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Abstract. This paper presents our implementation techniques for an intelligent 
Web image search engine. A reference architecture of the system is provided 
and addressed in this paper. The system includes several components such as a 
crawler, a preprocessor, a semantic extractor, an indexer, a knowledge learner 
and a query engine. The crawler traverses web sites in multithread accesses 
model. And it can dynamically control its access load to a Web server based on 
the corresponding capacity of the local system. The preprocessor is used to 
clean and normalize the information resource downloaded from Web sites. In 
this process, stop-word removing and word stemming are applied to the raw 
resources. The semantic extractor derives Web image semantics by partitioning 
combining the associated text. The indexer of the system creates and maintains 
inverted indices with relational model. Our knowledge learner is designed to 
automatically acquire knowledge from users’ query activities. Finally, the query 
engine delivers search results in two phases in order to mine out the users’ 
feedbacks. 

1   Introduction 

In recent years, huge amount of information is published on WWW and it continues 
to increase with an explosive speed. However, we cannot access to the information or 
use it efficiently and effectively unless it is well organized and indexed. Only after 
that, people can be possible to perform efficient browsing, searching and retrieving on 
the resources. Nowadays, we know that “Google” is accepted as the biggest and 
fastest search engine on WWW. Web users are becoming more and more reliable on 
this tool. Although “Google” has also provided image-searching function based on its 
existed technology, such as indexing and ranking, it still has some space for 
improvement. For instance, a Macau resident wants to find some images about the 
University of Macau with a keyword--“umac” in his image searching of “Google”, we 
can find a “Luna” at the first page of the result, and it is not relevant to the query. 
Therefore, there may be much improvement space for web image retrieval 
technologies. 

Image Retrieval has been a very active research area ever since 1970’s, with the 
thrust from two major research communities, Database Management and Computer 
Vision. These two areas address image retrieval techniques in different ways. One is 
text-based and the other is visual-based. On the web, most of popular Image Search 
Engines (For example: Google) are text-based. The reason is due to the fact that 
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visual-based image retrieval can only work fine in some specific application domains. 
That means the web images are needed to be classified with respect to different 
domains before visual processing. Two methods can be used for the classification—
manually or automatically. The former requires vast amount of labor and even 
impossible since the huge size of the web. Our system adopts the latter model. 

In this paper, we are going to describe the implementation techniques in our text-
based image retrieval system. We provide a reference architecture for web image 
retrieval systems, which includes a crawler, preprocessor, semantic extractor, indexer, 
knowledge learner and a query engine. We implement the crawler in a multithread 
model, therefore it can dynamically control its access load to a Web server based on 
the corresponding capacity of the local system. The preprocessor is used to clean and 
normalize the information resource downloaded from Web sites. In this process, stop-
word removing and word stemming are applied to the raw resources. The semantic 
extractor derives Web image semantics by partitioning then combining the associated 
text. The indexer of the system creates and maintains inverted indices with relational 
model. Our knowledge learner is designed to automatically acquire knowledge from 
users’ query activities. Finally, the query engine delivers search results in two phases 
in order to mine out the users’ feedbacks. 

In section 2, we describe our reference architecture of the system. And in section 3 
to section 7, we will address our implementation technologies on the 
crawler/preprocessor, semantic extractor, indexer, knowledge learner and search 
engine respectively. And finally, we conclude this paper in section 8. 

2   System Architecture 

Figure 1 shows the fundamental working principles of our system. Firstly, web pages 
are collected by the crawler and delivered as a stream to the preprocessor of the 
system. After parsed by the preprocessor, the intermediate results, including all the 
web images, associated text, links and their relationships, are loaded into the 
document database. And the new links are passed back to the crawler for recursively 
web page gathering.  

The semantic extractor takes the associated texts as input and represents them into 
DOM tree format. Then, it tries to partition the associated texts formally into a 
sequence of semantic blocks based on the element structures as well as their distances 
to the embedded images. In our system, the semantic relevant factor of each semantic 
block is measured with respect to its relative position to the corresponding image. For 
each pair of analytic image and its associated text, the semantic extractor parses the 
document and produces a set of postings, where each posting is an entry which shows 
the term’s semantic relevance to the web image. The indexer sorts all the postings, 
then, creates an inverted index to support fast accesses to the images.  

In terms of the knowledge base in our system, we consider users search activities 
as important resources to improve the retrieval performances of the system. Most of 
current web image retrieval systems can only provide static schemas, which are based 
only on limited sample data or experts’ experiences, in their indexing the web images. 
Thus, such systems can not evolve to catch the dynamic changing of the WWW.  

From users’ query log, the knowledge learner in our system tries to mine out the 
semantic relevances between web images and query terms. In this way, retrieval 
performance of the system can be well improved. Furthermore, the system can re-
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calculate the semantic distribution schemas of the web images by using extended 
sample space.  

Our knowledge base also captures and maintains frequently used phrases or 
concepts in the user queries. And they can be used in the future semantic extraction 
processing and indexing.  

For the query engine, it provides two phase deliveries of the query results. In the 
first phase, only indexing images (the small thumb images generated from the original 
images) are delivered to the users. And the second phase presents the original images 
or its owner web pages with users’ further requests. In this way, users’ searching 
activities can be captured and passed to knowledge learner. We will introduce each 
process in detail in the following sections. 
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Fig. 1. The System Architecture Overview 

3   The Crawler and HTML Preprocessor 

Crawler is one of the important components in web information retrieval system. It 
gathers web pages from WWW and recursively fetch the new pages with the new 
URLs which are contained in the load documents. Generally, two strategies exist for 
web page traversing—BFS(breath first search) and DFS(depth first search). And BFS 
is exploited by our crawler. 

In order to work, the crawler needs to maintain a queue of URLs, and it always 
selects URL from the top of the queue to start a new page traversing. And the newly 
gathered URLs are appended to the end of the queue. Because the web sites are 
autonomous and independent in nature, they may have different workloads and 
response capabilities to the crawler. For example, if the accesses received are more 
than the limitation of the host being accepted, the host may shut down (just like the 
host is attacked by Distributed Denial of Service attack).Therefore, it is not wise if the 
crawler only work on one site at one time. To solve this problem, our crawler is 
designed to employ I/O multiplexing or multithreading to allow web pages to be 
fetched from multiple sites at the same time. It is obvious that more threads being run 
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at the same time can raise the system throughput. And this model can also leave more 
processing capabilities of the local sites for their local requests.  

For this reason, the crawler needs to control the thread number at each accessed 
host. To reach this destination, our system separates the global URL queue into 
subqueues according to different hosts. Each subqueue of a individual host has a 
running count variable that records number of the running threads at the site. If the 
running count of a queue is less than the threshold N (For example: N=10), the 
crawler will pop up the top URL from this subqueue and goes on fetching state. 
Otherwise, it will try the next host’s queue. The worst case occurs when all the 
hosts’ running counts are more than the limitation, then crawler must switch to 
sleep state. 

Because the network traffic keeps dynamic changing, the access threshold of each 
host can not be fixed and it is hard to be determined manually. Our solution assumes 
that all the thresholds of each host are the same at the initial state. Based on the 
change of the transmission time, crawler can adjust the value dynamically. One 
situation is that the transmission time increase continuously. That means the 
performance of this host is low and is busier than before. Then, crawler reduces the 
limitation value of N. 

All the crawling URLs are converted into 32 bytes MD5 string first, then, written 
into database. To prevent any page from being reloaded, any new URL is compared 
with the existing MD5 string in the database. Then the URL is inserted into the  
queue. The web images and their associated pages are stored and managed with file 
system. We allocate web images and pages by the value of a harshing function  
of its URL. And the relationship with its parent page is also maintained in the 
database. 

The Preprocessor contain two components: stemming processor and stopword 
processor. Stemming processor transforms terms or words in the texts into normal 
form. In our system, we uses a stemming algorithm by Porter, M.F [4], which is a 
popular algorithm used by many systems. This algorithm uses five steps to convert an 
informal English word into a formal one. For more detail, refer to [4].  

Stop word processor is used to remove meaningless words, such as ‘the’, ‘a’, ‘and’, 
from the documents. In our implementation, we use the list provided by [2] as our set 
of stopwords. Of course, this list may not be the optimal one and we may extend it in 
the future. 

Crawler is the fundamental component for web information retrieval systems. It 
takes charge of the document gathering. Besides universal crawlers, there are also 
many specific crawlers available in both the commercial market and academic 
communities [6,12]. For such kind of crawlers, topic relevance of each URL should 
also be taken into account when scheduling. 

4   The Semantic Extractor 

The semantic extractor takes the associated text of an image as input and tries to mine 
out the semantics of the image. The retrieval performance of the system is closely 
related to the correct extracting work of the semantic extractor. In this section, we 
address our implementation techniques for our extractor in detail.  
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4.1   The Problem 

Images on the web can be classified into different types according to their purposes, 
such as (1) icon, (2) site logo, (3) realistic photo, and (4) cartoon pictures. 

To simplify the problems, our system tries to removes stop-images (meaningless 
images) such as icon, web site logo before performing the image semantic extractions. 
In our approach, we use some measurements, such as the sizes of the images and the 
ratios between the width and the height of the images, as the criteria to discriminate 
whether an image is a stop –image or not. 

Even though other solutions, such as link based, visual feature based, are also used 
for web image semantic extraction, text based methodology is the most fundamental 
one. Our semantic extractor is based on the associated texts of the images. Many 
TBIR researches [3, 6] use title, alt of the analytic image, filename, and surrounding 
text as the sources for the semantic extractions. However, we should pay attention to 
some problems in using the texts. 

• How to determine the optimal range of the surrounding text? 
• In general, we know that the terms which has the smaller distance to the image 

have higher relevances to the image. But this linearization distance method 
shows some defect as that the linearization distance inside the HTML document 
is different from what we can view with web browser. 

4.2   Text Fragmentation  

We know that many HTML documents often present information with a lot of HTML 
tags, however the traditional HTML document model is hard to be used to mine out 
such layout structures automatically. We need to use other document object model to 
replace the traditional one. One favorite model for representing the HTML structure is 
document object model tree (DOM tree) [5]. Based on the result by [9], we build the 
DOM tree using <TABLE> template tags: <TABLE>, <TR> and <TD>. After this 
transformation, the HTML structure becomes more easily to process. In general, the 
distance between the blocks and the analytic image rendered by the browser well match 
with that organized in the DOM tree. So we assume that the nearer blocks are more 
related to the analytic image. To formalize the distance between the analytic image and 
the associated text blocks, the DOM tree will be partitioned properly (Fig. 2).  
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Our Semantic Extractor uses MSHTML library, which is one of the Microsoft 
COM interface, to parse the HTML document into DOM tree. It builds the tree only 
by using these three tags: <TD>, <TR> and <TABLE>. Each tag contains its inner 
text and the relationship with its parent and child elements. For the characteristic of 
HTML document, we use Depth First Search (DFS) to build the tree. It scans the 
document from start to end. The inner text which contains between two of these tags 
is determined by this scan. Each node and its inner text will be grouped into 
difference blocks later. The following is the pseudo code for this processing: 

STRING Trace_Dom_Tree (ParentNode) 
{
  ExtractInnerText=ParentNode.GetInnerText(); 
  ForEach (NewChildNode) in ParentNode 
  { 
    If (NewChildNode.TagName == (<TABLE>||<TR>||<TD>)) 
    { 
      ParentNode->ChildNode.Add(NewChildNode); 
      ExtractInnerText.Remove( 
            Trace_Dom_Tree(ParentNode->ChildNode)); 
    } 
  } 
  ParentNode.SetInnerText(ExtractInnerText);
  Return ExtractInnerText; 
}

Our system uses a set of sequence numbers to determine the distance between the 
analytic image and the associated text elements. The sequence number is set by 
Semantic Extractor during building the tree. (Fig. 3) Each sequence number of the 
nodes is based on its parent and its sibling order under the same parent tag. In Fig. 3,
the sequence number of analytic image’s parent is 00 and its own order is 1, so the 
sequence number of analytic image is 001. After assigning the sequence number for 
each node, our system compares the analytic image sequence with others. The 
comparison checks the difference of the position of sequence number only. All the 
situations are showed as follows: 

• The position of different sequence number (P) is equal to or less than the length 
of the associated text sequence number (Lat). Then the distance (D) is 

D = Lat - P + 1 (1)

• No any different sequence number find, but the length of associated text sequence 
number (Lat) is less than the analytic image (Lai). Then the distance (D) is 

D = Lai - Lat (2)

• No any different sequence number is found and the length of associated text 
sequence number (Lat) is equal to or longer than the analytic image (Lai). Then, 
the distance (D) is 

D = 0 (3)

Fig. 3 shows the distance for each node by the above calculation. Based on this, we 
partition the document into different semantic blocks. 
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4.3   Distance Adjustment of Semantic Blocks 

If the partitioning is only based on the absolute distance captured from the DOM tree 
as in last subsection, we find that the fragmentation can not properly reflect the visual 
rendering in many cases. As a matter of the fact, the same visual distances may tagged 
in the file differently by different authors. For instance, one author may like to write 
the nearest associated text within the same block as the analytic image block but 
others may not. Using the absolute approach as in section 4.2, the associated text of 
the first one is more related than the second one. However, they look the same when 
rendering in the browser. Since this confusion, in our approach we measure the 
position by relative distance (Fig. 4). We assume that the associated text appeared at 
the first block is the nearest block. So the above example will consider both of the 
associated texts to be the most related text. 
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Fig. 4. DOM tree split into different blocks based on relative position 

The above approach only works fine if the document only contains one image. 
However, there are quite a lot o documents containing more than one images. If the 
above images are in the same document, our approach considers that the importance 
between the associated text and the two analytic images is the same. But we know 
that the first image is closer to the associated text than the second one. It means that 
the relationship of the first image and the associated text is higher than the second 
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one. So we need to adjust the blocks number to solve the problem. As doing this 
amendment, we need to analyze all useful images in the same page. 

Suppose we have a set of analytic images {I1, I2……In} in the HTML document. 
Each text block {T1, T2……Tm} has a distance {D1, D2……Dn} with each analytic 
image. So each analytic image Ii is corresponded to a set of distances {Di1,
Di2……Dim}. Based on the order of the distance, each analytic image Ii has a sequence 
block number {BNi1, BNi2……BNim}.

We define the semantic blocks with the following property in the same document: 

( BNik == BNjk iff Dik == Djk  ) AND ( BNik < BNjk iff Dik < Djk  )

In the same document, the blocks number is the same if and only if these blocks 
have the same value of the distance. And the smaller blocks number also have a 
smaller value of the distance. In Fig. 4, we know that the block number between the 
associated text and the two analytic images is the same, but their distances to the 
associated text are difference. Because of this property, we need to make following 
adjustment. 

The adjustment has three steps: (1) Sort the sequence block number first. That 
means BNik is smaller than or equal to BNi(k+1) (2) If ( BNik == BNjk AND Dik > Djk ), then 
we adjust BNik to BNik + 1. (3) Then, we continue to find all BNil (l>k) and adjust all 
BNil to BNil + 1. Go back step (2) until no any ( BNik == BNjk AND Dik > Djk ). After 
these adjustments, we get a more reasonable distance measurement in splitting the 
DOM tree. The result shows on the Fig. 5. 

With the approach above, we partition the inner text of HTML document into 
different blocks successfully. We combine these blocks with other semantic blocks: 
title, alt of the analytic image and filename to generate a set of semantic blocks {SB1,
SB2, ……, SBn, SBtitle, SBalt, SBfilename}. Now, we need to know how important for each 
block to a embedded image. We will use the statistical result to calculate the weight 
of each block. And it will be discussed in detail later. 
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Fig. 5. The modified method for splitting the DOM tree 

4.4   Term Weight Calculation 

After we split the document into semantic blocks, Semantic Extractor finds out the 
weight of each term. In TFIDF model, the term of t’s semantic relevance to page p is 
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inverted document frequency of term t. In our system, we use terms (or concepts) of p
to derive semantics of the Web image i. However, the above TFIDF approach can not 
be directly applied to index the embedded image. 

In this paper, we modify TFIDF model as the following equation: 
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where N is the total number of the semantic blocks, and wj is the weight of SBj in 
implying the semantics of the embedded image i. Without loss of generality, we 

suppose wj’s are normalized, such that
−≤≤

=
11

1
Ni

jw .

In our approach, ttf(t)|p indicates the semantic relevance level of term t to the 
embedded image i of page p. Then the indexer creates an inverted index based the 
values of ttf(t)|p. We will discuss how to determine the values for wj later. 

5   The Indexer 

Semantic Extractor passes the relation between the analytic image, the relationship of 
associated text and all the term frequency to Indexer. Like many other information 
retrieval systems, we use inverted index in our system. For performance, the table is 
built of a one-to-many relationship. Like the following table: 

Term Index 
TERM1 DOC_ID_1, DOC _ID_2,., DOC_ID_N 
TERM1 DOC _ID_N+1, DOC_ID_N+2 
TERM2 DOC_ID_1, DOC_ID _2, DOC_ID _3 

To increase the database performance, the length of the index has an optimal upper 
bound – N. If one term is corresponding to more than an upper bond documents, it 
will use more than one row to store the document ids. In our system, the index does 
not store only the document id but also stores some related information, such as the 

frequency of the term for each semantic block (
jSBtntf |)( ).

For performance, we know that the cost of I/O access is higher than the cost of 
memory access, so our system stores the inverted index into memory first. When the 
index number is up to upper bound value, it writes the index from memory to 
database and clears the memory content. In order to reduce the total disk capacity, it 
stores inverted index to database in binary format. (Fig. 6) 
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6   The Knowledge Base 

Knowledge Base is a subsystem which tries to capture the knowledge from 
experts and user feedbacks. In section 4, we have not determined the values of wj

yet. As we discuss before, our system use the statistical result to determine their 
values. 

In the area of information retrieval, precision/recall is well accepted evaluation 
method which indicates the performance of the systems. In order to calculate the 
precision/recall value, our system needs the expert to provide some training set. Our 
system provides a user-friendly interface, to let the experts define the corresponded 
meanings for each image easily by using the mouse. 

Since the result of a retrieval are usually long in size, especially in the World 
Wide Web environment, a figure of precision versus recall changing is commonly 
used as a performance measurement for a retrieval algorithm. However, this metric 
can not be used as an objective function in determining those weight values. We use 
the average precision concept instead of the above metric. The average precision is 
defined as  

=
=

jkR

k kjk
jk N

k

R
AP

1

1
(6)

where Rjk is the total number of all relevant results with respect to 
jSBiqntf |)( and Nk

is the number of results up to the k-th relevant result in the image result list. As a 
matter of the fact, APjk is the single value metric which indicates the performance of 
querying qk by only referencing semantic block SBj. The optimal value of wj is 
determined by the overall average precision objective defined as: 
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where APi(W) is the average precision for each semantic block. Because the 
higher value of AP represents the higher quality of the result. So we try to adjust 
the value of wj for each semantic block to get a higher AP value. After this step, 
we get the optimal value of wj. This is an iterative improvement. After we add 
some new record to our result set, we calculate the new optimal value of wj based 
on the old one.  

Knowledge base also handle the user’s feedbacks. It uses a two steps model to 
handle about it. Like most of the current image retrieval systems, we display  
the search results in two steps: (1) indexing thumbs of the original images are 
delivered to the users (2) original images or the web pages which contain  
the original images are sent to users with users’ further request command. The 
promise of using our users’ feedbacks is that the second activity is performed by a 
user implies the result is likely to be the correct answer of the query. We store the 
users’ feedbacks into Knowledge Base and display the result with the new rank 
function: 
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adj(t,i)=wd*ttf(t,i)+wu*srl(t,i) (8) 

where ttf(t,i) is the term frequency for each semantic block which is discussed in 
equation 5, srl(t,i) is term-image relevant values obtained from user query activities 
(its details addressed in our other papers, wd and wu are weights for objective function 
ttf and srl respectively, and wd+wu=1. We can use the same method as to calculate the 
wj by average precision to determine these two values. 

7   The Query Engine 

Query Engine supports concept based searching function to the user. When it accepts 
a term from the user, it presents the relevant images to the user. For performance, the 
index is sorted by Indexer first. For one term searching, the system delivers the 
thumbs to user directly. But this sorting can not be satisfied with two terms or more. 
For two-term searching, the result set R is the intersection of those term result. We 
need to sort R for each searching because R is an unsort set. The sorting operation is 
time consuming even if we have already exploited a good sorting algorithm. So the 
sorting operation must decrease the system performance. One method to solve the 
problem is to store the i-term concept which may be from 1 to N to database. But we 
know that the number of two-term concept has already been very large. It is 
impossible to store all of these into database because since the physical limitation and 
the performance of the system. 

In our approach, the database only stores some important N-term concepts which 
are captured by the user feedback. Because our system records all user queries, we 
will know which concept is more likely to search. Our system just stores the N-term 
concept, which frequency is higher than the predefined value, into database. How to 
balance the physical storage size and the performance is the problem of database 
management. But it is out of the range of this paper, we will not discuss in detail. Fig 
7 shows an example of our retrieval interface. 
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user feedback

User want to see 
more clearly on this 
image. This is the 
second activity of the 
user feedback

Fig. 7. One example of Search Interface 

8   Conclusions and Future Work 

In this paper, we provide a comprehensive survey on our implementation technologies 
of the text based image retrieval system. This paper introduces our methodologies on 
each essential components of our system, such as Crawler, HTML Preprocessor, 
Semantic Extractor, Indexer, Knowledge Learner and Query Engine in detail. 

In our system, we partition the HTML document into a set of semantic blocks. It 
means our method only focus on analyzing the text which is inside one HTML 
document. We consider this model as a single level analysis of link structure. In web 
environment, the parents and the child nodes of HMTL document may have 
significant meanings to the extract the semantics of the analytic image. For this 
objective, we can try to expand the analysis to multiple levels.  

Some link structure algorithms have developed on web environment, such as 
Hyperlink Induced Topics Search (HITS) or Google’s Pagerank. And there existed 
some excellent surveys on link structure image retrievals already[7]. In our future 
work, we will try to combine our existed method with the link structure to get a better 
result. 

The other improvement of our system is to use an electronic thesaurus 
(WordNetTM) to expand both the user queries and the meta-data associated with the 
images. We want to get a model based on objects, attributes and relationships to allow 
us to use WordNetTM in a comprehensive automatic manner and to improve retrieval 
effectively.
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