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Abstract. Support Vector Machines (SVMs) have been used success-
fully for many classification tasks. In this paper, we investigate apply-
ing SVMs to classification in the context of image processing. We chose
to look at classifying whether pixels have been corrupted by impulsive
noise, as this is one of the simpler classification tasks in image processing.
We found that the straightforward application of SVMs to this problem
led to a number of difficulties, such as long training times, performance
that was sensitive to the balance of classes in the training data, and
poor classification performance overall. We suggest remedies for some of
these problems, including the use of image filters to suppress variation in
the training data. This led us to develop a two-stage classification pro-
cess which used SVMs in the second stage. This two-stage process was
able to achieve substantially better results than those resulting from the
straightforward application of SVMs.

1 Introduction

In this paper we investigate the application of Support Vector Machines (SVMs)
to the image processing domain, in particular the application of SVMs to the
classification of features within images. We consider a common problem of image
processing, the removal of impulsive noise corruption from images, and develop
Support Vector Machine classifiers to detect pixels in an image that are corrupted
by impulsive noise.

Impulsive noise is a form of corruption in which the values of a random
number of pixels in an image are lost and are replaced by values which are
both random and independent of the pixels that are replaced. Impulsive noise
corruption can be modelled by salt-and-pepper noise, in which corrupt pixels
take on a value at the minimum or maximum pixel intensity (corresponding to
a value of either 0 or 255 for 8-bit images) or by a more general model in which
corrupt pixels take on a random value distributed uniformly over the range of
possible pixel values. This paper deals with noise coming from the second model.

It is desirable to remove impulsive noise corruption from images, both to
improve the visual appearance of the image, and to remove corrupt pixel values
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from further image processing. Many noise filters have been proposed to remove
noise corruption from images by replacing pixels corrupted by impulsive noise
with an estimate of the pixels’ original values in an attempt to reconstruct
the original noise-free image. We decompose the problem of removing impulsive
noise into two tasks: identifying the noisy pixels in an image, and determining a
suitable value with which to replace each noisy pixel.

In this paper, we concentrate on the detection of pixels corrupted by impulsive
noise. We treat the detection of noise as a classification problem, and develop
Support Vector Machines for categorising the pixels of an image into two groups:
pixels corrupted by noise and pixels that represent image structure. A Support
Vector Machine classifier is trained on a set of pixels labelled as either “noise”
or “uncorrupt” and, following training, its performance is evaluated on a set of
unlabelled pixels.

Pixels corrupted by impulsive noise are random-valued and carry no infor-
mation about the value of the original pixel, and so pixels identified as noise
by the SVM can be reconstructed only through interpolation using their non-
corrupt neighbours. For some tasks, such as statistical analysis of an image, it is
sufficient to identify the corrupt pixels of an image so that they can be omitted
from further processing, since pixel replacement through interpolation adds no
additional information for analysis.

This paper begins with a brief introduction to Support Vector Machine classi-
fiers. The proposed noise detector is presented in terms of the problems that had
to be overcome in the development of an SVM-based approach. In section 2.1 we
describe the generation of the training dataset. Next in section 2.2 we improve
the distinction between noisy and uncorrupt pixels. In section 2.3 we suppress
variation within the class of uncorrupt pixels to improve the accuracy of pixel
classification. Finally, in section 2.4 we present a composite approach based on
median filtering and a Support Vector Machine, in which a median filter identifies
impulsive noise in an image and an SVM corrects misclassifications to prevent
image structure from being incorrectly classified as noise.

1.1 Support Vector Machine Classifiers

Support Vector Machines are a machine learning tool for performing such tasks
as supervised classification, regression and novelty detection. They have been
applied to a wide range of real-world problems including text categorisation,
human face detection in images, hand-written character recognition, image re-
trieval, and the detection of microcalcifications in mammograms [6, 2, 10, 5].

SVM classifiers learn a particular classification function from a set of labelled
training examples. The training set consists of n training examples, with each
example described by a d-dimensional vector, x ∈ Rd, labelled as belonging to
one of two categories, y ∈ {−1, 1} referred to as the “positive class” and the
“negative class”. Following training, the result is an SVM that is able to classify
previously unseen and unlabelled instances, x, into a category based on examples
learnt from the training set.
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Fig. 1. SVM classification of two classes in a two-dimensional input space

Geometrically, the Support Vector Machine classifier aims to construct a
hyperplane that divides Rd in two, with all training examples in the positive
class on one side of the hyperplane, and all examples in the negative class on the
other side (see Figure 1). Although there may exist infinitely many hyperplanes
that correctly separate the training data, the best SVM classifier is obtained by
finding the hyperplane with the maximum “margin”. The margin is defined as
the distance between the closest training examples in the positive and negative
classes to the separating hyperplane [1]. The training examples that determine
the margin are known as “support vectors”. A trained Support Vector Machine
classifies unlabelled points according to the side of the hyperplane on which they
fall.

In a typical training set, there will be some examples that unavoidably fall on
the wrong side of the hyperplane’s decision boundary. In this situation, the sep-
arating hyperplane is found by simultaneously maximising the margin between
the two classes while minimising the penalty associated with the misclassifica-
tions in the training set. The optimum hyperplane, defined by (w · x) + b = 0,
is found by solving the following quadratic programming problem:

min
w,b,ξ

1
2 ||w||2 + C

∑n
i=1 ξi (1)

s.t. yi(xi · w + b) ≥ 1 − ξi

ξi ≥ 0 i = 1, . . . , n

where ξi, i = 1, . . . , n are slack variables introduced to allow for examples that fall
on the wrong side of the hyperplane, and C is a positive parameter that controls
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the trade-off between maximising the margin and minimising the training error.
This is equivalent to solving the following Lagrangian dual problem, where αi, i =
1, . . . , n are the Lagrange multipliers:

max
α

∑n
i=1 αi − 1

2

∑n
i=1

∑n
j=1 αiαjyiyjxi · xj (2)

s.t.
∑n

i=1 αiyi = 0
0 ≤ αi ≤ C i = 1, . . . , n

We evaluated two Support Vector Machine algorithms for training, an im-
plementation of the Sequential Minimal Optimisation algorithm [9] and the
SVMlight package [8]. We obtained similar classification results with either al-
gorithm. The results presented in this paper were obtained using SVMlight with
a linear kernel and with the Support Vector Machine parameter C determined
by SVMlight .

2 SVM Detection of Impulsive Noise in Images

Support Vector Machine classifiers learn a particular classification function from
a set of labelled training examples. We created training and testing datasets by
adding between 1%–20% impulsive noise corruption to an existing image, with
the assumption that the original image was initially free of noise and the only
noise contained in the image was the impulsive noise that was added.

We examined the effects that a number of parameters had on the perfor-
mance of the SVM noise classifier. For each set of variables to be evaluated, an
array of ten noise-corrupted versions of the same underlying image was gener-
ated, in which each image contained an equal level of impulsive noise. The first
two images in each set were used to train two Support Vector Machine classifiers
independently, while the remaining eight images in the set were used to evaluate
the performance of the two trained SVM classifiers. The relative performance of
SVMs with different parameter settings was evaluated by calculating the “gen-
eralisation performance” of the SVM. The generalisation performance for each
SVM consisted of the percentage of noisy pixels and valid pixels in the testing
data that were misclassified by the SVM. The misclassification rate was an aver-
age of the misclassifications in the eight test images for the two SVM classifiers
that were trained.

The examples in the training and test sets were described in a nine-dimensional
input space that consisted of the values of each pixel and its eight surrounding
neighbouring pixels. This input space was selected because it retained the rela-
tionship of each pixel to its neighbours, which we hoped would allow a Support
Vector Machine to identify patterns that represented structure such as lines,
edges, and corners, and enable these patterns to be distinguished from impul-
sive noise.
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2.1 Training Set Selection

The performance of a Support Vector Machine classifier is dependent on its
training and so it is important that the training dataset consists of examples
that are representative of the points from the positive and negative classes. We
faced two problems in the selection of our training data: reducing the size of the
training set and balancing the proportion of training examples from the noise
and uncorrupt classes.

The images used in training and testing had dimensions of 512 × 512 pixels.
We found that it was infeasible to create the training set by including every pixel
from an image of these dimensions due to the time required to train an SVM on
a dataset of this size (over 250, 000 examples). An initial attempt to reduce the
size of training dataset was to downsample the training image from 512 × 512
pixels to a smaller 64 × 64 pixels. Impulsive noise was then added to the resized
image and the training data was generated by taking every pixel in this image to
form a training set of roughly 4000 examples. However, this generated a training
set with an uneven proportion of examples from the two classes—the proportion
of training examples labelled as noise matched the proportion of impulsive noise
that was added to the original image. A Support Vector Machine trained on
such a biased dataset was found to get caught in a local optimum in which it
classified every example into the class that dominated the training set; if the
training image contained only 2% impulsive noise, the resulting SVM classified
every test example as an uncorrupt pixel.

The problems of training set imbalance and training set size were both over-
come by creating the training data by randomly selecting 2000 uncorrupt and
2000 noisy pixels from a full-sized image of dimensions 512×512 pixels. This led
to a small training dataset containing 4000 examples with an equal number of
examples coming from both classes. In addition, taking a subset of pixels from
the full-sized image had the advantage that the spatial properties of pixels in
the training image were not affected by resizing the image.

2.2 Improving Class Separation

The generalisation performance of a Support Vector Machine classifier is highly
dependent on the positive and negative classes being linearly separable in the
input space. If the training set contains two classes that are clearly separable
the resulting model will contain few Support Vectors and we conjecture will
generalise well to the test set.

Our datasets contained considerable overlap between the “noise” and “uncor-
rupt” classes. Since we were dealing with noise that takes on a random intensity,
there is a probability that a pixel could be corrupted by noise with a value that is
close to, or identical to, the original pixel value. This leads to training data that
is inseparable, since the same example may be labelled as both a valid pixel and
as noise in the dataset. Furthermore, it is somewhat subjective as to whether
a pixel that differs only marginally from its neighbours represents noise or is a
small feature within the image.
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To overcome this problem, examples in the training and test data were la-
belled as noise only if the original pixel’s value had been changed by more than a
certain threshold. For example, if a pixel of value x was replaced by noise of value
x′, the example would be labelled in the dataset as follows (given threshold T ):

label (x) =

{
uncorrupt, |x − x′| < T

noise, |x − x′| ≥ T
(3)

For the remainder of this paper a noise threshold of 25 is used. Although
this value excludes one-fifth of the possible values for impulsive noise in an 8-bit
greyscale image, it was selected because we believe that impulsive noise with a
value that differs from the original pixel value by 25 or less would be visually
imperceptible in the image. The use of this threshold produced an SVM with
good generalisation performance.

2.3 Reducing the Variation Within the Classes

The detection of impulsive noise in image data is complicated by the large
amount of background variation within images, which requires a large training
set to define. However, if both training and test images were filtered to remove
background structure, while retaining the possible noise in the image, then the
task of the Support Vector Machine would be greatly simplified and, we believe,
the SVM would generalise better to images outside the training set.

We evaluated the use of a filter to remove the background structure of an
image. Training and test images were filtered by either a highpass FIR filter
or the Immerkær background-removal filter [7]. The highpass filter was selected
for its ability to emphasise the impulsive noise in an image—which appears
as high-frequency data in the frequency-domain—making it stand out against
the background of the image. The Immerkær filter was proposed as part of
a method for estimating the level of additive noise in an image in which the
predictable image structure is first removed from the image, leaving only noise
(and fine image detail) remaining. Image structure is removed by filtering the
source image, X, with the following convolution kernel, resulting in the image Y :

Y =

⎛
⎝ 1 −2 1

−2 4 −2
1 −2 1

⎞
⎠ ⊗ X (4)

The convolution kernel is based on two Laplacian filters, and has the effect of
removing all constant, linear, and quadratic variation in the intensity of pixels
within the local window.

The effect of applying the highpass filter and Immerkær filter on an initial
noise-corrupted image is shown in Figure 2. Figure 4 shows the generalisation
performance of a Support Vector Machine trained and tested on images with
no filtering, with a highpass filter, and with an Immerkær filter. The median
difference is described in the next section.
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Fig. 2. Application of pre-processing filters on “Lena” containing 2% noise

2.4 Multistage Classification Using SVMs

Motivated by the significant improvement that the Immerkær background-removal
filter had on the generalisation performance of a Support Vector Machine, we
had the idea of processing images with the median filter. The median filter is a
popular non-linear filter used for removing impulsive noise from images, and is
used at the core of many noise removal algorithms. The median filter is capable
of effectively suppressing impulsive noise, however, it does so at the expense of
the non-corrupt pixels in the image [3, 4]. In particular, the median filter is un-
able to distinguish fine lines from impulsive noise, and so lines in the image are
removed or distorted. We recognised that subtracting the median filtered image
from its non-filtered counterpart would result in an image containing only the
noise in the original image as well as any distortions introduced by the median
filter where it misclassified image structure as noise. A Support Vector Machine
classifier could then be trained to separate noisy pixels from features removed
by the median filter, without the complication of background image variation.

The median filter replaces every pixel with the median value of a surrounding
window of the image. For a (2N + 1) × (2N + 1) window centered around pixel
xi,j , the median filter performs the following operation:

yi,j = median(xi−N,j−N , . . . , xi,j , . . . , xi+N,j+N ) (5)

The “median difference filter” that we developed is described below for source
image X,

Y = |X − Median(X)| (6)

We used a median difference filter with a window size of 3 × 3 pixels in our
research.

Figure 3 shows the result of applying the straight median filter to an initial
noise-corrupted image, and the corresponding median difference image. Figure 4
presents the generalisation performance of a Support Vector Machine that is
applied to the median difference image (corrupted with 2% impulsive noise) and
shows that the median difference SVM classifier clearly outperforms other SVM
approaches.
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Fig. 3. Demonstration of median difference filter on “Lena”. For illustrative purposes
the image contains 10% noise
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3 Comparative Results

In this section we compare the performance of our proposed Support Vector
Machine-based impulsive noise detection algorithm against a noise detector based
upon the median filter for images corrupted by various levels of impulsive noise.
The median filter classifier considers a pixel to be noise if the difference be-
tween its value and the median value of its neighbours is greater than a given
threshold, T :

class(xi,j) =
{

noise, |xi,j − median(i, j)| > T
uncorrupt, |xi,j − median(i, j)| ≤ T

(7)

Many noise filtering algorithms, including those that treat the detection and
removal of noise as a single problem, make use of the median filter—or median
filter classifier—to perform implicit noise detection.

Our experiments were performed on 8-bit greyscale images of dimensions
512×512 pixels, which were corrupted with 1%, 2%, 5%, 10%, and 20% random-
valued impulsive noise. The Support Vector Machine classifier was trained and
tested on images that had been preprocessed with the median difference filter
described in Section 2.4. The results in this paper were obtained using the image
“Lena”, but the trend observed with this image was also observed with other
images.

Table 1 presents the 95% confidence interval for the percentage of misclassi-
fied pixels in the “noise” and “uncorrupt” classes, using both the proposed SVM
classifier and the median filter classifier. These results show that the proposed
SVM-based impulsive noise detector is able to perform well even when the level
of impulsive noise corruption is high. A summary of the statistical significance
of the proposed SVM classifier’s better noise detection is given in Table 2. With
the exception of the classification of image structure in images corrupted by 1%
noise, all tests were statistically significant at below the 5 × 10−5 level of signif-
icance. We conjecture that even images with no noise corruption contain pixels
that differ significantly from their neighbours, and these pixels are incorrectly
classified as noise by the SVM, leading to the slightly higher misclassification
rate for image structure in images containing 1% .

The orginal training dataset consisted of 4000 pixels from a 512 × 512 pixel
image. For an image corrupted with 2% impulsive noise, the training set contains
only 0.78% of the uncorrupt pixels from the image. Thus the results in Tables 1
and 2 show that the proposed SVM classifier is generalising well from a relatively
small training set.

To verify that the Support Vector Machine was indeed learning to identify
the characteristics of noise, and not simply learning to identify corruption in the
training image, a Support Vector Machine that was trained on the image “Lena”
was used to identify noise in the images “Boat” and “Mandrill” (see figure 5).
Two Support Vector Machine classifiers were each trained on two separate noise-
corrupted versions of the image “Lena” containing 2% impulsive noise. The two
trained SVMs were then evaluated on noise classification of eight noise-corrupted
versions of the images “Lena”, “Boat” and “Mandrill”. The median difference
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Table 1. Comparison of median filter noise detector versus proposed SVM noise clas-
sifier

Median Filter Classifier Proposed SVM Classifier
Noise Level Misclassified Misclassified Misclassified Misclassified

Noise Structure Noise Structure
1% 3.65–4.37% 0.735–0.763% 0.692–0.995% 0.770–0.778%
2% 3.78–4.15% 0.996–1.05% 0.637–0.863% 0.914–0.928%
5% 4.75–5.20% 2.08–2.15% 0.829–0.975% 1.17–1.19%
10% 5.87–6.17% 4.79–4.92% 1.05–1.17% 1.46–1.50%
20% 7.81–8.04% 12.3–12.4% 1.65–1.76% 2.23–2.30%

Table 2. Tests for statistical significance of performance improvement of proposed
SVM noise detector

Noise Level P-Value (Noise) P-Value (Structure)
1% 2.78 × 10−7 9.98 × 10−1

2% 3.99 × 10−10 4.83 × 10−5

5% 1.34 × 10−10 4.85 × 10−11

10% 5.97 × 10−13 5.89 × 10−13

20% 3.15 × 10−14 3.42 × 10−16

image was used for all training and test images. Table 3 shows the 95% confidence
interval for the percentage of pixels misclassified by the proposed SVM. For
comparison, we also include results for an SVM that has been trained and tested
on the same underlying image. For example, an SVM that was trained on the
image “Boat” containing 2% impulsive noise was tested on eight other versions
of “Boat” containing 2% noise.

Table 3. Generalisation of proposed SVM to noise detection outside training image

Trained on “Lena” Trained on different noise-
corrupted version of same image

Image Misclassified Misclassified Misclassified Misclassified
Noise Structure Noise Structure

Lena 0.637–0.863% 0.914–0.928% 0.637–0.863% 0.914–0.928%
Boat 1.41–1.62% 2.13–2.16% 1.63–1.86% 1.77–1.81%

Mandrill 5.95–6.48% 14.9–15.7% 11.4–12.1% 6.59–6.93%

We note that performance on “Lena” was better than performance on the
other two images. The classifiers trained on “Lena” and “Boat” were more accu-
rate in classifying noise than in classifying structure. However, the reverse was
true for “Mandrill”. “Mandrill is an image with a large amount of texture and
detail. We conjecture that the high level of variation in the image structure in
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“Mandrill” causes the classifiers trained on this image to be biased towards cap-
turing structural details correctly. This may explain why the classifier’s trained
on “Lena” were more accurate in classifying noise on “Mandrill” than the clas-
sifiers trained on “Mandrill” itself. Also we conjecture that it may be necessary
to include more attributes or to use an SVM with a non-linear kernel to improve
the learning of the underlying image structure.

4 Conclusions

In this paper, we have approached the removal of impulsive noise from an im-
age as a classification problem, and have proposed an impulsive noise detection
algorithm based on Support Vector Machine classifiers. The performance of the
Support Vector Machine classifier was improved by applying domain knowledge
in order to generate a balanced training set, to reduce the overlap between the
positive and negative classes, and to suppress the variation of examples within
each class.

The use of domain knowledge led to a two stage process in which a traditional
noise filtering algorithm, the median filter, was used as a first stage to identify
impulsive noise in an image, and a Support Vector Machine was then used to
correct misclassifications by the median filter. This composite noise classifier
performed significantly better than either the median filter or a Support Vector
Machine classifier individually. Further work could investigate the replacement
of the median filter as a first-stage noise detector with a filter that is appropriate
to the level of noise and type of noise in an image.

The results that we have obtained with multi-stage noise detection indicate
that Support Vector Machines may be worthwhile as the second stage in a two-
stage classification process. Such an approach could be applied to areas outside
noise detection, where a Support Vector Machine is used to improve upon an
existing technique which, as we have shown with the median filter, is simply
used as a black box first-stage classifier. Further work could also investigate the
use of other machine learning classifiers to implement the second-stage of the
process.
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