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Abstract. This paper analyzes the variability of pulse waveforms by means of 
approximate entropy (ApEn) and classifies three group objects using support 
vector machines (SVM). The subjects were divided into three groups according 
to their cardiovascular conditions. Firstly, we employed ApEn to analyze three 
groups’ pulse morphology variability (PMV). The pulse waveform’s ApEn of a 
patient with cardiovascular disease tends to have a smaller value and its varia-
tion’s spectral contents differ greatly during different cardiovascular conditions. 
Then, we applied a SVM to discriminate cardiovascular disease patients from 
non-cardiovascular disease controls. The specificity and sensitivity for clinical 
diagnosis of cardiovascular system is 85% and 93% respectively. The proposed 
techniques in this paper, from a long-term PMV analysis viewpoint, can be ap-
plied to a further research on cardiovascular system.   

1   Introduction 

More and more noninvasive measurements of physiological signals, such as ECG, 
heart sound, wrist pulse waveform, can be acquired for the assessment of physical 
condition. Among these methods, the ECG provides information about the electrical 
activity of the heart [1], while the wrist pulse waveform affords the information on 
the pressure variation in the wrist vessel. Various civilizations in the past have used 
arterial pulse as a guide to diagnose and treat various diseases.  

The Chinese art of pulse feeling, which is still being practiced, has more than 2,000 
years of history. According to traditional Chinese pulse diagnosis, the pulse not only can 
deduce the positions and degree of pathological changes, but is also a convenient, 
inexpensive, painless, and noninvasive method promoteded by the U.N. [2, 3]. Re-
cording and analyzing the pressure wave in the radial artery of the wrist provide a non-

                                                           
* Supported by the National Natural Science Foundation of China under Grant No.90209020. 



110         K. Wang et al. 

invasive measure of the arterial pressure wave in proximal aorta. The radial artery pulse 
wave can reveal central systolic, diastolic and mean arterial pressures, as well as supply 
an assessment of arterial wave reflection, which is closely related to cardiovascular 
condition and the degree of stiffness of arteries. Recently, increasingly numbers of west-
ern medicine researchers have begun to pay more attention to pulse diagnosis [4-5].  

Pulse waveform is analyzed usually by traditional time and frequency domain 
methods. Having analyzed the pulse waveform with the conventional methods, we 
find that some dynamic characters of the pulse waveform are undiscovered [6, 7]. 
Few papers on pulse waveform’s nonlinear analysis can be found [8]. Currently, a 
number of nonlinear methods have been recently developed to quantify the dynamics 
of physiological signals such as ECG, EEG and so on. These have achieved some 
meaningful results that the conventional statistics cannot achieve [9]. Consequently, 
we investigate the pulse’s variability through nonlinear methods.   

There are many methods that can disclose the dynamic characters of physiological 
signal, such as K-S entropy, the largest Lyapunov exponent, approximate entropy, 
coarse-grained entropy and so on. However, K-S entropy and largest Lyapunov ex-
ponent assume that the time series have enough length. It appears that ApEn has po-
tential wide spread utility for practical data analysis and clinical application due to its 
five salient features [10]. Furthermore, the ApEn can be applied in both deterministic 
and stochastic processes. At present, whether pulse waveform’s nature is determinis-
tic chaos or not has not been proved yet. Therefore we employ the ApEn to disclose 
some clinical value of pulse variability [11].  

This paper applies SVM to discriminate cardiovascular disease patients from non-
cardiovascular controls. The technique of SVM, developed by Vapnik, was proposed 
essentially for classification problems of two classes. SVM use geometric properties 
to exactly calculate the optima separating hyper plane directly from the training data 
[12-14]. Based on structure risk minimum principal, SVM can efficiently solve the 
learning problem, with the strengths of good generalization and correct classification. 
It is important to emphasize that SVM have been employed in a number of applica-
tions [15]. However, few of them belong to the bioengineering field, and in particular 
to pulse waveform variability discrimination. 

In Section 2, the long-term pulse data collection and preprocessing are stated 
firstly. Then the ApEns analysis of long-term pulse and their corresponding experi-
mental results are presented in Section 3. Having extracted 12 features on pulse vari-
ability, we apply a SVM classifier to discriminate cardiovascular disease patients 
from non-cardiovascular controls in this section.  Section 4 draws our conclusions. 

2   Material and Methods 

This section describes the data collection and our analysis methodology. 

2.1   Study Protocol and Data Collection 

In this study, all the pulse data are acquired by our pulse monitoring and diagnosis 
system, illustrated in Fig. 1 [7]. 
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Fig. 1. Our pulse acquisition system 

Pulse waveform recordings are acquired from 90 volunteers. Three groups are stud-
ied, each including 30 subjects, matched for age and gender. All of them are examined 
by ultrasonic test. They are confirmed to be without neural system problems. 

• Group1 is 30 patients with cardiovascular disease (15 females and 15 males, 
age 60±12 years);  

• Group2 is 30 patients hospitalized for non-cardiac cause (15 females and 15 
males, age 55±12 years);  

• Group3 contains 30 healthy subjects who are selected as control subjects 
matched for sex and age (15 females and 15 males, age 55±12 years). Those 
selected control subjects have no documented history of cardiovascular dis-
eases and disorders, and have been examined by ultrasonic, X-ray examination 
and so on. 

 

Pulse wave 

Sensor 

Fig. 2. The positions of  “Cun”, “Guan”, “Chi” 
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The pulses of all subjects are acquired for 600 seconds long at the sampling rate of 
100 Hz. Each subject was asked to relax for more than 5 minutes before pulse acqui-
sition. According to the traditional Chinese pulse diagnosis, we can acquire pulse at 
the positions of “Cun”, “Guan”, “Chi”, which are demonstrated in Fig. 2. All of the 
subjects were lying on their backs during  pulse acquisition. According to the theory 
of Traditional Chinese pulse diagnosis, the pulse in “Cun” position reflects the condi-
tion of the heart. As a result, we put our pulse sensor on the “Cun” positions of the 
subjects’ left wrists to study the relationship between cardiovascular condition and 
pulse waveform variability. 

2.2   Methods 

We utilize an approximate entropy and SVM classifier techniques to analyze and 
classify wrist pulse waveform variability. The whole procedure is illustrated in Fig. 3. 
At first, we use the designed filter to remove the interference and baseline wander of 
pulse waveform. Then we segment the pulse waveform into 200 partitions and apply 
the approximate entropy to analyze the variability of pulse morphology. After that, 
we extract 12 features from the approximate entropies. Finally, we employ the SVM 
classifier to discriminate the cardiovascular disease patients from non-cardiovascular 
disease controls. 

 
 

 

Fig. 3. The schematic figure on the procedure of pulse waveform 

2.2.1   Pulse Waveform Preprocessing Based on Cascaded Adaptive Filter 
The bandwidth of the acquiring system is with almost linear response from the 
0.05Hz to 100Hz, causing no distortion of pulse waveform. However, distortion may 
arise from the subject’s movement, respiration and so on. Thus, the baseline wander 
introduced in the acquisition process must be removed before computing the pulse 
waveform’s ApEn. We apply the cascade adaptive filter as described in the paper [16] 
to remove this wander.  

2.2.2   Waveform Variability Analysis Using ApEn 
Over the past few decades, thanks to the advance of computer technology, the re-
cording and storage of massive datasets of pulse waveform is possible. As a result, 
some nonlinear analysis methods can be used to extract useful clinical information 
from pulse data.  

Nonlinear dynamical analysis is a powerful approach to understand biological sys-
tem. Pincus introduced ApEn as a set of measures of system complexity, which has 
easily been applied to clinical cardiovascular and other time series. ApEn may contain 
the information that is neither visually apparent nor extractable with conventional 
methods of analysis.  

Preprocessing Segmenting ApEn 
Calculating

SVM 
Discriminating 

Feature 
Extracting
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ApEn is a measure of complexity and regularity. For instance, a small ApEn means 
a high degree of regularity. The approximate entropy, ApEn(m, r, N), can be esti-
mated as a function of the parameters m, r and N, where m is the dimension to which 
the signal will be expanded, r is the threshold and N is the length of the signal to be 
analyzed.  Both theoretical analysis and clinical applications conclude that when m=2 
or 3, and r is between 10% and 25% of the standard derivation of the data to be ana-
lyzed, the ApEn(m,r,N) produces good statistical validity. In this paper, we use m=2, 
r=0.2, N=300 (that means every segment includes 300 sampling points).  

The procedure of pulse morphology variability (PMV) analysis is as follows: 

• Dividing each 10 minutes pulse recording into 200 segments. Each segment 
contains data corresponding to a 3-second portion of the recording (300 sam-
pling points); 

• Calculating ApEn of every segment and obtaining 200 ApEns for each subject.  

Having applied the ApEn for PMV analysis of three-groups, we illustrate the 
ApEn mean values of three groups in Fig. 4. The y-coordinate is the average of 
every subject’s 200 ApEns. Each group contains 30 subjects and their ApEn Means 
all vary from 0.08 to 0.25. On average, the ApEn Means of Group1 are smaller 
than Group2 and Group3’s.  But the ApEn Means of three groups don’t have sig-
nificant difference.  

The ApEn averages of PMV don’t have significant difference, but the fluctuation 
of their ApEn consequences differs notably. In Fig. 5, ApEn1, ApEn2 and ApEn3 is 
the typical ApEns of subject in Group1, Group2 and Group3 respectively. The y-
axis is the value of ApEn and the x-axis is the segment’s sequence number. From Fig. 
5, we can find that the ApEn1 fluctuates faster and more regularly than ApEn2 and 
ApEn3. This means that the healthier the person’s cardiovascular system is, the more 
complex his PMV is. 

 

Fig. 4. The comparison of three groups’ ApEns averages. Each group contains 30 persons. 
Each person’s 10 minutes pulse waveform was portioned into 200 segments. Each point stands 
for the average of a person’s 200 ApEns 



114         K. Wang et al. 

 
Fig. 5. The comparison of ApEns 

2.2.3   Pulse Morphology Variability Features Extraction 
In the above part we analyze the PMV of the three groups and find that PMV has 
notable clinical value to differentiate cardiovascular conditions.  

From the spectral point of view, we can discover some useful relationship be-
tween PMV and the cardiovascular system. Fig. 7 illustrates the power spectrum of 
PMV. All of them are computed from the 200 ApEns of 10 minutes’ pulse wave-
forms. The x-axis is the Nyquist frequency and the y-axis is the amplitude of its 
spectrum. The first row PSD1 is the spectrum of one patient in Group1; the second 
PSD2 is the spectrum of one patient in Group2; the third row PSD3 is the spec-
trum of Group3’s. We can find that the healthy person’s ApEn has more low fre-
quency content as shown in PSD3. The PSD1 has more high frequency content 
than PSD2 and PSD3.  

 

Fig. 6. The comparison on the spectral distribution of three groups’ ApEn 
 
 
 



SVM Classification for Discriminating Cardiovascular Disease         115 

 
 
 
 
 
 

 

 

Fig. 7. The schematic figure of features extraction 

In this part, we will extract some features from the PMV ApEns. Fig. 7 lists the 
features such as the mean, standard derivation of the ApEns and spectral energy ratio 
(SER) of ApEns. This paper partitions the power spectrum of the ApEn into 10 equi-
distant segments as ]5.0~45.0,45.0~4.0,,1.0~05.0,05.0~0[ ssss ffff . Then we 

can get their spectral rates of those 10 segments. The PMV’s SERs are computed as 
shown in Formula (1). 
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where if is the spectral and  )f(A i is its corresponding amplitude. 

2.2.4   SVM Classifiers 
Support Vector Machines were invented by Vapnik. They are learning machines that 
can create functions from a set of labeled training data. For classification, SVMs 
operate by finding a hypersurface in the space of possible inputs. This hypersurface 
will attempt to split the positive examples from the negative examples. The split will 
be chosen to have the largest distance from the hypersurface to the nearest of the 
positive and negative examples. 

The discriminant equation of the SVM classifier is a function of kernel k(xi, x) and 
is given by: 
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where iX are the support vectors, svN is the number of support vectors, iα is the 

weight parameters, b is the biased parameter, and }1,1{ +−∈y depending on the 

class. In the present study the two degree non-homogeneous polynomial function was 

used for the linear kernel, given by yxyxK T ⋅=),( , or Polynomial Kernel at the 

degree of two dyxyxK )1(),( +⋅= with d = 2, resulting in the discriminant func-

tion of the SVM classifier. 
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3   PMV’s SVM Classifier Discrimination Results 

The SVM classifier has better generalization ability than neural network and other 
classifiers, especially for small training data sets. In this study, we apply a SVM to 
classify Group1 with Group2, and Group1 with Group3.  As listed in Table1, we 
name the Group1 as Cardiovascular Disease Group, Group2 and Group3 as Non-
Cardiovascular Disease Group. We name the subjects who are classified into cardio-
vascular patients as positive and those subjects who are classified into non-
cardiovascular person as negative. If a subject who was labeled as cardiovascular 
patient is indeed so afflicted, this situation is referred to as a true positive (TP); a non-
cardiovascular disease subject erroneously labeled as cardiovascular patient is re-
ferred to as a false positive (FP). We define negative outcomes that are true (TN) and 
false (FN) in an analogous manner [17-18].  We calculate some characters according 
to Formulas (3) - (5). 

FPTN

TN
yspecificit

+
= , (3) 

FNTP

TP
ysensitivit

+
= , (4) 

ALL

TPTN
accuracy

+= . (5) 

The results list as Table2. The specificity, sensitivity, accuracy of Group1/Group2 
is 85%, 93%, and 89% respectively. They are slightly less than that of 
Group1/Group3. 

Table 1. Definitions on this discrimination between these Groups 

 Non-ardiovascular 

Disease 

Cardiovascular 

Disease 

“Non-Cardiovascular Disease” TN FN 

“Cardiovascular Disease” FP TP 

Table 2. The discrimination results of three Groups 

 Specificity Sensitivity Accuracy 

Group1/ Group2 85% 93% 89% 

Group1/ Group3 90% 93% 92% 
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As the 12 dimensional features cannot be illustrated, of the 12 features, we demon-
strate only two dimensional features: mean(ApEn) and SER(1) in Figs. 8, 9 and 10. 
Fig. 8 is SVM classifier’s result to classify Group1 and Group2. Fig. 9 is the linear 
kernel SVM classifier’s result to classify Group1 and Group3. We can find that 
during the two features, Group1 can be discriminated from Group2 and Group3 
with high accuracy. Fig. 10 is SVM classifier’s result to classify Group2 and Group3. 
In Fig. 10, Group2 and Group3 cannot be differentiated with each other: all the 
vectors are support vectors. These results demonstrate that the variability of pulse 
waveform morphology has a powerful ability in discriminating the cardiovascular 
disease patients from the non-cardiovascular controls. 

 

Fig. 8. The classification of Group1/Group2 by SVM classifier 

 

Group2

Group1 

Support 
Vectors 

Support Vectors 

Group3

Group1 

Fig. 9. The classification of Group1/Group3 by SVM classifier 
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Fig. 10. The classification of Group2/Group3 by SVM classifier (Polynomial Kernel at the 
degree of two) 

4   Conclusions 

This paper studies the variability of long-term pulse waveform and analyzes its clini-
cal value for cardiovascular systems. Analysis of the dynamic behavior of pulse sig-
nal has opened up a new approach towards the assessment of normal and pathological 
cardiovascular behavior. 

This paper also presents PMV’s spectral energy ratio for differentiating person’s 
cardiovascular condition. The results conform that the PMV can be used to differenti-
ate the subjects in different cardiovascular condition. Using SVM to construct classi-
fiers the accuracy of Group1 to Group2 is 89% and the accuracy of Group1 to 
Group3 is 92%. For the purpose of probing the mechanism of manifestations of the 
pulse, further work needs to be performed to quantitatively analyze cardiovascular 
system’s behavior. 
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