
A Characterization of Polygonal Regions
Searchable from the Boundary

Xuehou Tan

Tokai University, 317 Nishino, Numazu 410-0395, Japan
tan@wing.ncc.u-tokai.ac.jp

Abstract. We consider the problem of searching for a moving target
with unbounded speed in a dark polygonal region by a searcher. The
searcher continuously moves on the polygon boundary and can see only
along the rays of the flashlights emanating from his position at a time. We
present necessary and sufficient conditions for a polygon of n vertices to
be searchable from the boundary. Our two main results are the following:

1. We present an O(n log n) time and O(n) space algorithm for testing
the searchability of simple polygons. Moreover, a search schedule can
be reported in time linear in its size I, if it exists. For the searcher
having full 360◦ vision, I < 2n, and for the searcher having only one
flashlight, I < 3n2. Our result improves upon the previous O(n2)
time and space solution, given by LaValle et al [5]. Also, the linear
bound for the searcher having full 360◦ vision solves an open problem
posed by Suzuki et al [7].

2. We show the equivalence of the abilities of the searcher having only
one flashlight and the one having full 360◦ vision. Although the same
result has been obtained by Suzuki et al [7], their proof is long and
complicated, due to lack of the characterization of boundary search.

1 Introduction

Recently, much attention has been devoted to the problem of searching for an
unpredictable, moving target with unbounded speed in an n-sided polygon P
by a mobile searcher [5, 6, 7]. Both the searcher and the target are modeled by
points that can continuously move in P . A searcher is called the k-searcher if he
holds k flashlights, and can see only along the rays of the flashlights emanating
from his position at a time, or the ∞-searcher if he has a light bulb that gives full
360◦ vision. The searcher can rotate a flashlight, with bounded speed to change
the direction of the flashlight. The objective is to decide whether there exists
a search schedule for the searcher to detect the target (i.e., the target is finally
illuminated by the ray of some flashlight, no matter how he moves), and if so,
generate a search schedule. A polygon is said to be k-searchable or ∞-searchable
if there exists a search schedule for the searcher to detect the target.

Motivated by robotics applications, LaValle et al. considered a simple model,
in which the searcher continuously moves on the boundary of P and holds only

J. Akiyama et al. (Eds.): IJCCGGT 2003, LNCS 3330, pp. 200–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:tan@wing.ncc.u-tokai.ac.jp

A Characterization of Polygonal Regions Searchable from the Boundary 201

one flashlight [5]. By constructing a two-dimensional diagram of size Ω(n2), they
gave an O(n2) time and space algorithm for generating a search schedule, if it
exists [5]. On the other hand, Suzuki et al. showed that any polygon searchable
by the ∞-searcher from the boundary is also searchable by the 1-searcher from
the boundary [7]. Due to lack of the characterization of boundary search, their
proof is long and complicated. Whether or not a good (e.g., linear) bound on
the size of search schedules for the ∞-searcher can be established is left as an
open problem in [7].

In this paper, we present necessary and sufficient conditions for a polygon to
be searchable from the boundary, and provide efficient algorithms for determining
the searchability of simple polygons and generating a search schedule if it exists.
The first necessary condition states that a polygon P is not searchable from the
boundary if there are three points p1, p2, p3 on the boundary of P such that
the Euclidean shortest path between any pair of pi, pj (i, j ∈ {1, 2, 3}) within
P contains no point visible from the third point pk (k �= i or j). The second
and third conditions together state that a polygon P is not searchable from
the boundary if every boundary point of P is surrounded by at least one of
three special configurations; these configurations provide a place for the target
to defend himself from the first (or initial) attack made by the searcher. If none
of these conditions is true, then P is searchable from the boundary.

The paper is structed as follows. Section 2 reviews the two-guard problem
[3, 4], which is used as a subroutine in our search algorithm. In Section 3, we give
three necessary and sufficient conditions for the polygons to be searchable from
the boundary. Based on this characterization, the equivalence of the abilities
of the 1-searcher and the ∞-searcher is established. In Section 4, we describe
an O(n log n) and O(n) space algorithm for testing the searchability of simple
polygons. A search schedule can be reported in time linear in its size I, if it
exists. For the ∞-searcher, I < 2n, and for the 1-searcher, I < 3n2.

2 Review of the Two-Guard Problem

Let P denote a simple polygon (without holes or self-intersections). Two points
x, y ∈ P are said to be mutually visible if the segment xy is entirely contained in
P . For two regions P1, P2 ⊆ P , we say that P1 is weakly visible from P2 if every
point in P1 is visible from some point in P2.

A corridor P is a simple polygon with two marked boundary points u and v.
The two-guard problem [3, 4] asks if there exists a walk such that two guards l and
r move along two polygonal chains L and R oriented from u to v, one clockwise
and one counterclockwise, in such a way that l and r are always mutually visible.
For two points p, p′ ∈ L, we say that p precedes p′ (and p′ succeeds p) if we
encounter p before p′ when traversing L from u to v. If p precedes p′, we write
p < p′. We define these concepts for R in a similar manner.

For a vertex x of a polygonal chain, let Succ(x) denote the vertex of the chain
immediately succeeding x, and Pred(x) the vertex immediately preceding x. A
vertex of P is reflex if its internal angle is strictly larger than π. The backward

202 X. Tan

ray shot from a reflex vertex r, denoted by Backw(r), is the first boundary point
of P hit by a “bullet” shot at r in the direction from Succ(r) to r, and the
forward ray shot Forw(r) is the first point hit by the bullet shot at r in the
direction from Pred(r) to r (Fig. 1). A pair of reflex vertices p ∈ L, q ∈ R is
said to give a deadlock if q < Backw(p) ∈ R and p < Backw(q) ∈ L hold or if
q > Forw(p) ∈ R and p > Forw(q) ∈ L hold. See Fig. 1.

L R
L R

p q

p q

Backw(q) Backw(p)

Forw(q) Forw(p)

Fig. 1. Deadlocks

Lemma 1. [4] A corridor P is walkable if and only if the chains L and R are
mutually weakly visible, and no deadlocks occur.

Also, a walk from one segment p0q0 to another segment p1q1, where p0 < p1
and q0 < q1, is possible if and only if two subchains from p0 to p1 and from q0
to q1 are mutually weakly visible and no deadlocks occur between them. For a
walkable corridor, we need to give a walk schedule. The walk schedule consists
of the following elementary actions: (i) both guards move forward along single
edges, and (ii) one guard moves forward, but the other moves backward, along
segments of single edges.

Lemma 2. [3, 4] It takes O(n) time to test the two-guard walkability of a cor-
ridor, and O(nlogn + I) time to generate a walk schedule, where I (≤ n2) is the
minimal number of walk instructions.

3 Searching a Polygon from the Boundary

Let P be a simple polygon. Given a boundary point d, we can order all boundary
points counterclockwise, starting and ending at d. For a complete ordering, we
consider d as two points dl and dr such that dl ≤ p ≤ dr, for all points p on
the boundary of P . Similar definitions can then be given as those in Section
2. For two boundary points p, p′, we say that p precedes p′ (and p′ succeeds p)
if we encounter p before p′ when traversing from dl to dr. We write p < p′ if
p precedes p′. For a vertex x, we denote by Succ(x) the vertex immediately
succeeding x, and Pred(x) the vertex immediately preceding x. For a reflex
vertex r, the backward and forward ray shots Backw(r) and Forw(r) are the
first boundary points of P hit by the bullets shot at r in the directions from
Succ(r) to r and from Pred(r) to r, respectively. In the case that d is a reflex
vertex, the shots Backw(d) and Forw(d) can similarly be defined using Succ(dl)

A Characterization of Polygonal Regions Searchable from the Boundary 203

and Pred(dr). A pair of reflex vertices x, y is said to give a deadlock for the point
p if pl < x < Forw(y) < Backw(x) < y < pr holds.

In order to simplify the presentation, we denote, by [u, v], the boundary
interval from u to v counterclockwise. For an interval X, the point y ∈ X is said
to be the maximum (resp. minimum), if y ≥ x ∈ X (resp. y ≤ x ∈ X).

3.1 Necessity

We present three necessary conditions for a polygon P to be searchable by the ∞-
searcher from the boundary. A point x ∈ P is said to be detected or illuminated
at a time t, if x is contained in the region that is visible from the position of the
∞-searcher at t. Any region that might contain the target at a time is said to be
contaminated; otherwise, it is said to be clear. If a region becomes contaminated
for the second or more time, it is referred to as recontaminated.

What important in clearing P is to avoid a ’cycle’ of recontaminations. Ob-
viously, a cycle of recontanimations occurs if there are three boundary points
such that when the ∞-searcher moves between any two of them, the third point
is contaminated or recontaminated (Fig. 2).

(a)

p
3

v1

p
1

p
2

v2

v
3

(b)

p
3

v
1

p
1

p
2

v2 v
3

Fig. 2. A polygon satisfying the condition C1

Theorem 1. A simple polygon is not ∞-searchable from the boundary if (C1)
there are three points p1, p2 and p3 on the boundary such that the shortest path
between any pair of pi, pj (i, j ∈ {1, 2, 3}) within the polygon contains no point
visible from the third point pk (k �= i or j).

Proof. Assume that P is a simple polygon. Let p1, p2 and p3, given in counter-
clockwise order, denote three boundary points of P which satisfy the condition
C1. See Fig. 2. Without loss of generality, assume that the ∞-searcher starts
at p1. To clear the next point, say, p2, it suffices for the ∞-searcher to move
within the interval [p1, p2] (Fig. 2a). Since the shortest path between p1 and
p2 contains no point visible from p3, the third point p3 remains contaminated
when the ∞-searcher moves within [p1, p2]. To clear the point p3, the ∞-searcher
has to move outside of the interval [p1, p2] at least once. However, when the ∞-
searcher moves to the point p2 (resp. p1), the target may sneak from p3 into p1
(resp. p2). See Fig. 2b for an example, where the ∞-searcher is located at the
point p2 and the cleared region is shaded. Thus, whenever the ∞-searcher moves
within [pi, pj] (i, j ∈ {1, 2, 3}), the third point pk (k �= i or j) is contaminated
or recontaminated. Hence, P is not searchable from the boundary. �

204 X. Tan

For any three points p1, p2 and p3 satisfying C1, we can find the reflex
vertices v1, v2 and v3 such that three adjacent vertices of them, each per vertex
vi (1 ≤ i ≤ 3), satisfy the condition C1. See Fig. 2a for an example, where pi

is just the vertex adjacent to vi. The condition C1 is then said to become true
due to the existence of v1, v2 and v3, or shortly, due to v1, v2 and v3.

There are some other cases in which a cycle of recontaminations occurs (Fig.
3). We need more definitions. A pair of vertices v1, v2 is said to give a BF-pair
for a boundary point p if pl < v1 < Backw(v1) < v2 < pr and v1 < Forw(v2)
hold. For the polygon shown in Fig. 3a, each boundary point has a BF -pair.
A triple of vertices v1, v2 and v3 is said to give an F -triple for the point p if
pl ≤ v1 < Forw(v2) < v2 < Forw(v3) < v3 < pr and v2 < Forw(v1) < v3 hold.
See Fig. 3b for an example. Also, a triple of vertice v1, v2 and v3 is said to give
a B-triple for the point p if pl < v1 < Backw(v1) < v2 < Backw(v2) < v3 ≤ pr

and v1 < Backw(v3) < v2 hold.

Theorem 2. A simple polygon is not ∞-searchable from the boundary if (C2)
either the BF -pair or the F -triple occurs for each boundary point, or if (C3)
either the BF -pair or the B-triple occurs for each boundary point.

Proof. We give below a proof for the condtion C2. (The condition C3 can be
proved analogously.) Some examples satisfying C2 are shown in Fig. 3. Let P
be a simple polygon such that C2 applies, but C1 doesn’t. To show that P is
not searchable from the boundary, we distinguish the following three cases.

p

v3

v2
v=v'1

 Forw(v)
 3

 Forw(v)
1

 Forw(v)2

(c)

 Forw(v)=p'p

3

v2

2

 Forw(v)3

v

1

v'2

v'

v =v'

Forw(v)

p
v=p'
1

v=v'
2

Backw(v)
1

Forw(v)
2

(a)
(b)

1

1

v'

3

1

2

2

1v'

p
1

p
2

4

3

(d)

p

p

Fig. 3. Several examples satisfying the condition C2

Case 1. All boundary points have their BF -pairs (Fig. 3a). For a boundary
point p, there are two vertices v1 and v2 such that pl < v1 < Backw(v1) <
v2 < pr and v1 < Forw(v2) hold. Suppose that the ∞-searcher starts at p.
The ∞-searcher has to move over v1 or v2 at least once; otherwise, P cannot

A Characterization of Polygonal Regions Searchable from the Boundary 205

be cleared. When the ∞-searcher moves into the interior of the edge v1Succ(v1)
(resp. v2Pred(v2)) at a time, say, t, the target can sneak from Pred(v2) (resp.
Succ(v1)) to the point p, making p be recontaminated. Consider now the point
v1 (resp. v2) as a new starting point p′. There are also two vertices v′

1 and v′
2

such that p′
l < v′

1 < Backw(v′
1) < v′

2 < p′
r and v′

1 < Forw(v′
2) hold. Note

that Pred(v′
2) and Succ(v′

1) are contaminated at the time t. Since all boundary
points have their BF -pairs, the starting points considered eventually give a cycle
of recontaminations. Hence, P is not searchable from the boundary.
Case 2. All boundary points have their F -triples (Fig. 3b). For a boundary point
p, there are two vertices v2 and v3 such that pl < Forw(v2) < v2 < Forw(v3) <
v3 < pr holds. Assume that v2 is the maximum vertex satisfying the above in-
equality, with respect to p. Let p′ denote the point Forw(v2). There are also
two vertices v′

2 and v′
3 such that p′

l < Forw(v′
2) < v′

2 < Forw(v′
3) < v′

3 < p′
r

holds. Since v2 is the maximum vertex satisfying pl < Forw(v2) < v2
< Forw(v3) < v3 < pr, we have v3 �= v′

3. Then, p′
l < Forw(v3) < Forw(v′

3)
< v3 < p′

r holds; otherwise, C1 becomes true due to v2, v3 and v′
3. Let us

restrict p to be a point of the (half-open) interval [v3, v
′
3) and let v1 = v′

3.
Then, for any boundary point x, there are three vertices v1, v2 and v3 such
that xl < p1 < Forw(p2) < p2 < Forw(p3) < Forw(p1) < p3 < xr holds. This
inequality gives the F -triple for the point x, and is the key to the following proof.

Suppose that the ∞-searcher starts at a point p. Both Pred(v2) and Pred(v3)
are contaminated initially. Assume first that the ∞-searcher moves on the bound-
ary of P counterclockwise. We repeatedly consider Forw(v2) for the current
point p as a new starting point p′. When the ∞-searcher moves into the interior
of the edge v2Pred(v2), the target can sneak, say, from Pred(v3) to Pred(v′

3),
making p be recontaminated. Since all boundary points have their F -triples, the
starting points considered eventually give a cycle of recontaminations. Assume
now that the ∞-searcher moves clockwise. When he moves to the interior of the
edge v3Pred(v3), the target can sneak from Pred(v2) to any point of the inter-
val [Pred(v2), v3), making p be recontaminated. Take v3 as a new starting point.
Again, the starting points considered eventually give a cycle of recontaminations.
Finally, suppose that the ∞-searcher can change his moving direction. Also, we
repeatedly consider Forw(v2) or v3 for the current point p as a new starting
point, depending on which one is first encountered. As discussed above, a cycle
of recontaminations eventually occurs among these starting points. Hence, P is
not searchable from the boundary.
Case 3. Some boundary points have the BF -pairs and the others have the F -
triples. Let p denote a point, for which the F -triple occurs but the BF -pair does
not. Then, there are three vertices v1, v2 and v3 such that pl ≤ v1 < Forw(v2) <
v2 < Forw(v3) < v3 < pr and v2 < Forw(v1) < v3 hold. Assume that v1 and
v3 are the maximum and minimum vertices satisfying the above inequalities,
with respect to p. Any point x ∈ [v1, v2] ∪ [Forw(v3), v3] has the BF -triple;
otherwise, either all boundary points of P have their F -triples or the condition
C2 cannot be satisfied. Since v2 and v3 may contribute to the other F -triple, the
boundary of P is divided into two or four intervals such that the BF -pairs and

206 X. Tan

the F -triples appear alternately. In Fig. 3d, each point of the interval [p1, p2] or
[p3, p4] has the F -triple, and each point of the interval [p2, p3] or [p4, p1] has the
BF -pair. In Fig. 3c, two alternate intervals can be found.

From the discussion made in Case 1, it is ineffective for the ∞-searcher to start
at a point for which the BF -pair occurs. Consider a search schedule that starts at
a point p, for which only the F -triple occurs. Let us see what happens (or which
points are contaminated) when the ∞-searcher moves from one interval having
the F -triple to the other having the BF -pair. Suppose that the ∞-searcher
moves from p to Forw(v2) counterclockwise in the time interval [0, t], 0 < t.
Let p′ denote the point Forw(v2). Then, there are two vertices v′

1, v′
2 such that

p′
l < v′

1 < Backw(v′
1) < v′

2 < p′
r and v′

1 < Forw(v′
2) hold (Fig. 3c). Since v1

is the maximum vertex giving the F -triple for the point p, we have v1 = v′
2.

Note that v′
1 < v2 holds; otherwise, C1 becomes true due to v′

1, v′
2 and v2. Since

v1 < Forw(v2) < v2 < Forw(v1) holds, the vertex Succ(v′
1) is contaminated or

recontaminated at the time t.
Let us proceed to show that P is not searchable from the boundary. Assume

that all points of the interval [v1, v3] have their BF -pairs. At first, when the
∞-searcher moves within the interval [Pred(v3), v1], the target can hide himself
at Pred(v2). When the ∞-searcher reaches a point x ∈ [v1, P red(v3)], the target
can always hide himself at the successor of the first vertex of the two giving the
BF -pair for x. A cycle of recontaminations occurs when the ∞-searcher moves
back to the interval [Pred(v3), v1]. See Fig. 3c for an example. Assume now that
there is a sub-interval of [v2, Forw(v3)], whose points have their F -triples (see
Fig. 3d). In this case, when the ∞-searcher moves within that sub-interval, the
target can hide himself at Pred(v3). Also, a cycle of recontaminations eventually
occurs. It completes the proof. �

3.2 Sufficiency

In this section, we show that the absence of all configurations specified by C1,
C2 and C3 ensures that a polygon is 1-searchable from the boundary.

Fig. 4. Instructions for the 1-searcher in boundary search

Consider the elementary actions performed by the 1-searcher [5]. The 1-
searcher s and the endpoint f of his flashlight can move along segments of
single edges such that (i) no (proper) intersections occur among all segments sf
during the movement or (ii) any two of the segments sf intersect each other,
and (iii) f jumps from one point to another point on the boundary of P such
that the ray between s and f is extended or shortened. See Fig. 4. The first two

A Characterization of Polygonal Regions Searchable from the Boundary 207

r'

rRay(r')

Ray(r)

Visibility cut

Critical cut

d

Fig. 5. Visibility cuts and critical cuts

(a)

d

(e)

d

(c)

d

(h)

d

(g)

d

(f)

d

r1

v'

r2

(b)

d

r1

r2

v
v

v'

(d)

d

r2

r1

Fig. 6. Snapshots of a search schedule

instructions are allowed for two guards, but the last one is not. So any polygon
that is walkable by two guards is 1-searchable from the boundary. We will refer
to a flashlight rotation as a set of continuous instructions (ii) and (iii), including
at least one instruction (ii), and a walk as a set of continuous instructions (i)
and (ii), including at least one instruction (i).

Let us define the visibility events occurred in any search schedule starting
at a boundary point d. Let r denote a reflex vertex. The polygon P can be
divided into two pieces by a ”cut” that extends an edge incident to r until it
hits the boundary of P . A cut is a visibility cut if it produces a convex angle
at r in the piece of P containing d. Let Ray(r) denote the other endpoint of
the visibility cut produced by r, and let P (rRay(r)) denote the piece of P
containing d. A visibility cut rRay(r) is critical if P (rRay(r)) is not contained
in any other P (r′Ray(r′)), where r′Ray(r′) is also a visibility cut. See Fig. 5 for
an example. We call the reflex vertices, whose visibility/critical cut are defined,
the visibility/critical vertices.

Our general strategy is to clear the corners incident to critical vertices coun-
terclockwise. But, all these corners as well as the starting point d are allowed to
be recontaminated. This is the major difficulty that arises in boundary search. In
order to clear the corner incident to a critical vertex, we design a simple ”greedy”
algorithm, i.e., a walk or a flashlight rotation is performed to the utmost limit.
Fig. 6 gives an example, in which two critical vertices r1 and r2 are defined.

208 X. Tan

Snapshots of a search schedule are shown (the arrow shows the movement of the
1-searcher and the cleared region at each step is shaded).

Theorem 3. A simple polygon is 1-searchable from the boundary if none of
C1, C2 and C3 applies.

Proof. Let P be a simple polygon, for which none of C1, C2 and C3 applies.
Then, there is a boundary point d such that none of the BF -pair, the F -triple
and the B-triple occurs for d. Order all boundary point of P counterclockwise,
starting at d. Both inequalities dl < Forw(v1) < v1 < Forw(v2) < v2 < dr

and dl < v1 < Backw(v1) < v2 < Backw(v2) < dr cannot hold simultaneously;
otherwise, either the condition C1 becomes true or the BF -pair for d occurs. In
the following, assume that only dl < Forw(v1) < v1 < Forw(v2) < v2 < dr may
hold. (The situation in which dl < v1 < Backw(v1) < v2 < Backw(v2) < dr

holds can be dealt with analogously.)
Let m denote the number of critical vertices, and let r1, . . ., rm be the

sequence of the critical vertices in the increasing order. Denote by P (ri) and
P − P (ri) the regions which are to the left and right of the segment riRay(ri),
respectively. (If d is contained in P (ri), then P (ri) = P (riRay(ri)); other-
wise, P (ri) = P − P (riRay(ri)).) Our search algorithm is so designed that
the clear portion of P is always to the left of the ray emanating from the flash-
light, as viewed from d. To be exact, we clear the regions P (ri) in the order
i = 1, . . . , m and finally the whole polygon P (Case 1), except for the situation
where dl < Forw(v1) < v1 < Forw(v2) < v2 < dr holds (Case 2).

For a walk or a flashlight rotation, we denote by R(x1, y1) (x1 ≤ y1) and
L(x2, y2) (x2 ≤ y2) the chains on which the 1-searcher s and the endpoint f
of his flashlight move, respectively. The ray of the flashlight is often denoted by
sf . A reflex vertex in a chain is called a blocking vertex if it blocks one of its
adjacent vertices from being visible from any point in the opposite chain.
Case 1. The inequality dl < Forw(v1) < v1 < Forw(v2) < v2 < dr never holds.
Let r0 = P (r0) = d. We will show how to clear the region P (ri), i ≥ 1, assuming
that P (ri−1) has been cleared. The absence of C1 and the BF-pair for d is
sufficient for P to be searchable from the boundary in this case.
Case 1.1. i = 1. Two subcases are distinguished according to whether d is con-
tained in P (r1) or not.
Case 1.1.1. The point d is contained in P (r1). Two chains R(dl, r1) and
L(Ray(r1), dr) are shown by bold lines in Fig. 7. They are mutually weakly
visible, and there are no deadlocks between them; otherwise, there are some
other critical vertices before r1 (Fig. 7a-b), the inequality v1 < Backw(v1) <
v2 < Backw(v2) (Fig. 7c) or the BF -pair for d (Fig. 7d-e) holds, or the condition
C1 is true (Fig. 7f), a contradiction. Hence, the region P (r1) can be cleared by
a walk from the point d to the segment r1Ray(r1).
Case 1.1.2. The point d is not contained in P (r1). Assume first that there are
no other visibility vertices in the interval [dl, r1]. Consider the shortest path
between d and r1. Extend all segments of this path until they hit the boundary
of P . Let d′ denote the other endpoint of the first extended segment (Fig. 8a).

A Characterization of Polygonal Regions Searchable from the Boundary 209

d

d

r
1

r
1

(c)

(d)

d

r

r
1

(e)

d

r
1

(f)

r

(a)

d

r

r
1

(b)

d

r
r
1

r

Ray(r)1 Ray(r)
1

Ray(r)1

Ray(r)1
Ray(r)

1

Ray(r)
1

L

L L

L

L
L

R
R R

R R R

Fig. 7. Case 1.1.1

All points preceding d′ are visible from d; otherwise, there are some visibility
vertices in [dl, r1], a contradiction. The region being to the left of d′d (oriented
from d′ to d) can then be cleared by moving the 1-searcher s from d to d′, while
keeping f at d (Fig. 9a). If d′ > Ray(r1), then all points of the interval [d′, r1]
are visible from the intersection point of d′d and r1Ray(r1); otherwise, there are
some other critical (i.e., blocking) vertices preceding r1 (and possibly r1 is not
critical), a contradiction. Thus, P (r1) can be cleared by rotating the flashlight
from d′d to r1Ray(r1). If d′ < Ray(r1), the region P (r1) can analogously be
cleared by rotating the flashlight from d′d to r1Ray(r1), through the remaining
extended segments of the shortest path between d and r1.

Suppose now that there are some visibility vertices v′ before r1. Clearly, d is
contained in these regions P (v′Ray(v′)). Let v denote the maximum of these vis-
ibility vertices. Observe that if we ignore (or delete) the critical vertices r whose
regions P (rRay(r)) contain P (vRay(v)), the vertex v as well as some vertices
preceding v become critical. Then as in Case 1.1.1 and Case 1.2 (see below), we
can clear the region P (vRay(v)). If v < Ray(r1), the region P (r1) can be cleared
by finding the shortest path between v and r1, extending the segments of the
path until they hit the boundary of P , and rotating the flashlight through every
extended segment of the path (Fig. 8b). Consider the case that v > Ray(r1). If
all points in the chain R(v, r1) are visible from the intersection point of vRay(v)
and r1Ray(r1), the flashlight can simply be rotated from vRay(v) to r1Ray(r1).
Otherwise, let r� be the minimum vertex in R(v, r1) such that Pred(r�) is not
visible from the intersection point (Fig. 8c). The flashlight can then be rotated
from vRay(v) to r�Forw(r�). This procedure is repeatedly performed until the
flashlight is rotated to r1Ray(r1).
Case 1.2. 1 < i ≤ m. Two subcases are distinguished according to whether
ri−1Ray(ri−1) intersects with riRay(ri) or not.
Case 1.2.1 The segment ri−1Ray(ri−1) intersects with riRay(ri). If the chain
R(ri−1, ri) is weakly visible from L(Ray(ri−1), Ray(ri)), the flashlight is rotated
from ri−1Ray(ri−1) to riRay(ri) as follows. If all points between ri−1 and ri are
visible from the intersection point of ri−1Ray(ri−1) and riRay(ri), the flashlight
can be rotated around the intersection point. Otherwise, let r� be the minimum

210 X. Tan

d

r
1

d' d

r
1

(a) (b)

d

r
1

(c)

Ray(r)
1

Ray(r)

Ray(v)

1

Ray(r)
1
r)
1

r*

Forw(r)*

Ray(v))

v
v

RRRR

Fig. 8. Case 1.1.2

d
r
i-1

r
r

d
r
i-1
r
i

r
i

r*

(b)(a)

Ray(r) Ray(r)
Forw(r)*

i-1

i

i
r)
i

Ray(r) iForw(r)))) Ray(r)
i-1
r
i 1

d

r
i

(c)

Ray(r)ir)i

Backw(r)

Ray(r) i 1r i-1

ri-1rr
r

d

r
i

(d)

Ray(r)ir)i

Backw(r)

Ray(r) i 1r i-1

ri-1rr
r

Fig. 9. Case 1.2.1

vertex in R(ri−1, ri) such that Pred(r�) (if d is contained in P (ri−1)) or Succ(r�)
(if d is not contained in P (ri−1)) is not visible from the intersection point. The
flashlight can then be rotated from ri−1Ray(ri−1) to r�Ray(r�). See Fig. 9a
for an example. The chain R(r�, ri) is still visible from L(Ray(r�), Ray(ri));
otherwise, R(ri−1, ri) is not weakly visible from L(Ray(ri−1), Ray(ri)) or the
blocking vertices in R(r�, ri) are critical, a contradiction. Hence, the flashlight
can eventually be rotated to riRay(ri).

Suppose now that R(ri−1, ri) is not weakly visible from L(Ray(ri−1),
Ray(ri)). Let r be the blocking vertex in R(ri−1, ri), whose shot Ray(r) is the
furthest from Ray(ri) on the boundary of P among those of the blocking ver-
tices. See Fig. 9b. The segment rRay(r) should exactly intersect with one of
ri−1Ray(ri−1) and riRay(ri). The flashlight can first be moved to rRay(r), and
then to riRay(ri); one moverment is a flashlight rotation and the other is a walk.
Becasue of our choice of the ”furthest” shot Ray(r), the flashlight rotation is
always possible. The walk is also possible, since otherwise C1 becomes true (see
Fig. 9c for an example where two considered chains considered are not mutually
weakly visible, and Fig. 9d for an example where a deadlock occurs).
Case 1.2.2. The segment ri−1Ray(ri−1) does not intersect with riRay(ri). Fol-
lowing from the definition of critical vertices and the fact that dl < Forw(v1) <
v1 < Forw(v2) < v2 < dr does not holds, the point d is contained in P (ri), but
isn’t in P (ri−1). The chain R(ri−1, ri) is weakly visible from L(Ray(ri), dr) ∪
L(dl, Ray(ri−1)); otherwise, there are the critical vertices between ri−1 and ri,

A Characterization of Polygonal Regions Searchable from the Boundary 211

d

r
m

r
i
r
i

(a)

d

r
m

ri

(b)

d

r
m

(c)

ri

v

rr

r1

r

Fig. 10. Case 2.1

or the condition C1 becomes true due to ri−1, ri and the blocking vertex in
R(ri−1, ri). The converse is also true; otherwise, C1 becomes true due to ri−1,
ri and the blocking vertex in L(Ray(ri), dr) ∪ L(dl, Ray(ri−1)). There are no
deadlocks between these two chains; otherwise, C1 beomes true due to two ver-
tices giving a deadlock and the vertex ri−1 or ri. Hence, the flashlight can be
moved from ri−1Ray(ri−1) to riRay(ri) using a walk.
Case 1.3 The region P (rm) is cleared. If we order all boundary points of P
clockwise, then rm becomes the first critical vertex, and P − P (rm) is the first
region to be cleared. Thus, by a reversed operation of Case 1.1, we can clear
the region P − P (rm) and obtain a complete search schedule. (Note that the
1-searcher traverses the boundary of P only once in Case 1.)
Case 2. The inequality dl < Forw(v1) < v1 < Forw(v2) < v2 < dr holds.
Following the definition of critical vertices, this inequality should be satisfied by
some pair of critical vertices. The absence of the F -triple for d will be used in
this case. (Symmetrically, the absence of the B-triple for d is used in the case
that dl < v1 < Backw(v1) < v2 < Backw(v2) < dr holds.)
Case 2.1. There are two consecutive critical vertices ri and ri+1 such that
Forw(ri) < ri < Forw(ri+1) < ri+1 holds. An example of Case 2.1 can be found
in Fig. 6, where a complete search schedule is shown. In this case, Forw(rh) <
Forw(ri) < rh < ri holds for 1 ≤ h < i; otherwise, rh and ri+1 give the
BF -pair for d (if Ray(rh) = Backw(rh)), a contradiction. So the segment
rhRay(rh) intersects with rh+1Ray(rh+1), for 1 ≤ h < i. As in Case 1.1.2
(for P (r1)) and Case 1.2.1, the region P (ri) can be cleared. The inequality
Forw(ri) < ri < Forw(ri+1) < ri+1 does not affect the operations performed in
Case 1.1.2 and Case 1.2.1.

It is difficult to clear the next region P (ri+1), as P (ri) is completely sepa-
rated from P (ri+1). But, we can directly clear the region P − P (rm) at present
time. Note that Forw(ri+1) < Forw(rj) < ri+1 < rj holds for i + 1 < j ≤ m;
otherwise, C1 becomes true due to ri, ri+1 and rj . Thus, the segment riRay(ri)
does not intersect with rmRay(rm). Two chains R(ri, Ray(rm)) and L(rm, dr)∪
L(dl, Ray(ri)) are mutually weakly visible; otherwise, there are the critical ver-
tices between ri and Ray(rm)(< ri+1), preceding Ray(ri) (< r1) or succeeding
rm (Fig. 10a), or ri, rm and the blocking vertex r in L(rm, dr) ∪ L(dl, Ray(ri))
make C1 (Fig. 10b) be true or give the F -triple for d (Fig. 10c). There are no

212 X. Tan

deadlocks between these two chains; otherwise, C1 becomes true due to two ver-
tices giving a deadlock and the vertex ri or rm. The region P − P (rm) can then
be cleared using a walk from riRay(ri) to Ray(rm)rm. Next, we clear the region
P (rm) by finding the shortest path between rm and d, extending the segments
of the path, and rotating the extended segments intersecting rmRay(rm). (Since
P − P (rm) is already cleared, the flashlight has to be rotated only through the
extended segments intersecting rmRay(rm).) And, move back the flashlight from
rmRay(rm) to Ray(ri)ri using a walk so that the region P − P (ri) is cleared.
Note that the 1-searcher s is now located at Ray(ri). It is important to see that
no instructions (iii) are used in the work of clearing the region P (rh) (Case 1.1.2
and Case 1.2.1), 1 ≤ h ≤ i; otherwise, there is a vertex r (< Ray(rh)) such that
r, rh (e.g., ri in Fig. 10c) and rm give the F -triple for d, a contradiction. So
the operation done for clearing P (ri) can reversely be performed, even in the
sense that the roles of the 1-searcher s and the endpoint f of the flashlight are
exchanged. It completes the search schedule for clearing P .
Case 2.2. No two of consecutive critical vertices r and r′ satisfy the inequality
Forw(r) < r < Forw(r′) < r′. See Fig. 11 for some examples. Without loss of
generality, assume that there are two critical vertices ri and rj satisfying the
inequality Forw(ri) < ri < Forw(rj) < rj , i + 1 < j. As discussed in Case
2.1, Forw(rh) < Forw(ri) < rh < ri holds for 1 ≤ h < i, and Forw(rj) <
Forw(rl) < rj < rl holds for j < l ≤ m. Then, as in Cases 1.1.2 and 1.2.1, the
region P (rm) can be cleared. Assume that rk is the maximum among the critical
vertices r satisfying Forw(r) < r < Forw(rm) < rm. So we have Ray(rk+1) =
Backw(rk+1) and rk+1 > Forw(rm). By an argument similar to that made in
Case 2.1, we can show that the flashlight can be moved from rmRay(rm) to
Ray(rk)rk using a walk. This clears the region P − P (rk). Finally, as shown in
Case 2.1, the operation of clearing P (rk) can reversely be performed. It completes
the search schedule for clearing P .

All cases above ensure that P is 1-searchable from the boundary. �

Theorem 4. Any polygon that is ∞-searchable from the boundary is also 1-
searchable from the boundary.

Proof. It immediately follows from Theorems 1, 2 and 3. �

4 Algorithm and Complexity

In this section, we give the algorithms for testing the searchability of simple
polygons, and reporting a search schedule if it exists.

Theorem 5. It takes O(n log n) time and O(n) space to determine the search-
ability of simple polygons.

Proof. Let P be a simple polygon. All ray shots can be computed in O(n log n)
time [1]. In the following, we first present a procedure for finding the vertices
of P for which the BF -pairs occur, and then extend it to find the vertices for

A Characterization of Polygonal Regions Searchable from the Boundary 213

(e)(d)

v
2v

3

v2 v3

v1

 Backw(v)
2

Forw(v)
1

v1

Forw(v)
2

Backw(v)
3

v

a

2
v
1

v

a

2

v
1

(b) (c)

Forw(v) Backw(v)
2

1

Backw(v)
1

Forw(v) v

a

1 v
2

(a)

Forw(v) Backw(v)
21

Backw(v)
1

Forw(v)
3

Fig. 11. Illustration of the proof of Theorem 5

which the F -triples (resp. B-triples) occur. Whether or not the condition C2
(resp. C3) is true for P can then be determined from these computed results.
Also, the condition C1 can similarly be verified.

Let a denote an arbitrary vertex of P . Order all vertices and ray shots
counterclockwise, starting at a. Let v1 denote the minimum vertex such that
v1 < Backw(v1) holds, and v2 the maximum vertex such that Forw(v2) < v2
holds. If only one of v1 and v2 is found, no BF -pairs occur for the polygon P and
we are done. If v1 > v2 holds, the BF -pairs occur only for the vertices between
v1 and v2 (Fig. 11a), and we are done. If Forw(v2) < v1 < v2 < Backw(v1)
holds, neither v1 nor v2 can contribute to a BF -pair for a (Fig. 11b). In this
case, we search for the vertex v′

1 next to v1 such that v′
1 < Backw(v′

1) holds and
the vertex v′

2 next to v2 such that Forw(v2) < v2 holds, and then call the same
procedure to test if v′

1 and v′
2 give a BF -pair for a. If v1 < Forw(v2) < v2 <

Backw(v1) holds, the region P (v1Backw(v1)) (containing the point a) is con-
tained in P (v2Forw(v2)). See Fig. 11c for an example. (The situation in which
Forw(v2) < v1 < Backw(v1) < v2 holds can be dealt with analogously.) Then,
v1 cannot contribute to any BF -pair for a. We search for the vertex v′

1 next
to v1 such that v′

1 < Backw(v′
1) holds, and call the testing procedure with the

new pair of v′
1 and v2. If v1 < Backw(v1) < v2 and v1 < Forw(v2) < v2 hold,

a BF -pair occurs for all vertices of [v2, ar] ∪ [al, v1]. Next, take Succ(v1) as the
new starting point a′, and order all critical vertices and their shots. Since it is
equivalent to take a′

l and a′
r as the minimum and maximum points respectively,

this ordering can be obtained in constant time. Then search for the minimum
vertex v′

1 such that v′
1 < Backw(v′

1) holds, and call the same procedure to test
if v′

1 and v2 give the BF -pair for a′. This procedure is terminated when the
BF -pair for a is verified again. Clearly, the time taken to find the vertices of P
having the BF -pairs is O(n).

In order to compute the vertices of P having the F -triple, we find, for each
vertex a, two vertices v0, v1 such that v1 is the minimum vertex satisfying v0 <
Forw(v1) < v1 < Forw(v0), and two vertices v′

1, v2 such that v′
1 is the maximum

vertex satisfying Forw(v′
1) < v′

1 < Forw(v2) < v2. If v1 ≤ v′
1, then v0, v1 and

v2 give an F -triple for a; otherwise, no F -triples occur for a. By an argument
similar to that for computing the vertices of P having the B-triples, we can find,

214 X. Tan

in O(n) time, the vertices of P for which the F -triples (resp. B) occur. We leave
the detail to readers.

Turn to the condition C1. Using Das et al.’s algorithm [2], we can find in
linear time if there are three critical vertices (all boundary points are considered
as the starting point once) such that no intersections occur among three segments
connecting a critical vertex with its ray shot. If yes, the condition C1 is true.
The remaining situations in which C1 applies are shown in Fig. 11d-e. By an
argument similar to that for finding an F -triple or a B-triple, we can verify in
O(n) time if the situation shown in Fig. 11d or Fig. 11e occurs or not.

Finally, the space requirement of our algorithm is O(n). �

Theorem 6. A search schedule can be reported in time linear in its size I, if it
exists. For the ∞-searcher, I < 2n, and for the 1-searcher, I < 3n2.

Proof. Let P be a simple polygon, for which none of C1, C2 and C3 applies.
Then, there is a boundary point d such that at most one of Forw(v1) < v1 <
Forw(v2) < v2 and v1 < Backw(v1) < v2 < Backw(v2) holds, and no BF -
pairs occur for d. To obtain a search schedule for the 1-searcher, we run the
constructive algorithm presented in the proof of Theorem 3. Clearing a region
P (ri) consists of a number of flashlight rotations and walks. If we consider the
polygonal chain, which is traversed by the 1-searcher for the second or third
time, as a new different chain, the chains R(x, y) considered for all walks and
for all flashlight rotations as well are disjoint. Since the total size of these chains
is equal to n in Case 1, and smaller than 3n in Case 2, the number I of search
instructions output is smaller than 3n2 (see also [4]).

Consider now the size of search schedules for the ∞-searcher. We directly
apply the search algorithm given in the proof of Theorem 3 to the ∞-searcher.
In Case 1, a complete search schedule is obtained before or when the ∞-searcher
returns to d. In Case 2.1, we claim that a complete search schedule is ob-
tained when or before the ∞-searcher moves to the point Ray(ri) for the second
time. Consider the walk from rmRay(rm) to Ray(ri)ri, which is performed after
P (rm) is cleared. The movement of the ∞-searcher along the chain R(rm, dr) ∪
R(dl, Ray(ri)) clears the chain L(ri, Ray(rm)) in Case 2.1. Now, we show that
the remaining chain from Ray(ri) to ri, denoted by L′(Ray(ri), ri), is also cleared
by this movement of the ∞-searcher. Assume that there are no visibility vertices
in the interval [rm, dr]; otherwise, the flashlight can be moved to the maximum
of these visibility vertices and its (forward) ray shot, using a walk. Then, two
chains L′(Ray(ri), ri) and R(rm, dr) ∪ R(dl, Ray(ri)) are mutually weakly visi-
ble; otherwise, rm and the blocking vertex in L′(Ray(ri), ri) give the BF -pair for
the point d, or ri, rm and the blocking vertex in R(dl, Ray(ri)) give the F -triple
for d, a contradiction. Thus, any point of L′(Ray(ri), ri) has to be illuminated
once during the movement of the ∞-searcher from rm to Ray(ri), and any clear
point can never be recontaminated. Our claim is proved. Also, in Case 2.2, a
complete search schedule is obtained when or before the ∞-searcher moves to
the point Ray(rk) for the second time. Hence, we have I < 2n. �

A Characterization of Polygonal Regions Searchable from the Boundary 215

References

1. B.Chazelle and L.J.Guibas, Visibility and intersection problems in plane geometry,
Disc. Comput. Geom. 4 (1989) 551-581.

2. G.Das, P.J.Heffernan and G.Narasimhan, LR-visibility in polygons, Comput. Geom.
Theory Appl. 7 (1997) 37-57.

3. P.J.Heffernan, An optimal algorithm for the two-guard problem, IJCGA 6 (1996)
15-44.

4. C. Icking and R. Klein, The two guards problem, IJCGA 2 (1992) 257-285.
5. S.M.LaValle, B.Simov and G.Slutzki, An algorithm for searching a polygonal region

with a flashlight, IJCGA 12 (2002) 87-113.
6. I.Suzuki and M.Yamashita, Searching for mobile intruders in a polygonal region,

SIAM J. Comp. 21 (1992) 863-888.
7. I.Suzuki, Y.Tazoe, M.Yamashita and T.Kameda, Searching a polygonal region from

the boundary, IJCGA 11 (2001) 529-553.

	Introduction
	Review of the Two-Guard Problem
	Searching a Polygon from the Boundary
	Necessity
	Sufficiency

	Algorithm and Complexity

