
Z. Chen et al. (Eds.): ICADL 2004, LNCS 3334, pp. 355–367, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Implementation of Web Image Search Engines

Zhiguo Gong, Leong Hou U, and Chan Wa Cheang

Faculty of Science and Technology, University of Macau,
P.O.Box 3001 Macao, PRC

{zggong, ma36575, ma36600}@umac.mo

Abstract. This paper presents our implementation techniques for an intelligent
Web image search engine. A reference architecture of the system is provided
and addressed in this paper. The system includes several components such as a
crawler, a preprocessor, a semantic extractor, an indexer, a knowledge learner
and a query engine. The crawler traverses web sites in multithread accesses
model. And it can dynamically control its access load to a Web server based on
the corresponding capacity of the local system. The preprocessor is used to
clean and normalize the information resource downloaded from Web sites. In
this process, stop-word removing and word stemming are applied to the raw
resources. The semantic extractor derives Web image semantics by partitioning
combining the associated text. The indexer of the system creates and maintains
inverted indices with relational model. Our knowledge learner is designed to
automatically acquire knowledge from users’ query activities. Finally, the query
engine delivers search results in two phases in order to mine out the users’
feedbacks.

1 Introduction

In recent years, huge amount of information is published on WWW and it continues
to increase with an explosive speed. However, we cannot access to the information or
use it efficiently and effectively unless it is well organized and indexed. Only after
that, people can be possible to perform efficient browsing, searching and retrieving on
the resources. Nowadays, we know that “Google” is accepted as the biggest and
fastest search engine on WWW. Web users are becoming more and more reliable on
this tool. Although “Google” has also provided image-searching function based on its
existed technology, such as indexing and ranking, it still has some space for
improvement. For instance, a Macau resident wants to find some images about the
University of Macau with a keyword--“umac” in his image searching of “Google”, we
can find a “Luna” at the first page of the result, and it is not relevant to the query.
Therefore, there may be much improvement space for web image retrieval
technologies.

Image Retrieval has been a very active research area ever since 1970’s, with the
thrust from two major research communities, Database Management and Computer
Vision. These two areas address image retrieval techniques in different ways. One is
text-based and the other is visual-based. On the web, most of popular Image Search
Engines (For example: Google) are text-based. The reason is due to the fact that

Z. Gong, L.H. U, and C.W. Cheang 356

visual-based image retrieval can only work fine in some specific application domains.
That means the web images are needed to be classified with respect to different
domains before visual processing. Two methods can be used for the classification—
manually or automatically. The former requires vast amount of labor and even
impossible since the huge size of the web. Our system adopts the latter model.

In this paper, we are going to describe the implementation techniques in our text-
based image retrieval system. We provide a reference architecture for web image
retrieval systems, which includes a crawler, preprocessor, semantic extractor, indexer,
knowledge learner and a query engine. We implement the crawler in a multithread
model, therefore it can dynamically control its access load to a Web server based on
the corresponding capacity of the local system. The preprocessor is used to clean and
normalize the information resource downloaded from Web sites. In this process, stop-
word removing and word stemming are applied to the raw resources. The semantic
extractor derives Web image semantics by partitioning then combining the associated
text. The indexer of the system creates and maintains inverted indices with relational
model. Our knowledge learner is designed to automatically acquire knowledge from
users’ query activities. Finally, the query engine delivers search results in two phases
in order to mine out the users’ feedbacks.

In section 2, we describe our reference architecture of the system. And in section 3
to section 7, we will address our implementation technologies on the
crawler/preprocessor, semantic extractor, indexer, knowledge learner and search
engine respectively. And finally, we conclude this paper in section 8.

2 System Architecture

Figure 1 shows the fundamental working principles of our system. Firstly, web pages
are collected by the crawler and delivered as a stream to the preprocessor of the
system. After parsed by the preprocessor, the intermediate results, including all the
web images, associated text, links and their relationships, are loaded into the
document database. And the new links are passed back to the crawler for recursively
web page gathering.

The semantic extractor takes the associated texts as input and represents them into
DOM tree format. Then, it tries to partition the associated texts formally into a
sequence of semantic blocks based on the element structures as well as their distances
to the embedded images. In our system, the semantic relevant factor of each semantic
block is measured with respect to its relative position to the corresponding image. For
each pair of analytic image and its associated text, the semantic extractor parses the
document and produces a set of postings, where each posting is an entry which shows
the term’s semantic relevance to the web image. The indexer sorts all the postings,
then, creates an inverted index to support fast accesses to the images.

In terms of the knowledge base in our system, we consider users search activities
as important resources to improve the retrieval performances of the system. Most of
current web image retrieval systems can only provide static schemas, which are based
only on limited sample data or experts’ experiences, in their indexing the web images.
Thus, such systems can not evolve to catch the dynamic changing of the WWW.

From users’ query log, the knowledge learner in our system tries to mine out the
semantic relevances between web images and query terms. In this way, retrieval
performance of the system can be well improved. Furthermore, the system can re-

An Implementation of Web Image Search Engines 357

calculate the semantic distribution schemas of the web images by using extended
sample space.

Our knowledge base also captures and maintains frequently used phrases or
concepts in the user queries. And they can be used in the future semantic extraction
processing and indexing.

For the query engine, it provides two phase deliveries of the query results. In the
first phase, only indexing images (the small thumb images generated from the original
images) are delivered to the users. And the second phase presents the original images
or its owner web pages with users’ further requests. In this way, users’ searching
activities can be captured and passed to knowledge learner. We will introduce each
process in detail in the following sections.

Expert
Knowledge

Schema
Knowledge

Knowledge Update

Image Index

Schema Knowledge

Feedback Feedback

Query
Results

Postings

Inverted
Index

Web Image,
Text

New Links

Web Image,
Text, Links

Document
Stream

Web
Documents Web

Documents

HTML
Preprocesser Document

Database

Web Image
Semantic
Extractor

Indexer
Knowledge

Base

Web Image
Index

Query
Engine

User

Schema
Learning

Agent

Expert

Crawler

Fig. 1. The System Architecture Overview

3 The Crawler and HTML Preprocessor

Crawler is one of the important components in web information retrieval system. It
gathers web pages from WWW and recursively fetch the new pages with the new
URLs which are contained in the load documents. Generally, two strategies exist for
web page traversing—BFS(breath first search) and DFS(depth first search). And BFS
is exploited by our crawler.

In order to work, the crawler needs to maintain a queue of URLs, and it always
selects URL from the top of the queue to start a new page traversing. And the newly
gathered URLs are appended to the end of the queue. Because the web sites are
autonomous and independent in nature, they may have different workloads and
response capabilities to the crawler. For example, if the accesses received are more
than the limitation of the host being accepted, the host may shut down (just like the
host is attacked by Distributed Denial of Service attack).Therefore, it is not wise if the
crawler only work on one site at one time. To solve this problem, our crawler is
designed to employ I/O multiplexing or multithreading to allow web pages to be
fetched from multiple sites at the same time. It is obvious that more threads being run

Z. Gong, L.H. U, and C.W. Cheang 358

at the same time can raise the system throughput. And this model can also leave more
processing capabilities of the local sites for their local requests.

For this reason, the crawler needs to control the thread number at each accessed
host. To reach this destination, our system separates the global URL queue into
subqueues according to different hosts. Each subqueue of a individual host has a
running count variable that records number of the running threads at the site. If the
running count of a queue is less than the threshold N (For example: N=10), the
crawler will pop up the top URL from this subqueue and goes on fetching state.
Otherwise, it will try the next host’s queue. The worst case occurs when all the
hosts’ running counts are more than the limitation, then crawler must switch to
sleep state.

Because the network traffic keeps dynamic changing, the access threshold of each
host can not be fixed and it is hard to be determined manually. Our solution assumes
that all the thresholds of each host are the same at the initial state. Based on the
change of the transmission time, crawler can adjust the value dynamically. One
situation is that the transmission time increase continuously. That means the
performance of this host is low and is busier than before. Then, crawler reduces the
limitation value of N.

All the crawling URLs are converted into 32 bytes MD5 string first, then, written
into database. To prevent any page from being reloaded, any new URL is compared
with the existing MD5 string in the database. Then the URL is inserted into the
queue. The web images and their associated pages are stored and managed with file
system. We allocate web images and pages by the value of a harshing function
of its URL. And the relationship with its parent page is also maintained in the
database.

The Preprocessor contain two components: stemming processor and stopword
processor. Stemming processor transforms terms or words in the texts into normal
form. In our system, we uses a stemming algorithm by Porter, M.F [4], which is a
popular algorithm used by many systems. This algorithm uses five steps to convert an
informal English word into a formal one. For more detail, refer to [4].

Stop word processor is used to remove meaningless words, such as ‘the’, ‘a’, ‘and’,
from the documents. In our implementation, we use the list provided by [2] as our set
of stopwords. Of course, this list may not be the optimal one and we may extend it in
the future.

Crawler is the fundamental component for web information retrieval systems. It
takes charge of the document gathering. Besides universal crawlers, there are also
many specific crawlers available in both the commercial market and academic
communities [6,12]. For such kind of crawlers, topic relevance of each URL should
also be taken into account when scheduling.

4 The Semantic Extractor

The semantic extractor takes the associated text of an image as input and tries to mine
out the semantics of the image. The retrieval performance of the system is closely
related to the correct extracting work of the semantic extractor. In this section, we
address our implementation techniques for our extractor in detail.

An Implementation of Web Image Search Engines 359

4.1 The Problem

Images on the web can be classified into different types according to their purposes,
such as (1) icon, (2) site logo, (3) realistic photo, and (4) cartoon pictures.

To simplify the problems, our system tries to removes stop-images (meaningless
images) such as icon, web site logo before performing the image semantic extractions.
In our approach, we use some measurements, such as the sizes of the images and the
ratios between the width and the height of the images, as the criteria to discriminate
whether an image is a stop –image or not.

Even though other solutions, such as link based, visual feature based, are also used
for web image semantic extraction, text based methodology is the most fundamental
one. Our semantic extractor is based on the associated texts of the images. Many
TBIR researches [3, 6] use title, alt of the analytic image, filename, and surrounding
text as the sources for the semantic extractions. However, we should pay attention to
some problems in using the texts.

• How to determine the optimal range of the surrounding text?
• In general, we know that the terms which has the smaller distance to the image

have higher relevances to the image. But this linearization distance method
shows some defect as that the linearization distance inside the HTML document
is different from what we can view with web browser.

4.2 Text Fragmentation

We know that many HTML documents often present information with a lot of HTML
tags, however the traditional HTML document model is hard to be used to mine out
such layout structures automatically. We need to use other document object model to
replace the traditional one. One favorite model for representing the HTML structure is
document object model tree (DOM tree) [5]. Based on the result by [9], we build the
DOM tree using <TABLE> template tags: <TABLE>, <TR> and <TD>. After this
transformation, the HTML structure becomes more easily to process. In general, the
distance between the blocks and the analytic image rendered by the browser well match
with that organized in the DOM tree. So we assume that the nearer blocks are more
related to the analytic image. To formalize the distance between the analytic image and
the associated text blocks, the DOM tree will be partitioned properly (Fig. 2).

TD

HTML

HEAD BODY

TITLE TABLE

TR

TD

TR

TD

This tag element has a higher
relation with the analytic
image.

This tag element has a higher
relation with the analytic
image.

TD

This tag
element has a
lower relation
with the
analytic image

This tag
element has a
lower relation
with the
analytic image

TD

Block5

Block5 Block4

Block5 Block3

Block3

Block3

Block2

Block1 Block2 Block2Block2

Block1

Block2

Block3

Block4

Block5

The analytic
image is at
this tag.

The analytic
image is at
this tag.

Fig. 2. DOM tree split into different blocks

Z. Gong, L.H. U, and C.W. Cheang 360

Our Semantic Extractor uses MSHTML library, which is one of the Microsoft
COM interface, to parse the HTML document into DOM tree. It builds the tree only
by using these three tags: <TD>, <TR> and <TABLE>. Each tag contains its inner
text and the relationship with its parent and child elements. For the characteristic of
HTML document, we use Depth First Search (DFS) to build the tree. It scans the
document from start to end. The inner text which contains between two of these tags
is determined by this scan. Each node and its inner text will be grouped into
difference blocks later. The following is the pseudo code for this processing:

STRING Trace_Dom_Tree (ParentNode)
{
 ExtractInnerText=ParentNode.GetInnerText();
 ForEach (NewChildNode) in ParentNode
 {
 If (NewChildNode.TagName == (<TABLE>||<TR>||<TD>))
 {
 ParentNode->ChildNode.Add(NewChildNode);
 ExtractInnerText.Remove(
 Trace_Dom_Tree(ParentNode->ChildNode));
 }
 }
 ParentNode.SetInnerText(ExtractInnerText);
 Return ExtractInnerText;
}

Our system uses a set of sequence numbers to determine the distance between the
analytic image and the associated text elements. The sequence number is set by
Semantic Extractor during building the tree. (Fig. 3) Each sequence number of the
nodes is based on its parent and its sibling order under the same parent tag. In Fig. 3,
the sequence number of analytic image’s parent is 00 and its own order is 1, so the
sequence number of analytic image is 001. After assigning the sequence number for
each node, our system compares the analytic image sequence with others. The
comparison checks the difference of the position of sequence number only. All the
situations are showed as follows:

• The position of different sequence number (P) is equal to or less than the length
of the associated text sequence number (Lat). Then the distance (D) is

D = Lat - P + 1 (1)

• No any different sequence number find, but the length of associated text sequence
number (Lat) is less than the analytic image (Lai). Then the distance (D) is

D = Lai - Lat (2)

• No any different sequence number is found and the length of associated text
sequence number (Lat) is equal to or longer than the analytic image (Lai). Then,
the distance (D) is

D = 0 (3)

Fig. 3 shows the distance for each node by the above calculation. Based on this, we
partition the document into different semantic blocks.

An Implementation of Web Image Search Engines 361

TABLE

TR

TD

TR

TD
Analytic
Image

TR

TD

00

0000 0101 0202

000000 001001 010010 020020

D=2

D=2

D=2

D=1

D=1 D=0

D=2

D=2

00

0000 0101 0202

000000 001001 010010 020020

TABLE
00100010

D=0
00100010

Fig. 3. Giving Sequence Number to each node

4.3 Distance Adjustment of Semantic Blocks

If the partitioning is only based on the absolute distance captured from the DOM tree
as in last subsection, we find that the fragmentation can not properly reflect the visual
rendering in many cases. As a matter of the fact, the same visual distances may tagged
in the file differently by different authors. For instance, one author may like to write
the nearest associated text within the same block as the analytic image block but
others may not. Using the absolute approach as in section 4.2, the associated text of
the first one is more related than the second one. However, they look the same when
rendering in the browser. Since this confusion, in our approach we measure the
position by relative distance (Fig. 4). We assume that the associated text appeared at
the first block is the nearest block. So the above example will consider both of the
associated texts to be the most related text.

Block4

Block4 Block3

Block4 Block2

Block2

Image2

Block1

Image1 Block1 Associated
TextBlock1

Block1

Block2

Block3

Block4

Block5

Block3

Block3 Block2

Block3 Block1

Block1

Image2

Block1

Image1 Block1 Associated
TextBlock1

Block1

Block2

Block3

Block4

Block5

Image 1Image 1 Image 2Image 2

Fig. 4. DOM tree split into different blocks based on relative position

The above approach only works fine if the document only contains one image.
However, there are quite a lot o documents containing more than one images. If the
above images are in the same document, our approach considers that the importance
between the associated text and the two analytic images is the same. But we know
that the first image is closer to the associated text than the second one. It means that
the relationship of the first image and the associated text is higher than the second

Z. Gong, L.H. U, and C.W. Cheang 362

one. So we need to adjust the blocks number to solve the problem. As doing this
amendment, we need to analyze all useful images in the same page.

Suppose we have a set of analytic images {I1, I2……In} in the HTML document.
Each text block {T1, T2……Tm} has a distance {D1, D2……Dn} with each analytic
image. So each analytic image Ii is corresponded to a set of distances {Di1,
Di2……Dim}. Based on the order of the distance, each analytic image Ii has a sequence
block number {BNi1, BNi2……BNim}.

We define the semantic blocks with the following property in the same document:

(BNik == BNjk iff Dik == Djk) AND (BNik < BNjk iff Dik < Djk)

In the same document, the blocks number is the same if and only if these blocks
have the same value of the distance. And the smaller blocks number also have a
smaller value of the distance. In Fig. 4, we know that the block number between the
associated text and the two analytic images is the same, but their distances to the
associated text are difference. Because of this property, we need to make following
adjustment.

The adjustment has three steps: (1) Sort the sequence block number first. That
means BNik is smaller than or equal to BNi(k+1) (2) If (BNik == BNjk AND Dik > Djk), then
we adjust BNik to BNik + 1. (3) Then, we continue to find all BNil (l>k) and adjust all
BNil to BNil + 1. Go back step (2) until no any (BNik == BNjk AND Dik > Djk). After
these adjustments, we get a more reasonable distance measurement in splitting the
DOM tree. The result shows on the Fig. 5.

With the approach above, we partition the inner text of HTML document into
different blocks successfully. We combine these blocks with other semantic blocks:
title, alt of the analytic image and filename to generate a set of semantic blocks {SB1,
SB2, ……, SBn, SBtitle, SBalt, SBfilename}. Now, we need to know how important for each
block to a embedded image. We will use the statistical result to calculate the weight
of each block. And it will be discussed in detail later.

Block4

Block4 Block3

Block4 Block2

Block2

Image2

Block1

Image1 Block1 Associated
TextBlock1

Block1

Block2

Block3

Block4

Block5

Block4

Block4 Block3

Block4 Block2

Block1

Image2

Block2

Image1 Block2 Associated
TextBlock2

Block1

Block2

Block3

Block4

Block5

Image1Image1 Image2Image2

Fig. 5. The modified method for splitting the DOM tree

4.4 Term Weight Calculation

After we split the document into semantic blocks, Semantic Extractor finds out the
weight of each term. In TFIDF model, the term of t’s semantic relevance to page p is

An Implementation of Web Image Search Engines 363

inverted document frequency of term t. In our system, we use terms (or concepts) of p
to derive semantics of the Web image i. However, the above TFIDF approach can not
be directly applied to index the embedded image.

In this paper, we modify TFIDF model as the following equation:

||

|)(
|)(

j

SB

SB SB

ttf
tntf j

j
= (4)

where
jSUtntf |)(is called normalized frequency of term t over SBj,

jSBttf |)(is the

frequency of term t over SBj, and |SBi| is the size of SBi. Thus, the total term frequency
over the whole p is obtained as

−≤≤

∗=
11

|)(|)(
Ni

SBjp j
tntfwtttf (5)

where N is the total number of the semantic blocks, and wj is the weight of SBj in
implying the semantics of the embedded image i. Without loss of generality, we

suppose wj’s are normalized, such that
−≤≤

=
11

1
Ni

jw .

In our approach, ttf(t)|p indicates the semantic relevance level of term t to the
embedded image i of page p. Then the indexer creates an inverted index based the
values of ttf(t)|p. We will discuss how to determine the values for wj later.

5 The Indexer

Semantic Extractor passes the relation between the analytic image, the relationship of
associated text and all the term frequency to Indexer. Like many other information
retrieval systems, we use inverted index in our system. For performance, the table is
built of a one-to-many relationship. Like the following table:

Term Index
TERM1 DOC_ID_1, DOC _ID_2,., DOC_ID_N
TERM1 DOC _ID_N+1, DOC_ID_N+2
TERM2 DOC_ID_1, DOC_ID _2, DOC_ID _3

To increase the database performance, the length of the index has an optimal upper
bound – N. If one term is corresponding to more than an upper bond documents, it
will use more than one row to store the document ids. In our system, the index does
not store only the document id but also stores some related information, such as the

frequency of the term for each semantic block (
jSBtntf |)().

For performance, we know that the cost of I/O access is higher than the cost of
memory access, so our system stores the inverted index into memory first. When the
index number is up to upper bound value, it writes the index from memory to
database and clears the memory content. In order to reduce the total disk capacity, it
stores inverted index to database in binary format. (Fig. 6)

Z. Gong, L.H. U, and C.W. Cheang 364

6 The Knowledge Base

Knowledge Base is a subsystem which tries to capture the knowledge from
experts and user feedbacks. In section 4, we have not determined the values of wj

yet. As we discuss before, our system use the statistical result to determine their
values.

In the area of information retrieval, precision/recall is well accepted evaluation
method which indicates the performance of the systems. In order to calculate the
precision/recall value, our system needs the expert to provide some training set. Our
system provides a user-friendly interface, to let the experts define the corresponded
meanings for each image easily by using the mouse.

Since the result of a retrieval are usually long in size, especially in the World
Wide Web environment, a figure of precision versus recall changing is commonly
used as a performance measurement for a retrieval algorithm. However, this metric
can not be used as an objective function in determining those weight values. We use
the average precision concept instead of the above metric. The average precision is
defined as

=
=

jkR

k kjk
jk N

k

R
AP

1

1
(6)

where Rjk is the total number of all relevant results with respect to
jSBiqntf |)(and Nk

is the number of results up to the k-th relevant result in the image result list. As a
matter of the fact, APjk is the single value metric which indicates the performance of
querying qk by only referencing semantic block SBj. The optimal value of wj is
determined by the overall average precision objective defined as:

�

=

=
N

i
i wAP

N
AP

1

)(
1

(7)

where APi(W) is the average precision for each semantic block. Because the
higher value of AP represents the higher quality of the result. So we try to adjust
the value of wj for each semantic block to get a higher AP value. After this step,
we get the optimal value of wj. This is an iterative improvement. After we add
some new record to our result set, we calculate the new optimal value of wj based
on the old one.

Knowledge base also handle the user’s feedbacks. It uses a two steps model to
handle about it. Like most of the current image retrieval systems, we display
the search results in two steps: (1) indexing thumbs of the original images are
delivered to the users (2) original images or the web pages which contain
the original images are sent to users with users’ further request command. The
promise of using our users’ feedbacks is that the second activity is performed by a
user implies the result is likely to be the correct answer of the query. We store the
users’ feedbacks into Knowledge Base and display the result with the new rank
function:

An Implementation of Web Image Search Engines 365

A new index

TERM=“computer”

Index id = 000036

Weight = 0009

Frequency1 = FF

Frequency2 = 00

Frequency3 = 00

Frequency4 = 00

Frequency5 = 45

FrequencyTitle = 00

FrequencyAlt = A5

Frequency = 00

A new index

TERM=“computer”

Index id = 000036

Weight = 0009

Frequency1 = FF

Frequency2 = 00

Frequency3 = 00

Frequency4 = 00

Frequency5 = 45

FrequencyTitle = 00

FrequencyAlt = A5

Frequency = 00

Insert to
memory 0000140010001100220033004400003700110011002200330044computer

IndexTEXT
0000140010001100220033004400003700110011002200330044computer

IndexTEXT

D_ID1D_ID1

Weight1Weight1
Doc_Freq1Doc_Freq1 D_ID2D_ID2

Weight2Weight2
Doc_Freq2Doc_Freq2

DOC1, DOC2, 0000360009FF0000004500A500computer
IndexTEXT

DOC1, DOC2, 0000360009FF0000004500A500computer
IndexTEXT

DOC1DOC1 DOC2DOC2

D_ID3D_ID3

Weight3Weight3
Doc_Freq3Doc_Freq3

DOC3DOC3

If the inverted index
is full,

Write to DB and
clear the memory

DB

computer
Inverted IndexTEXT

computer
Inverted IndexTEXT

Fig. 6. Example of indexing

adj(t,i)=wd*ttf(t,i)+wu*srl(t,i) (8)

where ttf(t,i) is the term frequency for each semantic block which is discussed in
equation 5, srl(t,i) is term-image relevant values obtained from user query activities
(its details addressed in our other papers, wd and wu are weights for objective function
ttf and srl respectively, and wd+wu=1. We can use the same method as to calculate the
wj by average precision to determine these two values.

7 The Query Engine

Query Engine supports concept based searching function to the user. When it accepts
a term from the user, it presents the relevant images to the user. For performance, the
index is sorted by Indexer first. For one term searching, the system delivers the
thumbs to user directly. But this sorting can not be satisfied with two terms or more.
For two-term searching, the result set R is the intersection of those term result. We
need to sort R for each searching because R is an unsort set. The sorting operation is
time consuming even if we have already exploited a good sorting algorithm. So the
sorting operation must decrease the system performance. One method to solve the
problem is to store the i-term concept which may be from 1 to N to database. But we
know that the number of two-term concept has already been very large. It is
impossible to store all of these into database because since the physical limitation and
the performance of the system.

In our approach, the database only stores some important N-term concepts which
are captured by the user feedback. Because our system records all user queries, we
will know which concept is more likely to search. Our system just stores the N-term
concept, which frequency is higher than the predefined value, into database. How to
balance the physical storage size and the performance is the problem of database
management. But it is out of the range of this paper, we will not discuss in detail. Fig
7 shows an example of our retrieval interface.

Z. Gong, L.H. U, and C.W. Cheang 366

Input keyword at hereInput keyword at here

Recall and Precision
values

Recall and Precision
values

User want to see
more clearly on this
image. This is the
second activity of the
user feedback

User want to see
more clearly on this
image. This is the
second activity of the
user feedback

Fig. 7. One example of Search Interface

8 Conclusions and Future Work

In this paper, we provide a comprehensive survey on our implementation technologies
of the text based image retrieval system. This paper introduces our methodologies on
each essential components of our system, such as Crawler, HTML Preprocessor,
Semantic Extractor, Indexer, Knowledge Learner and Query Engine in detail.

In our system, we partition the HTML document into a set of semantic blocks. It
means our method only focus on analyzing the text which is inside one HTML
document. We consider this model as a single level analysis of link structure. In web
environment, the parents and the child nodes of HMTL document may have
significant meanings to the extract the semantics of the analytic image. For this
objective, we can try to expand the analysis to multiple levels.

Some link structure algorithms have developed on web environment, such as
Hyperlink Induced Topics Search (HITS) or Google’s Pagerank. And there existed
some excellent surveys on link structure image retrievals already[7]. In our future
work, we will try to combine our existed method with the link structure to get a better
result.

The other improvement of our system is to use an electronic thesaurus
(WordNetTM) to expand both the user queries and the meta-data associated with the
images. We want to get a model based on objects, attributes and relationships to allow
us to use WordNetTM in a comprehensive automatic manner and to improve retrieval
effectively.

References

1. S. Chakrabarti, M. V. D. Berg and B. Dom: Focused Crawling: a New Approach to Topic-
Specific Web Resource Discovery. Computer Networks 31(11-16), 1999, pp. 1623-1640.

An Implementation of Web Image Search Engines 367

2. S. Chakrabarti, M. V. D. Berg and B. Dom: Focused Crawling: a New Approach to Topic-
Specific Web Resource Discovery. Computer Networks 31(11-16), 1999, pp. 1623-1640.

3. Shi-Kuo Chang and Arding Hsu: Image information systems: Where do we go from here?.
IEEE Trans. on Knowledge and Data Eng., 4(5), Oct. 1992, pp. 431-442.

4. Chen, Z. et al.: Web Mining for Web Image Retrieval. To appear in the special issue of
Journal of the American Society for Information Science on Visual Based Retrieval
Systems and Web Mining.

5. DOM: http://www.w3.org/DOM/
6. Zhiguo Gong, Leong Hou U and Chan Wa Cheang: Web Image Semantic Extractions from

its Associated Texts. The 8th IASTED International Conference on Internet & Multimedia
Systems & Applications, Kauai, Hawaii, USA, August 16-18, 2004.

7. V. Harmandas, M. Sanderson, M.D. Dunlop: Image Retrieval By Hypertext Links. In:
Proceedings of SIGIR-97, 20th ACM International Conference on Research and
Development in Information Retrieval 1997.

8. Mingjing Li, Zheng Chen, Hongjiang Zhang: Statistical Correlation Analysis in Image
Retrieval., Pattern Recognition 35, 2002, pp. 2687-2693.

9. Lin, Ho: Discovering Informative Content Blocks from Web Documents. ACM SIGKDD
2002, Edmonton, Alberta, Canada, July 23 - 26, 2002.

10. Porter, M.F.: An Algorithm For Suffix Stripping. Program 14 (3), July 1980, pp. 130-137.
11. Stop Word List: http://www.searchengineworld.com/spy/stopwords.htm
12. Hideruki Tamura and Naokazu Yokoya: Image database systems: A survey. Patt. Recog.,

17(1), 1984, pp. 29-43.

	Introduction
	System Architecture
	The Crawler and HTML Preprocessor
	The Semantic Extractor
	The Problem
	Text Fragmentation
	Distance Adjustment of Semantic Blocks
	Term Weight Calculation

	The Indexer
	The Knowledge Base
	The Query Engine
	Conclusions and Future Work
	References

