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Abstract. The particle filter has attracted considerable attention in vi-
sual tracking due to its relaxation of the linear and Gaussian restrictions
in the state space model. It is thus more flexible than the Kalman filter.
However, the conventional particle filter uses system transition as the
proposal distribution, leading to poor sampling efficiency and poor per-
formance in visual tracking. It is not a trivial task to design satisfactory
proposal distributions for the particle filter. In this paper, we introduce
an improved particle filtering framework into visual tracking, which com-
bines the unscented Kalman filter and the auxiliary particle filter. The
efficient unscented auxiliary particle filter (UAPF) uses the unscented
transformation to predict one-step ahead likelihood and produces more
reasonable proposal distributions, thus reducing the number of particles
required and substantially improving the tracking performance. Experi-
ments on real video sequences demonstrate that the UAPF is computa-
tionally efficient and outperforms the conventional particle filter and the
auxiliary particle filter.

1 Introduction

The particle filter (PF), also known as sequential Monte Carlo or Condensation
[1], has been extensively studied for the sequential time series inference due to
its relaxation of the linearity and Gaussianity constraints of the Kalman filter
(KF). This method represents the posterior distribution of the states with a
group of discrete samples/particles. During the filtering process, these particles
are updated to maintain the posterior with the importance sampling technique.
In theory the PF algorithm can deal with any nonlinearities or distributions.

In the context of computer vision, its applications includes visual tracking
[2, 3, 4, 5, 6], robot localisation [7], structure from motion [8] etc. Despite its suc-
cessful application in those cases, it usually requires a considerable amount of
discrete particles to effectively approximate the continuous probabilistic distri-
butions; this results in low efficiency and even prohibitive computational burden
for high dimensional state space problems. One solution is to design “optimal”
proposal sampling distributions for the importance sampling process, generating
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less particles in the low posterior probability areas, which contribute little to the
state estimation.

The conventional PF [2] for visual tracking adopts the dynamic transition
prior (the probabilistic model of the states’ evolution) as its proposal distribu-
tion. When the dynamic motion model can not capture the subject’s motion
accurately, the motion predicted by the prior deviates from the true trajectory.
This occurs frequently when tracking with a conventional particle filter. In such
cases, the likelihood distribution is situated in the prior’s tail and sampling from
such a prior fails to generate sufficient particles in the high posterior areas [9].
Several approaches have been advanced to relocate the particles to the domi-
nant modes in the likelihood or posterior distribution space with a stochastic or
deterministic optimisation method [3, 4, 5, 10, 11].

Alternatively, a learned dynamic model instead of a simple predefined auto-
regressive model yields better sampling [12, 13]. Nevertheless, such approaches
are usually only available for specific motions such as cyclic human walking.

Another way is to design a better proposal. As an ad hoc approach, in [14] an
auxiliary colour tracker is used to generate proposal distributions for the main
tracker. The limitation of this method is that the auxiliary tracker might fail
and produce false proposal distributions. A more general approach is “optimal
filtering” [15]. It has been shown that the “optimal” importance function should
take the most recent observations into consideration [15].

An elegant solution to this problem is the auxiliary particle filter (APF)
[9] which generates particles from an importance distribution depending on the
most recent observations and then sample from the estimated posterior using
this importance distribution. APF has been shown to outperform traditional
Condensation algorithm in many applications [7, 9]. In [6] Nait-Charif et al
have compared APF and Condensation in the context of tracking a person in
an overhead view, and better performances are observed when using the APF
algorithm. But the improvement is very limited. The reason is that the APF
algorithm cannot approximate accurately the one-step ahead likelihood which
plays an important role in the algorithm. In this paper, we use an unscented
transformation (UT) to alleviate this problem (more discussion is presented in
Section 2).

The KF can be used to incorporate the current observation into the PF and
consequently to improve the distribution proposal. The unscented particle filter
(UPF) is a combination of the unscented Kalman filter (UKF) and the generic
PF [16] which has proven to be a better solution for particle filtering based visual
tracking [17, 18].

In the context of signal processing, Andrieu et al combines UT, UKF and
APF for a jump Markov system and they obtain promising performances in the
application of time-varying autoregressions [19]. Our work is motivated mostly
by their strategy.

In this paper we introduce the enhanced importance sampling strategy —
the UAPF technique, which uses the UKF to approximate the one-step ahead
likelihood for the APF. At the same time, the UKF generates the proposal
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distributions as the UPF does. This step can utilise the results obtained by
the previous UT approximation step, hence little extra computation is involved.
This approach then yields efficient sampling and substantial improvement over
the conventional PF and the APF algorithm. We apply the UAPF to the visual
tracking problem. Experiments on real video sequences demonstrate that the
UAPF is computationally efficient and outperforms both the conventional PF
and APF.

The structure of the paper is as follows. After the introduction in Section 1,
we discuss the optimal sampling technique and present the UAPF algorithm in
detail in Section 2. In Section 3 we discuss the application to visual tracking.
Experiments on real video sequences are also presented in Section 3, followed by
concluding remarks in Section 4.

2 The Unscented Auxiliary Particle Filter

To make this paper self-contained, we first briefly review the technique of Monte
Carlo Bayesian filtering, which is described in more detail in [1]. We then sum-
marise the proposed auxiliary particle filter algorithm. Essentially it is an im-
plementation of the APF depending on the UKF. This sampling strategy leads
to an enhanced efficient importance sampling distribution and an accurate ap-
proximation over the conventional APF. Appealingly, this combination does not
introduce much extra computation, which is a critically important factor in real-
time visual tracking.

2.1 Bayesian Filtering and the Particle Filter

Visual tracking is usually formulated as Bayesian filtering. Given the Markovian
dynamic model p(xt|xt−1):

xt = g(xt−1,ut) (1)

and the observation model p(zt|xt):

zt = h(xt,vt) (2)

at time t, the task is to infer the latent state vectors xt based on the observa-
tion sequences z1:t. In Eqs. (1) (2), g(·, ·) and h(·, ·) are the system dynamics
model and observation model, respectively. Usually they are highly nonlinear.
The process and measurement noises at time t are given by ut and vt.

The inference is achieved by

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1) (3)

where the prior is the previous posterior propagated across the temporal axis,

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (4)

When the dynamic and observation models are nonlinear and/or non-
Gaussian, the above posterior cannot be analytically computed and one has to
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resort to numerical approximations such as particle filters. In the visual tracking
problem, the dynamic model can be approximated by a linear model while the
observation model is usually highly nonlinear.

The essential idea of the particle filter is that the posterior is approximated
by a series of discrete particles, each of which includes a state vector xt and an
associated weight wt: {x(n)

t , w
(n)
t }N

n=1, where
∑N

n=1 w
(n)
t = 1 holds. The poste-

rior is formulated as p(xt|z1:t) =
∑N

n=1 w
(n)
t δ(xt − x(n)

t ), where δ(·) is the Dirac
function. Then the integral in Eq. (4) is tractable with this numerical approxi-
mation.

Suppose we can sample the particles from an importance density q(·), i.e.
x(n)

t ∼ q(xt|x(n)
t−1, z1:t), (n = 1, . . . , N), then each particle’s weight is set to

w
(n)
t ∝ p(zt|x(n)

t )p(x(n)
t |x(n)

t−1)

q(xt|x(n)
t−1, z1:t)

. (5)

Before or after the importance sampling step, a selective re-sampling step is
adopted to ensure the efficiency of the particles’ evolution [1].

To summarise, we present the complete algorithm for a conventional PF in
Fig. 1.

– Initialisation:
Set t = 1. Sample N particles {x(n)

t−1, w
(n)
t−1}N

n=1 from the prior p(x0).
– Re-sampling:

Re-sample to obtain N replacement particles {x(n)
t−1,

1
N
}N

n=1, according to the

weights w
(n)
t−1.

– Importance sampling:
For n = 1, . . . , N , sample N particles x

(n)
t from the importance proposal

q(xt|x(n)
t−1, z1:t), and evaluate the weights according to Eq. (5). Then normalise

the weights.
– Set t = t + 1, go to the Re-sampling step to process the next frame.

Fig. 1. The particle filtering algorithm

The proposal distribution q(·) is critically important for a successful parti-
cle filter because it concerns putting the sampling particles in the useful areas
where the posterior is significant. It is known that sampling using the dynamic
transition model as the proposal distribution is usually inefficient when the like-
lihood is situated in the prior’s tail or it is highly peaked. In visual tracking the
dynamical models cannot accurately predict the true motion trajectory due to
unexpected motion. In such cases the conventional PF which samples from the
dynamic model is quite likely to put most of the particles in the wrong areas of
the state space.
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2.2 The Auxiliary Particle Filter

The APF is an improved sampling strategy which performs approximately “op-
timal” sampling and utilises the most recent observations [9]. It is a one-step
look-ahead procedure, in which a particle is propagated to the next time frame in
order to help the sampling from the posterior. However, the predictive likelihood
is only available by an approximation, i.e., the predictive likelihood p(zt|x(n)

t−1)
is approximated by p̃(zt|x(n)

t−1).
In order to put the particles in useful areas of the state space, the APF

re-samples the particles {x(n)
t−1,

1
N }N

n=1 according to the values π
(n)
t = w

(n)
t−1 ·

p̃(zt|x(n)
t−1). Similar to the standard importance sampling, we sample from a pro-

posal distribution x(n)
t ∼ q(xt|x(n)

t−1, z1:t), then the weight associated to each
particle should be set to

w
(n)
t ∝ p(zt|x(n)

t )p(x(n)
t |x(n)

t−1)

q(xt|x(n)
t−1, z1:t)p̃(zt|x(n)

t−1)
. (6)

In [9] Pitt et al use the values likely to be generated by the dynamic model
p(xt|x(n)

t−1) as the approximation. Although the APF outperforms the conven-
tional PF in many applications [7, 9], as pointed out in [19], this approximation
of the predictive likelihood could be very poor and lead to performance even
poorer than the standard importance sampling if the dynamic model p(xt|xt−1)
is quite scattered and the likelihood p(zt|xt) varies significantly over the prior
p(xt|xt−1). In [6] the authors observe that the APF achieves a little improvement
over the stand particle filters in the context of visual tracking.

2.3 The Unscented Transformation and the
Unscented Kalman Filter

In this subsection we briefly introduce the UT and UKF. The UKF is the best
Kalman filter for nonlinear estimation applications. By including the noise com-
ponent in the state space, the UKF can be implemented naturally using the UT,
which is the basis of UKF and UPF.

Using the UT, the mean and covariance of the Taylor expansion of a nonlin-
ear transformation can be guaranteed to be accurate up to second order. Instead
of linearizing using Jacobian matrices, the UT/UKF uses a deterministic sam-
pling strategy to capture the mean and covariance with a small set of carefully
selected points named “sigma points” [20]. Therefore, in accuracy, the UT/UKF
is better than the extended Kalman filter which approximates the nonlinear
transformation with a first-order linearisation. The UKF is also more computa-
tionally efficient due to its avoiding the calculation of Jacobian matrices. Note
that, unlike the PF, both the EKF and UKF assume unimodal distributions.

Consider the nonlinear tracking problem modelled by the state-space equa-
tions (1) and (2), we select 2L+1 scaled sigma points {x̂(l)

t−1, ŵ
(l)
m,t−1, ŵ

(l)
P,t−1}2L

l=0

at time frame t − 1, where ŵ
(l)
m,t−1 and ŵ

(l)
P,t−1 are the weights associated with
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each sigma point1. Then the sigma points are propagated through the nonlinear
dynamic system eq. (1) (l = 0, . . . , 2L),

x̂(l)
t|t−1 = g(x̂(l)

t−1,0). (7)

Compute the scaled mean and covariance of x̂(l)
t|t−1

x̃t|t−1 =
L∑

l=0

ŵ
(l)
m,t−1x̂

(l)
t|t−1, (8)

P̃t|t−1 =
L∑

l=0

ŵ
(l)
P,t−1(x̂

(l)
t|t−1 − x̃t|t−1)T(x̂(l)

t|t−1 − x̃t|t−1). (9)

Note that we approximate xt|t−1 and Pt|t−1 with the sample mean and co-
variance of the sigma points set. With the measurement model Eq. (2), we can
similarly approximate z̃t|t−1 and the covariance by calculating the sample mean
and covariance of ẑ(l)

t|t−1 = h(x̂(l)
t|t−1,0), l = 0, . . . , 2L. In order to implement

the UKF, the cross-covariance needs to be calculated in the same way. Finally
through time update and measurement update we can estimate xt|t and Pt|t with
the Kalman filter [20]. With Eq. (8) and the likelihood model the predicted like-
lihood p̃(zt|x(n)

t−1) can be easily calculated. Moreover, this method also has the
advantage of being able to compute the proposal q(x(n)

t |x(n)
t−1, z1:t) [16, 17].

2.4 The Unscented Auxiliary Particle Filter

Based on the APF and UKF techniques presented above, we use the UT and
UKF to compute both the predicted likelihood p̃(zt|x(n)

t−1) and the importance
proposal q(x(n)

t |x(n)
t−1, z1:t). The second step is performed exactly the same as

the UPF does. See [16] for more details. This combination yields an enhanced
importance sampling strategy—the unscented auxiliary particle filter. For clarity
we summarise the unscented auxiliary particle filter algorithm in Fig. 2. Note
that a Markov transition kernel with the posterior distribution, such as Metroplis
or Gibbs kernel, can be applied to each particle to rejuvenate the trajectory of the
particles. This additional step can be used to deal with complex high-dimensional
models [16, 22].

3 Visual Tracking with the Unscented Auxiliary Particle
Filter

In this section, we describe a visual contour tracking system based on the UAPF
technique.

1 Refer to [21] for how to select the sigma points and calculate the weights.
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– Initialisation:
Set t = 1. Sample N particles {x(n)

t−1, w
(n)
t−1}N

n=1 from the prior.
– Auxiliary re-sampling:

Re-sample to obtain N replacement particles {x(n)
t−1,

1
N
}N

n=1, according to the

auxiliary weights π
(n)
t = w

(n)
t−1 · p̃(zt|x(n)

t−1), with normalisation
∑N

i=1 π
(n)
t = 1.

The predicted likelihood is obtained by unscented transformation.
– Unscented importance sampling:

1. Update particles x
(n)
t . Estimate the mean and covariance of the state vector,

x̃
(n)
t and P̃

(n)

t|t−1, with the unscented Kalman filter.

2. Sample N particles {x(n)
t , w

(n)
t }N

n=1 from the proposal distribution

q(x
(n)
t |x(n)

t−1, z1:t) = N (xt; x̃
(n)
t , P̃

(n)

t|t−1),

where N (·; ·, ·) is the Gaussian distribution.
3. Compute the particle weights as

w
(n)
t =

p(zt|x(n)
t )p(x

(n)
t |x(n)

t−1)

p̃(zt|x(n)
t−1)q(x

(n)
t |x(n)

t−1, z1:t)
.

– Set t = t + 1, go to the Auxiliary re-sampling step to process the next frame.

Fig. 2. The unscented auxiliary particle filtering algorithm

3.1 The State Space and Dynamics Model

The visual contours we track are elliptic-shaped. Instead of using B-spline rep-
resentations to model relatively complex shapes [18, 23], we model the shape
representations with an ellipse which can be modelled by 5 parameters x =
{(Ox, Oy), (Rx, Ry), θ}, which are the centre, axis lengths and orientation angle,
respectively, as depicted in Fig. 3.

As most of the motions are full of uncertainties, it is quite difficult to model
these motions with an auto-regression (AR) model (or more complex, a mix-
ture of AR models), except for some cyclic motions such as human walking [24].
Even worse, in many scenarios, the camera itself is moving randomly, so we have
to consider a combination of the camera’s complex movement (pan/tilt/zoom)
and the tracked object’s motion, it is more unrealistic to learn the dynamic
model. Thus it could be problematic to use a predefined first- or second-order
AR model to capture the motion of a long video sequence. Consequently to use
a motion prior as the sampling proposal could fail to generate particles in the
area where the likelihood is significant. However, it is not this paper’s inten-
tion to explore an elegant motion model. Rather, we assume a constant velocity
model for the ellipse centre’s motion while a Gaussian random walk for the scale
change and the orientation angle’s motion, because compared with the global
motion of the object, these changes are relatively slower and more difficult to
capture.
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3.2 The Observation Model and Likelihood Model

The ellipse is centred at (Ox, Oy) and K measurement lines ϕ(k), (k = 1, . . . , K)
are constructed passing through the intersection point (C(k)

x , C
(k)
y ), (k = 1, . . . , K)

and the ellipse centre (See Fig. 3). Given the current state x, the ellipse in the
image coordinate is determined. The measurement line ϕ(k) is also determined.
By jointly solving the ellipse equation and the measurement line equation, the
intersection point (C(k)

x , C
(k)
y ) can be easily obtained. The observation Eq. (2)

is written as,

zt = h(xt,vt) = (C(k)
x , C(k)

y ) + vt, (k = 1, . . . , K), (10)

as stated in Eq. (2), vt is the measurement noise. In this paper we assume it is
a Gaussian distribution.

Calculating the likelihood is based on this ellipse. As in [18, 23] a Canny
edge detector is applied along each measurement line ϕ(k) which has a fixed
length LM . Due to the cluttered background, multiple hypothesis points z(k) =
{z(k)

1 , . . . , z
(k)
nl }2, may be detected. Among them, at most one point is the true

observation belonging to the tracked shape. Under the assumption that (1) the
true edge point is normally distributed with zero mean and variance σ2, (2) the
clutter is a Poisson process with density λ, and (3) the density of the clutter
features is uniform on the measurement line, the likelihood of the observation at
measurement line k is [2, 18],

p(z(k)
t |xt) ∝ 1 +

1√
2πσhpλ

nl∑
i=1

exp

[
−|z(k)

i |2
2σ2

]
, (11)

where hp is the prior probability that no true contour edge is detected and |z(k)
i |

is the distance of the detected feature point i from the contour. nl is the number
of detected feature points.

Assuming that the feature outputs on a distinct normal line are statistically
independent, the overall likelihood for K lines which are roughly even around
the ellipse is

p(zt|xt) =
K∏

k=1

p(z(k)
t |xt). (12)

Note that the innovation calculation in [17], which is needed by the mea-
surement update, involves estimation of the mixing weight associated with each
detected point; we avoid this estimation by assuming the clutter is uniformly
distributed along the measurement line and the detected edges have the same
intensities.

2 In the 2D image coordinate, z
(k)
i is (C

(k)
x , C

(k)
y ). For clarity we omit the time

index t.
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Fig. 3. The state space and the observation model

3.3 Evaluation

We evaluate the UAPF tracking system on two video sequences3. The resolution
of both of the image sequences is 128 × 96 and they are sampled at 10 frames
per second, both in typical office environments.

In these experiments, all the parameters concerned with the particle filter
and the measurement process are the same: N = 500 particles, the length of
measurement line LM = 8 pixels, σ = 4 pixels and K = 25 measurement rays.
We start the particle filter by hand. That means the initial states of the particles
are manually tuned and the parameters about the dynamical AR model are
obtained by analysing the first several frames.

As pointed out in [6], similar results are observed in our experiments that
the auxiliary particle filter could merely trivially improve the tracking perfor-
mances over the conventional PF, when tracking poorly modelled motion. So
in this section we only present the comparison between the results obtained by
conventional PF and those by the UAPF.

Fig. 4 shows the tracking results on the face tracking with a cluttered back-
ground. We see that at frame 18 the conventional PF is easily distracted by the
cluttered background when the the head moves in a direction different from what
the dynamical model predicts. For the UAPF technique, the current observation
is taken into account, so it can get a relatively accurate predicted likelihood
which is utilised to generate better proposal distribution. Consequently the par-
ticles are placed effectively in those useful areas with significant posterior. Then
the UAPF can track the image sequence successfully.

Fig 5 shows the results on a challenging image sequence. The human face is
moving back and forth quite quickly. The tracker is easily confused by the clutters
when the prior fails to predict the object’s motion. The conventional PF tracker
fails and never recovers from frame 7 on. However, with the better proposal

3 The test image sequences (courtesy of Dr. Birchfield) are available at the URL
address: http://robotics.stanford.edu/∼birch/headtracker/seq/

http://robotics.stanford.edu/~birch/headtracker/seq/
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Fig. 4. Tracking results with the conventional PF (top) and the UAPF (bottom). From

left to right, the frame numbers are 3, 18, 31, 40 and 50. From frame 18 on, the motion

of the tracked object moves towards the inverse direction of the pre-assumed motion

direction which makes the conventional PF lose the target. In contrast, the UAPF can

track the whole image sequence successfully

Fig. 5. Tracking results with the conventional PF (top) and the UAPF (bottom).

From left to right, the frame numbers are 4, 7, 15, 30. At frame 7, the conventional PF

tracker is trapped in a false region when the subject’s face changes its motion direction

suddenly. The conventional PF tracker fails for most the remaining frames and never

be recovered

distributions, the UAPF tracker can track the whole sequence successfully. Please
see the tracking video for details4.

4 Discussion and Conclusion

We have introduced an enhanced importance sampling technique, termed UAPF,
for particle filtering in the framework of visual tracking. The UAPF uses the
unscented transformation to efficiently predict one-step ahead likelihood and
produces more reasonable proposal distributions. We further apply this strategy

4 The tracking results described in this paper can be accessed at the URL address:
http://www.cs.adelaide.edu.au/∼vision/demo/

http://www.cs.adelaide.edu.au/~vision/demo/
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to a variety of visual tracking sequences. Experiments on these real-world video
sequences show that the UAPF is computationally efficient and outperforms the
conventional particle filter and the auxiliary particle filter.

As pointed out in Section 2.4 this method can integrate Markov chain Monte
Carlo (MCMC) steps to explore the posterior space, yielding an improved hy-
brid Monte Carlo filtering [5]. We plan to apply this combination to a high-
dimensional problem such as articulated human tracking in which the conven-
tional particle filter is usually deficient [4, 5, 25].
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