 1998.

7. World Wide Web Consortium. W3c httpd. http://www.w3.org/Protocols/.
8. Mukund Deshpande and George Karypis. Selective markov models for predicting

web page accesses. ACM Trans. Inter. Tech., 4(2):163–184, 2004.
9. A. Dingle and T.Partl. Web cache coherence. Computer Networks and ISDN

Systems, 28(7-11):907–920, May 1996.
10. P. Dupont, L. Miclet, and E. Vidal. What is the search space of the regular infer-

ence? In R. C. Carrasco and J. Oncina, editors, Proceedings of the Second Inter-
national Colloquium on Grammatical Inference (ICGI-94): Grammatical Inference
and Applications, volume 862, pages 25–37, Berlin, 1994. Springer.

11. Brian S. Everitt. Cluster Analysis. Hodder Arnold, 2001.

474 D. Kukulenz

12. E. Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

13. Julie E. Kendall and Kenneth E. Kendall. Information delivery systems: an explo-
ration of web pull and push technologies. Commun. AIS, 1(4es):1, 1999.

14. D. Kukulenz. Capturing web dynamics by regular approximation. In WISE04, In-
ternational Conference on Web Information Systems Engineering, Brisbane, 2004.

15. D. Kukulenz. Optimization of continuous queries by regular inference. In 6th
International Baltic Conference on Databases and IS, volume 672 of Scientific
Papers University of Latvia, pages 62–77, 2004.

16. C. Olston and J.Wildom. Best-effort cache synchronization with source coopera-
tion. In Proceedings od SIGMOD, May 2002.

17. J. Oncina and P.Garcia. Inferring regular languages in polynomial update time.
Pattern Recognition and Image Analysis, Perez, Sanfeliu, Vidal (eds.), World Sci-
entific, pages 49–61, 1992.

18. Rajesh Parekh and Vasant Honavar. Learning dfa from simple examples. Machine
Learning, 44(1/2):9–35, 2001.

19. D. Wessels. Intelligent caching for world-wide web objects. In Proceedings of
INET-95, Honolulu, Hawaii, USA, 1995.

20. J. L. Wolf, M. S. Squillante, P. S. Yu, J. Sethuraman, and L. Ozsen. Optimal crawl-
ing strategies for web search engines. In Proceedings of the eleventh international
conference on World Wide Web, pages 136–147. ACM Press, 2002.

	Introduction
	Related Research
	Contribution

	The Model
	Algorithm for Adaptive Reload Optimization
	Overview, Definitions
	Reload Interval Size and Interval Estimation
	Symbol Estimation by Incremental Clustering
	Grammar Estimation
	Optimized Adaptive Reload Policy

	Example
	Grammar Estimation
	Application Example

	Experiments
	Conclusion

