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Abstract. This paper describes the use of taxonomic hierarchies of concept-
classes (dependent class values) for knowledge discovery.  The approach allows 
evidence to accumulate for rules at different levels of generality and avoids the 
need for domain experts to predetermine which levels of concepts should be 
learned.  In particular, higher-level rules can be learned automatically when the 
data doesn’t support more specific learning, and higher level rules can be used 
to predict a particular case when the data is not detailed enough for a more 
specific rule.  The process introduces difficulties concerning how to 
heuristically select rules during the learning process, since accuracy alone is not 
adequate.  This paper explains the algorithm for using concept-class 
taxonomies, as well as techniques for incorporating granularity (together with 
accuracy) in the heuristic selection process.  Empirical results on three data sets 
are summarized to highlight the tradeoff between predictive accuracy and 
predictive granularity. 

1   Introduction 

The importance of guiding the discovery process with domain knowledge has long 
been recognized [12], but most existing data mining systems do not exploit explicitly 
represented background knowledge. Recently, taxonomic background knowledge of 
attributes and attribute value has received attention ([1], [2], [8]).  However, while it 
has been recognized ([9], [11], [12]) that there is often sufficient domain knowledge 
to generate hierarchies over the (dependent variable) concept-class values as well, in 
most classification learning research the concept-class variable is assumed to 
comprise a simple set of discrete values determined by a domain expert. Concept-
class, attribute and attribute-value taxonomies are structurally similar, but are 
distinguished by the role that they play in a particular learning situation as dependent 
or independent variables. 

The practice of leaving to domain experts or data analysts the task of selecting the 
appropriate levels of analysis [e.g., 8, 17] in situations involving large sets of concept-
class values that are inherently hierarchically structured is problematic. Human 
choosing of appropriate levels of concepts to learn is an inherently labor intensive 
task that is compounded by the fact that there is not, in general, one ideal 
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generalization level for a given problem.  The most useful level is a function not only 
of the desired conceptual outputs, but also of the data available to drive the learning 
process. The effects of data availability and the utility of concept class taxonomies are 
most evident when the data set is small and the concept class value set is relatively 
large. For instance, in the “bridges” domain, [16], if each type of bridge has only a 
few examples in a given data set it might be difficult to find sufficient evidence for all 
specific types of bridges, while there might be evidence for more general types 
(Figure 1).  Thus hierarchical classification learning is a two-fold process.  In addition 
to the search for a set of patterns that best describe a given concept, hierarchical 
classification involves a search over the concept-class taxonomy to find the concepts 
that represent the best tradeoffs concerning usefulness and degree of support in the 
given data set.  The approach described here provides for the simultaneous search for 
rules to predict concepts at all levels of a taxonomic hierarchy, while allowing the 
user to bias the system to varying degrees of specificity vs. accuracy. 

In this paper we describe HRL (Hierarchical Rule Learner), an extension to an 
existing rule-learning system, RL [14] that demonstrates the feasibility of learning 
within concept-class taxonomies. We describe why existing methods for evaluating 
classification models are not sufficient to evaluate hierarchical classification models, 
introduce the concept of prediction granularity of a model that needs to be considered 
along with predictive accuracy, and show how granularity can be incorporated in the 
learning process.  Empirical results on three data sets are summarized to highlight the 
tradeoffs between predictive accuracy and predictive granularity. 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Bridge concept class taxonomy 

2   Hierarchical Rule Learning Using Concept Class Taxonomies 

The Hierarchical Rule Learning (HRL) algorithm discovers appropriate concepts 
within taxonomically structured (dependent) concept-class taxonomies. HRL is an 
extension of the BFMP learning technique [3], which in turn is a marker-passing 
based extension of the RL induction system, a descendent of the MetaDENDRAL 
system [6]. RL is a generate-and-test rule-learning algorithm that performs heuristic 
search in a space of simple IF-THEN rules containing conjunctions of features 
(attribute-value pairs).   

Figure 2(a) contains a simple database. The location and occupation  
fields  (attributes)  contain independent attribute values. The car field is the dependent  

BRIDGE TYPE = ANY 

Arch-T Simple Cont-t Cantilev 

Tied-A Not-Tied 

Truss Arch Suspense Wood 



V. Kolluri et al. 452

concept to be learned. In this case the concept values are binary (US made vs. 
imported). The task consists of learning a set of rules to reliably predict the dependent 
concept values, e.g., the set of people who own imported cars (i.e., Sam and Mary).  
Typical top-down inductive learners such as MetaDENDRAL-style learners [6], or 
decision-tree learners such as C4.5 [15] and CART [5], start with a null rule (which 
covers everything) and generate additional conjuncts to specialize it, such as Location 
= Pittsburgh, Occupation = Research etc. Each conjunct is matched against the data, 
and statistics are gathered. The statistics are fed to an evaluation function that decides 
which conjuncts should be further specialized on the next iteration. 

 

 

 
 
 
 

              Fig. 2(a). Cars database                                 Fig. 2(b). Cars database class values 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2(c). Network representation of the Cars database 

BFMP, [3] replaces the matching portion of RL and related algorithms by breadth-
first marker propagation, and the collection and counting of markers. In Figure 2(c), 
attribute values are represented by pointers into the space of values (with a different 
type of pointer for each type of attribute). BFMP places a class marker on each data 
item (e.g. Sam) and propagates these markers along attribute links to the value nodes. 
BFMP then checks the coverage of predicates by counting how many positive and 
negative markers accumulate on the corresponding value nodes, thereby replacing the 
matching step in the rule learners. In binary cases such as this, positive markers 
represent support for the utility of adding that node to specialize the rule  
under  consideration  and  negative markers represent negative evidence. E.g., the rule  

Name Location Occupation Car 

 Sam Pittsburgh Research Imported 

John Harrisburg Business US made 

Bob San Francisco Research US made 

Tim Pittsburgh Business US made 

 Mary Pittsburgh Research Imported 
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(Location = Pittsburgh  US made) receives two positive markers and one negative.  
Aronis and Provost [3] showed that rule learning using such marker propagation 
techniques increases performance over standard pattern matching approaches and is 
especially effective when dealing with datasets containing large attribute-value sets 
(with and without attribute-value taxonomies).   

HRL extends BFMP to learn appropriate concepts within taxonomically structured 
(dependent) concept-class value sets. Figure 2(b) shows an alternate dependent 
concept class (car) for the data set in Figure 2(a) containing individual values, which 
can be hierarchically ordered as in Figure 4. In such a non-binary learning task, 
individual markers, (e.g., T, D, F, and H respectively in this case) replace the binary 
+/-  markers, and the negative evidence for a given class at a particular node must be 
computed as the sum of the markers belonging to the compliment set of class markers.  

 

Fig. 3. Extended Car data set network with concept class taxonomy 

The left side of Figure 3 shows a network like that shown in Figure 2(c). The 
individual markers (T, D, F and H) are shown instead of the binary (+/-) markers of 
Figure 2(c), and the accumulation of those markers are shown for the 
occupation=research node. These markers are then passed to the class taxonomy 
shown on the right hand side of Figure 3., and passed up that hierarchy. Although the 
evidence so far is weak for any rule predicting a particular manufacturer based on 
occupation=research, it would appear that evidence is gathering for a rule that predicts  
country=Japan based on occupation=research. The concept class node “Japan” now 
represents the rule: (Occupation = Research)  (Car = Japan), and it has a “positive” 
coverage of 2. To calculate the negative coverage for this rule the concept class 
markers are propagated to the top-level root node “ANY”. The difference between the 
total of all markers gathered at “ANY” and those gathered at the class node “Japan” 
represents the “negative” coverage of the rule (Occupation = Research)  (Car = 
Japan).  Hence the final coverage statistics for this rule are as follows: Total Coverage 
= 3; Confidence = 2/3= 0.66 Positive coverage = 2, Negative coverage = 1. 
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HRL can produce multi-level rule sets (models) with rules predicting concept class 
categories at various levels in the taxonomies.  Such hierarchical classification models 
can make high-level, coarse-grained predictions when insufficient information is 
available to make precise low-level predictions. The individual rules themselves are 
useful since they capture structural relationships between the independent features 
and the dependent concept values at various levels in the concept class taxonomy. 
Unlike top down learning methods (e.g., [8]), HRL is inherently bottom up, 
discovering all rules for which there is sufficient support. 

3   Working with (Dependent) Concept Class Taxonomies 

Heuristics that guide the selection of “interesting” rules over hierarchical concept 
class value sets are fundamentally different from the heuristics needed to select rules 
with hierarchical attribute value sets.  In general, more general attribute values (e.g., 
location = Pennsylvania rather than location = Pittsburgh) are preferred in the case of 
attribute value hierarchies, (assuming they are predicting the same concept and have 
similar statistical evidence), since the coverage of the more general rule will be 
greater.  However, in the case of concept class hierarchies (i.e., a hierarchy used as a 
set of predicted or dependent variables), more specific values (e.g., Pittsburgh rather 
than Pennsylvania) will be preferred since the rules will be more informative1.  

The search heuristic of classification learning systems usually attempts to optimize 
to cover as many positive examples of a class while producing as few false positives 
as possible [7]. If a classifier needs to select nodes from a class hierarchy however, 
simple classification accuracy alone is not sufficient as can be seen by noting that the 
top level rule, (null  ANY, where ANY is the top-level concept in the taxonomy), 
has 100% coverage and accuracy, but no informative value. On the other hand, fine-
grained predictions at the lowest level in a taxonomy are informative but may not be 
easy to learn if there is insufficient data at that level. In general, more specific rules 
are more informative but less accurate. Hence the search for “interesting” rules 
essentially involves a tradeoff between maximizing accuracy and vs. seeking rules of 
maximum granularity (taxonomic specificity). 

3.1   Granularity Metrics 

In order to capture the intuitive preference for fine-grained (low-level) rules, a 
measure is needed of taxonomic depth or specificity (which we refer to as 
granularity). A granularity metric should be 1) proportional to the depth of the rule’s 
concept class in the concept class taxonomy, and 2) independent of the given rule’s 
coverage and accuracy (i.e. data-dependant coverage statistics). 

 

                                                           
1  Other factors may mitigate against these general rules however. Turney [18] pointed out that 

attribute values may have costs associated with them and a rule that predicts a more general 
concept may be preferred over a more specific one if the costs of obtaining the predictive 
attribute values are lower. Model complexity might also influence a user to prefer general 
rules, since a bias towards lower levels specific rules might generate too many rules. 
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Simple Granularity Metric: A simple approach would be to define the granularity 
score as the ratio of i, the number of links between the node and the root, and d, the 
maximum depth of the path along which the node exists. This provides an intuitive 
scoring scheme that satisfies the two conditions, but leads to inconsistencies in the 
general case of trees of varying depth. 

SimpleGranularity = i/d 

Absolute Granularity Metric: The “absolute granularity” of a node n is defined as: 

N

S(n)N
n)anularity(AbsoluteGr

−=  

where N is the total number of non-root nodes in the taxonomy and S(n) is the 
number of nodes subsumed under the node n.  This assigns a value of 0 to the root 
node and a value of 1 for all leaf nodes.  This is generally intuitive, however if 
different parts of a taxonomy vary in how well developed they are, one might not 
want to consider all leaves as equivalently specific.  Moreover, this metric is 
susceptible to changes in the taxonomy, and such changes, if they occur dynamically 
during a learning process, will invalidate the previously determined information based 
on the now-changed granularity score. 

Relative Granularity Metric: 

This measure is sensitive only to d, the depth of n from the root. The root is still 0 
while other nodes approach 1 as depth increases. This measure is also susceptible to 
changes in the taxonomy but only to changes above a node, since it does not involve 
the number of nodes subsumed under a particular node. On the assumption that 
taxonomies are more likely to grow dynamically from the leaves or lower conceptual 
nodes, this measure will less frequently be affected mid-process than would be the 
absolute granularity metric. 

3.2   Rule Quality Measure 

Symbolic rule learning systems typically use accuracy (also known as confidence) of 
individual rules as a selection criterion to pick “interesting” rules. But as explained 
above, accuracy by itself is not sufficient when dealing with taxonomically structured 
concept class values.  In that case one must utilize a measure of rule granularity (Rg) 
as well as a measure of rule accuracy (RAcc ). Although one could simply sum these, a 
weighted linear combination is more desirable, since it allows users to select an 
appropriate weighting scheme that suits their preferences: 

LQ(R,w) = w(RAcc ) + (1-w)(Rg) 

This allows users to explore the models (rule sets) produced by the system under 
varying emphases on predictive granularity vs. predictive accuracy. 
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3.3   Model Evaluation 

Just as classification accuracy alone is insufficient to guide the rule selection process 
during learning within taxonomic classes, it is also insufficient for evaluation of the 
performance of a generated model (rule set). A lower-level, more specific rule is more 
informative at a given level of accuracy than is a more general rule. Instead of giving 
equal weight to all correct predictions, a weighted value proportional to the depth of 
the predicted class node along the path between the root node and the actual class 
value node can be used to formulate a quality score for evaluating the classification 
performance: 

HierarchicalWeighted Accuracy = 100 xΣc(i/d)/N 

where for each prediction: c = correctness, i = the level of the predicted class in the 
class taxonomy, and d = the total depth of the tree path on which the predicted class 
is, and N = total number of predictions made by the classifier. For example consider a 
test set in the cars database, (Figure 4) with 10 instances, all of which having the same 
concept class value, Ford.  

 

Fig. 4. Cars database taxonomy 

If the model predicted all 10 cases as FORD, then its quality value would be: 100 x 
(10 x 1) / 10 = 100%.  If all 10 were predicted to be TOYOTA the quality value 
would be 0. But if 5 of the 10 predictions were US and 5 were Ford, then the accuracy 
of the model is: (100 x ((5 x 0.5) + (5 x 1))) / 10 = 75%. In this example, each 
prediction of type Ford received a value of 1 and each prediction of type US received 
a value of 0.5, since the node US is halfway between the node FORD and the root 
node in the concept class taxonomy. Such differential weighting schemes proportional 
to the depth of the class node capture the notion that there is some information loss 
when a “correct” higher-level coarse-grained prediction is made. However this 
approach fails to distinguish between misclassification errors among sibling class 
nodes vs. error between more distant nodes or the differential costs of different 
misclassifications, a subject for future work.   

4   Empirical Study 

We conducted an empirical study to demonstrate the tradeoffs between predictive 
accuracy and predictive granularity. Three real world data sets, the Soybean data set, 
the Pittsburgh Bridges data set, and the Imports data set obtained from the UCI-Irvine 

Toyota Honda Ford Dodge 

Japan US

ANY
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ML data repository [4], were used. The data sets were chosen based on the following 
criteria: large number of concept-classes, and available taxonomic grouping over the 
set of concept-classes.   

In the Soybean domain data set there are 683 instances. The task is to diagnose 
soybean diseases. There are 19 classes and 35 discrete features describing leaf 
properties and various abnormalities. The set of 19 classes have been grouped into a 
two-level concept-class taxonomy as shown in Figure 5. 

 

Fig. 5. Soybean concept-class taxonomy 

In the Pittsburgh Bridges data set [16], each bridge is described using seven 
specification properties (e.g., the river and location of the bridge), and five design 
properties (e.g., the material used). There are 108 instances in this data set. In this 
study the learning task was to predict the type of bridge, given the seven specification 
properties. There are eight types of bridges: wood, suspense, tied-a, not-tied, cantilev, 
cont-t, simple and arch. The Bridges data set’s eight concept-class values can be 
grouped into a two level taxonomy as shown in Figure 1. 

The Imports data set [4] consists of 15 continuous, 1 integer and 10 nominal-
valued attributes. For this study, the following attributes were used to predict the 
“make” of the car: symboling, fuel-type, aspiration, num-of-doors, body-style, drive-
wheels, engine-location, engine-type, num-of-cylinders, and fuel-system. The data set 
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contains 114 unique instances. The 22 possible concept-class values (i.e., the make of 
the car) were grouped into a two-level hierarchy (Figure 6). 

To highlight the tradeoffs between predictive accuracy and predictive granularity 
of the resulting hierarchical classification models, a series of experiments were 
conducted using the weighted linear quality metric (Section 3.2) to guide the HRL 
system. The weight w, ranging from 0 to 1, can be used to vary emphasis on either the 
rule confidence, RAcc, or the rule granularity Rg. (Higher w-scores bias the system 
toward higher predictive accuracy; lower w-scores bias the system towards higher 
predictive granularity.) 

 

Fig. 6. Imports data set taxonomy 

To explore the utility of the various proposed granularity metrics, sets of 
experiments were conducted using each of the three granularity metrics (Section 3.1).  
The results obtained with the three granularity metrics at different settings of w in the 
three domains are summarized in Table 1. The table shows the predictive accuracy 
and the predictive granularity of the models (rule sets) generated (Section 3.3). The 
model granularity is the sum of the granularity of all rules in the model. For 
comparison, the simple-granularity metric was used to compute the predictive 
granularity of all final models. The results for soybean data using the simple 
granularity metric are plotted (Figure 7) to highlight the tradeoffs between granularity 
and accuracy scores. 

Results obtained from the HRL experiment with w-score = 1 can be considered as 
experiments using the “flattened” concept-class value set, using all concept classes in 
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the concept-class taxonomy, but ignoring the structural relationships. As expected, the 
experiment with w-score of 1 resulted in models with highest accuracy but lowest 
granularity values, because the learning system was biased to ignore the semantic 
information implicit in the structural relationships among class nodes in the concept-
class taxonomy. But when the w-score was decreased, forcing the learning system to 
consider the prediction granularity along with the prediction accuracy, a significant 
increase in the predictive granularity was observed (for all three sets of experiments 
using different granularity metrics) with a corresponding loss in accuracy. 

Table 1. Accuracy-Granularity scores for experiments using Int-HRL in Soybean, Bridges and 
Imports Domains, respectively 

 

SimpleGranularity AbsoluteGranularity RelativeGranularity  
w-score Accuracy Granularity Accuracy Granularity Accuracy Granularity 

1 63.96 52.84 66.54 50.00 63.36 50.00 

0.9 62.63 69.43 58.94 64.92 60.73 66.25 

0.8 57.40 64.18 53.92 65.81 59.60 62.58 

0.7 51.35 70.04 61.88 66.29 52.66 68.98 

0.6 45.13 86.76 53.41 69.94 54.04 66.55 

0.5 31.22 94.58 51.09 79.18 41.34 71.23 

0.4 30.18 100.00 38.27 86.46 37.53 84.57 

0.3 25.95 100.00 28.87 98.68 21.85 100.00 

0.2 26.32 100.00 21.81 100.00 26.07 100.00 

0.1 30.39 100.00 28.01 100.00 20.11 100.00 

 

SimpleGranularity AbsoluteGranularity RelativeGranularity  
w-score Accuracy Granularity Accuracy Granularity Accuracy Granularity 

1 82.64 58.78 82.70 58.04 84.03 59.44 

0.9 83.45 78.54 82.11 76.65 83.02 77.37 

0.8 83.88 80.37 80.36 79.66 82.52 79.83 

0.7 80.90 85.41 80.17 80.50 82.03 82.27 

0.6 79.62 90.71 79.92 86.44 76.26 80.22 

0.5 74.08 98.84 79.43 86.05 75.05 80.74 

0.4 69.60 100.00 76.69 86.48 72.42 83.87 

0.3 52.74 100.00 76.36 88.17 45.19 100.00 

0.2 49.15 100.00 50.94 100.00 39.35 100.00 

0.1 45.97 100.00 48.47 100.00 36.97 100.00 

SimpleGranularity AbsoluteGranularity RelativeGranularity  
w-score Accuracy Granularity Accuracy Granularity Accuracy Granularity 

1 72.02 57.05 69.96 57.47 66.80 59.36 

0.9 57.58 80.73 59.04 78.48 59.68 83.35 

0.8 60.52 85.82 57.55 86.09 58.33 80.24 

0.7 54.36 90.54 57.55 88.03 57.23 84.16 

0.6 55.85 95.30 58.44 91.34 53.77 86.62 

0.5 49.48 100.00 56.64 95.21 52.25 92.88 

0.4 51.37 100.00 52.75 99.16 50.89 94.68 

0.3 44.27 100.00 41.91 100.00 39.86 100.00 

0.2 41.36 100.00 40.35 100.00 39.27 100.00 

0.1 36.43 100.00 42.64 100.00 29.44 100.00 
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Fig. 7. Accuracy vs. Granularity scores for models generated using the Int-HRL system. Each 
data point is the average of 10 tests in a 10-fold cross validation experiment 

5   Discussion 

HRL demonstrates the ability to learn in a space of taxonomically structured 
(dependent) classes. It produces hierarchical classification models that can be used to 
classify new instances at differing levels of generality depending on the information 
available. The use of concept class hierarchies (as opposed to attribute and attribute-
value hierarchies) introduces new research issues concerning the heuristics used to 
estimate the quality of rules.  A tradeoff exists between rule accuracy and granularity 
(specificity) and measurement of the latter is somewhat ambiguous. We introduced 
three possible metrics for concept-class granularity, each with advantages and 
disadvantages but it is not yet clear if one is consistently superior to the others.  
Preliminary results highlight the tradeoffs between predictive granularity and 
predictive accuracy and indicate similar behavior for the three granularity metrics in 
each of the domains.  

References 

1. Almuallim, H., Akiba, Y., and Kaneda, S. (1995). On handling tree-structure attributes in 
decision tree learning. In Proc. of the 12th Intl. Conf. on Machine Learning, Morgan 
Kaufmann 

2. Aronis, J. M., Provost, F. J. and Buchanan, B. G. (1996). Exploiting background 
knowledge in automated discovery. In Proc. of the 2nd Intl. Conf. on Knowledge Discovery 
and Data Mining, pp: 355--358, Menlo Park, CA, AAAI Press. 

3. Aronis, J. M. and Provost, F. J. (1997). Efficient data mining with or without hierarchical 
background knowledge. In Proc. of the 3rd Intl. Conf. on Knowledge Discovery and Data 
Mining, New Port Beach, CA. 

4. Blake, C.L. & Merz, C.J. (1998). UCI Repository of machine learning databases 
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of 
California, Department of Information and Computer Science. 

5. Breiman, L., Friedman, J. H., Olsen, R. A., and P. J. Stone (1984). Classification and 
regression trees. Wadsworth International Corp., CA. 



Knowledge Discovery Using Concept-Class Taxonomies 461 

6. Buchanan, B. G. and Mitchell, T. M. (1978). Model-directed learning of production rules. 
In D Waterman and F Hayes-Roth, editors, Pattern Directed Inference Systems. Academic 
Press., New York, NY. 

7. Fürnkranz. J. (1999) Separate-and-Conquer Rule Learning.  Artificial Intelligence Review 
13(1) pp:3-54, 1999.  

8. Kaufmann, K. A. and Michalski, R. S. (1996). A Method for Reasoning with Structured 
and Continuous Attributes in the INLEN-2 Multistrategy Knowledge Discovery System. 
In Proc. of the 2nd Intl. Conf. on Knowledge Discovery and Data Mining, pp: 232-238  

9. Koller, D. and Sahami, M. 1997 Hierarchically Classifying Documents Using Very Few 
Words. In Proc. of the 14th Intl. Conf. on Machine Learning, pp. 170-178, San Francisco, 
CA: Morgan Kaufmann. 

10. Krenzelok, E., Jacobsen T., and Aronis J. M. (1995) Jimsonweed (datura-stramonium) 
poisoning and abuse: an analysis of 1,458 cases. In Proc. of North American Congress of 
Clinical Toxicology, Rochester NY. 

11. McCallum, A., Rosenfeld, R., Mitchell, T. and Nigam, K. (1998) Improving Text 
Classification by Shrinkage in Hierarchy of Classes. In Proc. Of the 15th Intl. Conf. in 
Machine Learning.  

12. Michalski, R. S. (1980). Inductive Rule-Guided Generalization and Conceptual 
Simplification of Symbolic Descriptions: Unifying Principles and Methodology. 
Workshop on Current Developments in Machine Learning. Carnegie Mellon University, 
Pittsburgh, PA. 

13. Pazzani, M.,  Merz, C., Murphy, P., Ali, K., Hume, T.  and Brunk, C. (1994). Reducing 
Misclassification Costs. In Proc of the 11th Intl. Conf. of Machine Learning, New 
Brunswick. Morgan Kaufmann 

14. Provost, F. J. and Buchanan, B.G. (1995). Inductive Policy: The Pragmatics of Bias 
Selection. Machine Learning (20).  

15. Quinlan, J. R.  (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann, San 
Mateo, CA. 

16. Reich, R. & Fenves. R. (1989). Incremental Learning for Capturing Design Expertise. 
Technical Report: EDRC 12-34-89, Engineering Design Research Center, Carnegie 
Mellon University, Pittsburgh, PA. 

17. Taylor, M. G., Stoffel K., and Hendler J. A. (1997) Ontology-based Induction of High 
Level Classification Rules. In Proc. of the SIGMOD 

18. Turney, P. D., (1995). Cost-sensitive classification: Empirical Evaluation of a Hybrid 
Genetic Decision Tree Induction Algorithm, Journal of Artificial Intelligence Research, 2, 
March, 369-409. 


	Introduction
	Hierarchical Rule Learning Using Concept Class Taxonomies
	Working with (Dependent) Concept Class Taxonomies
	Granularity Metrics
	Rule Quality Measure
	Model Evaluation

	Empirical Study
	Discussion
	References



