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Abstract. In recent years, we have seen huge volumes of research papers 
available on the World Wide Web. Metadata provides a good approach for 
organizing and retrieving these useful resources. Accordingly, automatic 
extraction of metadata from these papers and their bibliographies is meaningful 
and has been widely studied. In this paper, we utilize a bigram HMM (Hidden 
Markov Model) for automatic extraction of metadata (i.e. title, author, date, 
journal, pages, etc.) from bibliographies with various styles. Different from the 
traditional HMM, which only uses word frequency, this model also considers 
both words’ bigram sequential relation and position information in text fields. 
We have evaluated the model on a real corpus downloaded from Web and 
compared it with other methods. Experiments show that the bigram HMM 
yields the best result and seem to be the most promising candidate for metadata 
extraction of bibliographies. 

1   Introduction 

Authors and publishers are beginning to make scientific publications available on the 
World Wide Web in increasing number. In order to search and exploit these 
disorganized digital documents, there is a growing need to organize them efficiently. 
Organizing articles by their metadata is a good way and becomes more and more 
popular. Accordingly, automatic extraction of metadata from vast number of papers 
and papers’ bibliographies has been widely studied in recent years. We are interested 
in improving the metadata extraction from papers’ bibliographies, which is, 
segmenting a bibliography into individual fields such as author, title, publisher, date 
and so on. 

The field extraction from bibliographies is non-trivial because of the high variance 
in the structure of the current record-level search. Previous approaches have typically 
used rule-based system to do this. Citeseer [2] uses a heuristic method which first 
parses those fields that have relatively uniform syntax, position, and composition. In 
addition, it uses syntactic relationships between fields and dictionaries of author 
names and journal titles to help identify fields. There is also another rule-based 
bibliographic metadata extractor called DECITER (decoding citations) [3]. There are 
some problems in such systems which rely on hand-written rules. Firstly, rules have 
to be modified if an entry with a new style is added to the domain. Secondly, they 
only work for the regions they are developed and can’t extend to other domains. A lot 
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of manual work has to be performed in rewriting these rules while shifting domains. 
In this paper, we adopt a bigram HMM to automatically extract bibliographic 
metadata with a seed set of example labeled bibliography entries. 

The remainder of the paper is organized as follows. Section 2 describes Hidden 
Markov Models as background. Section 3 describes the key steps for extracting 
metadata from bibliographies via a bigram HMM. Section 4 experimentally evaluates 
the bigram HMM on a corpus. Section 5 discussed some related works. Section 6 
summarizes the paper. 

2   Hidden Markov Models 

A Hidden Markov model (HMM) is a finite state automation comprising with 
stochastic state transitions and symbol emissions. The automation models a 
probabilistic generative processes whereby a sequence of symbols is produced by 
starting at a designated start state, transitioning to a new state, emitting a symbol 
selected by that state, transitioning again, emitting another symbol, and so on, until a 
designated final state is reached. Associated with each of a set of states, 

1{ ,..., }nS S S= , are a probability distribution over the symbols in the emission 

vocabulary 1{ ,... }mV w w= , and a probability distribution over its set of outgoing 

transitions. [4, 5] 
In this model, a symbol sequence can be generated through some state path with a 

probability which can be computed as the product of all transition and emission 
probabilities along the path. Given an output sequence, we can also recover the most 
probable state transitions that could have generated it. 

HMMs, while relatively new to the structure extraction task, have been used with 
much success for speech and hand-writing recognition tasks and for natural language 
tasks like parts-of-speech tagging. In spite of the general principles being known, 
applying it to information extraction requires new enhancements to this model. 

Next section we will see how to implement the metadata extraction using a 
modified HMM, bigram HMM. 

3   Bibliographic Metadata Extraction with Bigram HMM 

A bibliographic entry can be viewed as a sequence of fields (e.g. author, title, 
publisher, date, pages, etc.). Given an HMM, each state of which is marked with a 
label that is the name of some field., metadata extraction from bibliographies is 
performed by determining the sequence of states that was most likely to have 
generated the entire word sequence of the bibliography entry, and then putting each 
word to the corresponding field according to the state sequence. 

To perform extracting we therefore require an algorithm for finding the most 
likely state sequence given a HMM model M and a sequence of symbols. Although a 
naïve approach for finding the most likely sequence would take time exponential in 
the sequence length, a dynamic programming solution called the viterbi algorithm [1, 
4] solves the problem in just 2( )O TN time. 
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To perform extracting we also need to build an HMM, including the structure and 
the parameters. Other work such as OOV problem, parameter smoothing and so on 
has to be dealt with as well to finish the extracting perfectly. 

3.1   The Viterbi Algorithm 

Given an output sequence 1 2... TO OO O=  of length T and an HMM having N  states, 

we want to find out the most probable state sequence from the start state to the end 
state which generates O . [1, 4] 

Let 0S  and 1NS +  denote the special start and end states which don’t emit symbols. 

Let ( )t jδ  denotes the highest probability along a single path, at time t , which 

accounts for the first t  observations and ends in state 
jS . Therefore ( )t jδ  can be 

written as 

1 2 1
1 2 1 2

...
( ) max ( ... , ... | )

t
t t j t

q q q
j P q q q S O O Oδ λ

−

= =  . (1)

We begin at the start state 
0S . Thus, initially,  

0 0(0) 1,  ( ) 0,  0k kδ δ= = ≠  . (2)

By induction we have 

1
1

( ) max ( ) ( ),  1 ,1t t ij j t
i N

j i a b O t T j Nδ δ −≤ ≤
= ≤ ≤ ≤ ≤

 ,
(3)

where ija  is the transition probability from state iS  to state jS , ( )j tb O  is the 

emission probability of emitting tO  at state jS . The maximum is taken over all states 

of the HMM. 
Finally, that is at time T+1, the state sequence will end at the end state SN+1. So we 

have

1 ( 1) 1
1

( 1) max ( ) , ( ) 0,  1T T i N T
i N

N i a j j Nδ δ δ+ + +≤ ≤
+ = = ≤ ≤  . (4)

The most probable path can be gotten by storing the argmax at each step. This 
formulation can be easily implemented as a dynamic programming algorithm running 
in 2( )O TN  time. 

3.2   Learning Structure 

In order to build an HMM for information extraction, first of all, we must decide how 
many states the model should contain and what transitions between states should be 
allowed. A reasonable initial model is to use one state per field, and to allow 
transitions from any state to any other state. However, this model may not be optimal 
in all cases. When a specific hidden sequence structure is expected in the extraction 
domain, we may do better by building a model with multiple states per field, with 
only a few transitions out of each state. This can be done by learning the structure 
automatically from the labeled training data consisting of labeled word sequences. [6] 
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Firstly an HMM is constructed which produces exactly the input word sequences. 
The start state has as many outgoing transitions as there are word sequences and each 
word sequence is represented by a unique path with one state per word. All paths end 
at the final state with probability 1. The probability of entering these paths from the 
start state is uniformly distributed. Within each path there is a unique transition arc 
whose probability is 1. The emission probabilities are 1 from each state to produce the 
corresponding word. This model is called as maximum likelihood model.[6] 

Fig. 1. Learning structure using labeled bibliography entries “<author>a</author><title> 
b</title>”  and  “<author>c d</author><year>e</year>” 

Then “Neighbor-merging” and “V-merging” are used to merge some states that 
have the same label to generalize the maximally specific model. “Neighbor-merging” 
combines all states that share a link and have the same field label. “V-merging” 
merges any two states that have the same label and share transitions from or to a 
common state.

All of these can be illustrated in Fig. 1. 

3.3   Learning Parameters 

Once the structure of the HMM is fixed, we need to learn its transition and emission 
probabilities, which can be calculated using the Maximum Likelihood approach on all 
training sequences. 

The probability of making a transition from state q  to state 'q  is the ratio of the 

number of transitions made from state q  to 'q  in the training data to the total number 
of transitions made from q . The probability of emitting symbol σ  at state q  is the 
ratio of the number of times σ  is emitted in q  to the total number of symbols 

emitted in the state. This can be written as 

'
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( ) ( )
( ) ( )
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where q σ↑  denotes state q  emits word σ  and ( )c x  denotes the number of event 
x  occurring in the training data. [6] 

In this model, it is unreasonable that two words with the same frequency in the 
same state have equal importance because it ignores much helpful information. 
Firstly, it ignores any sequential relationship amongst words in the same filed. For 
example, phrases like “Technical Report” will be outputs of the same state. This state 
will accept “Technical Report” with the same probability as “Report Technical”. In 
fact, it is very unusual that “Report Technical” appears. Secondly, it ignores the 
words’ position information within a filed. For example, “pp.” is more important than 
any other word (i.e. “w”) that occurs in the same frequency with “pp.”, because “pp.” 
always appears in the beginning of the pages filed, while “w” always appears inside 
the pages field. In practice, we will pay more attention to the words that always occur 
in the beginning of a field. However, this model can’t distinguish this, which will treat 
“pp” and “w” as with the same importance.  

We overcome these drawbacks by using a bigram HMM in the next section. 

3.4   Bigram HMM 

The Bigram uses a modified model for computing the emission probability, while 
keeping the structure of HMM unchanged. In the new model, the probability of 
emitting symbol σ  at state q  composes of beginning emission probability and inner 

emission probability. The former is the probability that q emits σ  as the first word, 
and the latter is the probability that q  emits σ  as the inner word (not the first word). 

We will later see how to use the emission probability in the modified viterbi 
algorithm and understand that by this we can capture the words’ position information 
in the state. The inner emission probability is computed using a bigram model, which 
can capture the words’ bigram sequence relationship within the same filed. 

We can write the new emission probability model as 

1

( ),   appears in the beginning of q
( | )  

( ) ( | , ),   appears in the inner of q

P q
P q

P q P q

σ σ
σ

σ σ σ σ−

↑
=

↑ =
(6)

where q σ↑  denotes state q  emits word σ as the beginning word, q σ↑  denotes q

emits σ  as the inner word and 1σ −  denotes the word before σ .

We can also use the ratio from the training data to compute ( )P q σ  and 

1( | , )P qσ σ −
.

1
1

1

( )( )
( ) ( | , )

( ) ( )

c qc q
P q P q

c q c q
ρ

σ σσσ σ σ
ρ σ

−
−

−∈Σ

↑↑↑ = =
↑ ↑ (7)

3.5   Viterbi for Bigram HMM 

We make a little modification to the viterbi algorithm for the bigram HMM, where we 
will see how to use the beginning emission probability and the inner emission 
probability presented in last section. 
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Only the formula in the induction has been modified, where the beginning 

emission probability is used if the current state jS  is not equal to the last state -1jS

which shows the current word tO  is the first word of state jS , or else, the inner 

emission probability is used. 

3.6   Smoothing 

When the training data is insufficient, maximum likelihood estimation of emission 
probabilities will lead to poor estimates, with many words inappropriately having zero 
probability. So we need to smooth emission probabilities to prevent zero-probability 
estimates and improve estimation overall. There are many methods for smoothing.          
Both Laplace smoothing and absolute discounting calculate the word distribution in a 
state using only the training data in state q  itself. In contrast, the third technique 
called shrinkage can leverage the word distributions in several related states in order 
to improve parameter estimation.[5] 

An idea similar to shrinkage, a method which we call as back off-shrinkage [7] 
can be used here for the bigram HMM. Because of insufficient training data, bigram 
HMM may not see some bigrams or words, in which case the model backs off to a 
less-powerful, less-descriptive model. So we define a level of back-off models as 
below, from bigram model to unigram model, then to global model, and finally to 
uniform model. 

Backing off of ( )P q σ↑ : ( ) ( ) ( ) 1/globalP q P q P mσ σ σ↑ → ↑ → →

Backing off of 1( | , )P qσ σ − :
1( | , ) ( ) ( ) 1/globalP q P q P mσ σ σ σ− → ↑ → →

where m is the size of vocabulary, 1/ m  is the emission probability of the uniform 
model, and ( )globalP σ  is the emission probability in the global model, that is the 

probability of σ  occurring in the training data. 
We then combine the estimates with a weighted average, for example, 

1 2 3 4

1 2 3 4 1 2 3 4

( ) ( ) ( ) ( ) / ,

where , , , 1
globalP q P q P q P mσ λ σ λ σ λ σ λ

λ λ λ λ λ λ λ λ
↑ = ↑ + ↑ + +

≥ + + + =0�and 
 . (9)

The weights are adjusted in practice according to the actual importance of models. 
In the bibliographic metadata extraction, the words in the beginning of fields are very 
important, so 1λ  was assigned a large value in the experiment. Because the global 

emission probability ( )globalP σ  is always non-zero, the uniform emission probability 

is meaningless. Therefore, we set 4λ  to 0. 
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3.7   OOV Problem 

During testing we may encounter words that have not been seen during training. How 
we estimate the emission probabilities of these unknown words. This problem is 
known as OOV (out of vocabulary) problem. This paper uses a method which we call 
as minimum frequency method [6]. Let f  denotes the minimum frequency. The 
vocabulary is constituted by the words whose frequency in the training data is not less 
than f , while other words whose frequency is less than f  are mapped to the 
unknown word “<UNK>”. Any word in the testing data that is out of vocabulary is 
also mapped to “<UNK>”, so its emission probability is the emission probability of 
“<UNK>” which can be estimated via the training data. 

4   Experimental Evaluation 

4.1   Preliminaries 

713 bibliography entries were stochastically extracted from 250 papers using the 
paper metadata extractor we have implemented before, which can extract title, author, 
abstract, keywords, the list of bibliographies and so on from PDF formatting papers. 
These entries were then hand-labeled as follows to construct our data set.  

“<author>Andrew W. Appel. </author><title>A semantic model of types. 
</title><journal>In Twenty-Seventh ACM Symposium, </journal><pages>pages 
243-253, </pages><location>Boston, </location><date>January 2000. </date>” 

We use 4-level cross validation, splitting the dataset into four parts averagely, one 
part as testing set in turn, other three parts merged as training set, performing four 
times of experiments. The training set is used to train the HMM, and the testing set is 
used to evaluate the effect of extraction. The final result is the average of the four 
experiments’ results. 

We use both precision (P) and recall (R) borrowed from information-retrieval 
community to evaluate our result where 

number of tokens corrected tagged using HMM number of tokens corrected tagged using HMM
  and 

number of tokens tagged using HMM number of tokens tagged by expert
P R= =

F1, the harmonic mean of P and R, i.e. 2 /(1/ 1/ )P R+ , is used to balance P and R. 

4.2   Results 

We find the smoothing method back off-shrinkage makes better precision than other 
methods, so we choose it as the smoothing method in our experiment. 

In Figure 2 we compare the precision, recall and F1 of three different models, 
bigram HMM presented in this paper, traditional HMM (unigram HMM) and 
DECITER mentioned in section 1 as a rule-based metadata extractor. We can make 
the following observations from these results. 
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Fig. 2. Comparison of different models 

Table 1. Results in Individual fields 

Field Tokens present Prec. Recall 

title 2957 0.8959 0.9212 

author 3144 0.9770 0.9587 

date 616 0.9239 0.9447 

pages 570 0.9552 0.9630 

volume 162 0.8405 0.8997 

issue 135 0.8860 0.8995 

journal 2221 0.9052 0.8080 

url 218 0.8770 0.9553 

publisher 78 0.6436 0.8330 

location 345 0.6689 0.7827 

other 174 0.4288 0.6180 

total 10620 0.9015 0.9015 

1. The overall precision and overall recall are equal when using both traditional and 
bigram HMM because all tokens are tagged, while not equal when using 
DECITER because DECITER leaves many tokens untagged by not assigning them 
to any of the fields, which also causes the low recall 0.7295. 

2. Bigram HMM makes an improvement in precision more than three percentages 
than traditional HMM, while DECITER gets the lowest precision and recall. The 
peak precision is more than 90%, which is satisfactory. 

Finally, details of precision and recall in every field when using bigram HMM are 
shown in table 1. The precision and recall of most fields are acceptable except the 
three fields publisher, location and other which accepts tokens that don’t belong to 
any other filed. Fortunately, these fields happen to be less important and occur 
infrequently in training and testing data. The scarcity of data prevents them from 
getting trained properly. 
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5   Related Work 

There is much work related to ours. 
[8] also uses HMM to extract metadata from bibliographies as this paper. 

However, unlike this paper, in [8] the structure of HMM is hand-crafted according to 
some bibliographic style, so the result is very bad when using this model to extract 
bibliographies with other styles. In contrast, this paper can automatically learn the 
HMM structure using the labeled training data in which there are bibliography entries 
with as much styles as possible, and can achieve high precision in spite of the style of 
the testing data. 

[7] presents a Nymble system to perform “named entity” extraction as defined by 
MUC-6 using a two-level hierarchical HMM in which the nested model is a full-
connected model which can also overcome the shortcoming presented in section 3.3. 
All different fields to be extracted are modeled in a single HMM composed of some 
name-class states, and each name-class state is composed of m (the size of 
vocabulary) word-states each of which generates the corresponding word with 
probability 1 and can connect to any other word-state. 

[1] presents a DATAMOLD system also using a two-level hierarchical HMM to 
segment text into structured records, an application of which is also the bibliographic 
metadata extraction. Unlike [7], the outer model and inner model can both be learned 
from the training data. The inner HMM can capture the finer structure of the 
corresponding filed, and it can also capture the length information of the field by a 
parallel path structure. 

In contrast to [7] and [1], this paper keeps the structure of HMM unchanged, 
capturing part structures of fields by modifying the emission probability model and 
accordingly the viterbi algorithm. 

6   Conclusions 

This paper has dedicated to the problem of extracting metadata from bibliographic 
entries using a bigram HMM which uses a modified emission probability model to 
exploit additional cues from several sources, including words’ sequential relation and 
words’ position information within a filed. The structure and parameters of HMM is 
automatically learned from the labeled training data, alone with which is the back-off 
shrinkage smoothing. Experiments yield precision greater than 90%, considerably 
better than traditional HMM and a rule-based algorithm. 
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