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Abstract. We consider the problem of symbolic reachability analysis of
higher-order context-free processes. These models are generalizations of
the context-free processes (also called BPA processes) where each process
manipulates a data structure which can be seen as a nested stack of
stacks. Our main result is that, for any higher-order context-free process,
the set of all predecessors of a given regular set of configurations is regular
and effectively constructible. This result generalizes the analogous result
which is known for level 1 context-free processes. We show that this
result holds also in the case of backward reachability analysis under a
regular constraint on configurations. As a corollary, we obtain a symbolic
model checking algorithm for the temporal logic E(U, X) with regular
atomic predicates, i.e., the fragment of CTL restricted to the EU and EX
modalities.

1 Introduction

Pushdown systems and their related decision and algorithmic analysis problems
(reachability analysis, model checking, games solving and control synthesis, etc)
have been widely investigated in the last few years [11, 7, 22, 5, 15, 8, 2]. This re-
cent intensive research effort is mainly motivated by the fact that pushdown
systems are quite natural models for sequential programs with recursive pro-
cedure calls (see e.g., [16, 14]), and therefore they are particularly relevant for
software verification and design.

Higher-order pushdown systems [13] (HPDS) are generalizations of these
models in which the elements appearing in a pushdown stack are no longer
single letters but stacks themselves. We call this kind of nested stack structures
higher-order stores. Stores of level 1 are sequences of symbols in some finite
alphabet (those are standard pushdown stacks), and stores of level n + 1 are
sequences of stores of level n, for any n > 1. The operations allowed on these
structures are (1) the usual push and pop operations on the top-most level 1
store, (2) higher-order push and pop operations allowing to duplicate or erase
the top-most level k store of any given level k ≤ n.
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This general model is quite powerful and has nice structural characterizations
[12, 10]. It has been in particular proved in [19] that HPDS are equivalent to
(safe) higher-order recursive program schemes. Interestingly, it has also been
proved that the monadic second-order theory of an infinite tree generated by a
HPDS is decidable [19, 11], which generalizes the analogous result for pushdown
systems proved by Muller and Schupp [20]. Also, it has been proved that parity
games can be solved for HPDS [9], which generalizes the result of Walukiewicz
for pushdown systems [22]. These results actually show that model checking is
decidable for HPDS. However, they only allow to check that a property holds in
a single initial configuration and they do not provide a procedure for computing
a representation of the set of configurations which satisfy some given property
(the satisfiability set of the property).

The basic step toward defining an algorithm which effectively computes the
satisfiability sets of properties is to provide a procedure for computing the set of
backward reachable configurations from a given set of configurations, i.e. their
set of predecessors. In fact, the computation of forward- or backward-reachable
sets is a fundamental problem in program analysis and in verification.

Since HPDS are infinite-state systems, to solve this problem we need to con-
sider symbolic representation structures which (1) provide finite representations
of potentially infinite sets of configurations, and (2) enjoy closure properties and
decidability properties which are necessary for their use in verification. Mini-
mal requirements in this regard are closure under union and intersection, and
decidability of the emptiness and inclusion problems.

A natural class of symbolic representations for infinite-state systems is the
class of finite-state automata. Recently, many works (including several papers
on the so-called regular model-checking) have shown that finite-state automata
are suitably generic representation structures, which allow to uniformly handle
a wide variety of systems including pushdown systems, FIFO-channel systems,
parameterized networks of processes, counter systems, etc. [5, 3, 18, 1, 23, 6, 4, 17].

In particular, for the class of pushdown systems, automata-based symbolic
reachability analysis techniques have been developed and successfully applied in
the context of program analysis [5, 15, 21]. Our aim in this paper is to extend this
approach to a subclass of HPDS called higher-order context-free processes (HCFP
for short). This class corresponds to the higher order extension of the well-known
context-free processes (also called BPA processes). HCFP can actually be seen as
HPDS with a single control state, similarly to level 1 CFP which are equivalent
to level 1 PDS with a single control state. The contributions of our paper can
be summarized as follows.

First, we observe that, due to the duplication operation, the set of immediate
successors (i.e. the post image) of a given regular set of configurations is in general
not regular, but it is always a context-sensitive set.

Then, we prove that, and this is our main result, for every HCFP of any
level, the set of all predecessors (i.e. the pre∗ image) of any given regular set
of configurations is a regular set and effectively constructible. As a corollary of
this result, we obtain a symbolic model checking algorithm (an algorithm which
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computes the set of all configurations satisfying a formula) for the temporal
logic E(F,X) with regular atomic predicates, i.e., the fragment of CTL with the
modalities EF (there exist path where a property eventually holds) and EX (there
exist an immediate successor satisfying some property).

Furthermore, we extend our construction of the pre∗ images by showing that
the set of predecessors under a regular constraint (i.e., the set of all predecessors
reachable by computations which stay in some given regular set of configurations)
is also regular and effectively constructible. For that, we use representation struc-
tures which can be seen as alternating finite-state automata. This result allows
us to provide a symbolic model checking algorithm for the logic E(U,X) with reg-
ular atomic predicates, i.e., the fragment of CTL with the operators EU (exists
until) and EX (exists next).

The structure of this paper is the following. In the next two sections, we
introduce higher-order stores and the model of higher-order context-free pro-
cesses. We also provide a symbolic representation for (infinite) regular sets of
stores using a certain type of finite automata. Then, for the sake of readability,
we first present our algorithm for computing the unconstrained pre and pre∗

sets of a regular set of stores (Section 4), before extending it to the case of pre∗

sets constrained by a regular set C (Section 5). Due to lack of space, additional
definitions and detailed proofs can be found in the full version of this paper1.

2 Higher-Order Context-Free Processes

We introduce a class of models we call higher-order context-free processes, which
generalize context-free processes (CFP) and are a subclass of higher-order push-
down systems (HPDS). They manipulate data structures called higher-order
stores.

Definition 2.1 (Higher-Order Store). The set S1 of level 1 stores (or 1-
stores) over store alphabet Γ is the set of all sequences [a1 . . . al] ∈ [Γ ∗]. For
n ≥ 2, the set Sn of level n stores (or n-stores) over Γ is the set of all sequences
[s1 . . . sl] ∈ [Sn−1

+].

The following operations are defined on 1-stores:

pushw
1 ([a1 . . . al]) = [wa2 . . . al] for all w ∈ Γ ∗,

top1([a1 . . . al]) = a1.

We will sometimes abbreviate pushε
1 as pop1. The following operations are

defined on n-stores (n > 1):

pushw
1 ([s1 . . . sl]) = [pushw

1 (s1) . . . sl]
pushk([s1 . . . sl]) = [pushk(s1) . . . sl] if k ∈ [2, n[,

1 Available at http://www.liafa.jussieu.fr/˜ameyer/
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pushn([s1 . . . sl]) = [s1s1 . . . sl]
popk([s1 . . . sl]) = [popk(s1) . . . sl] if k ∈ [2, n[,
popn([s1 . . . sl]) = [s2 . . . sl] if l > 1, else undefined,

topk([s1 . . . sl]) = topk(s1) if k ∈ [1, n[,
topn([s1 . . . sl]) = s1.

We denote by On the set of operations consisting of:

{ pushk, popk | k ∈ [2, n] } ∪ { pushw
1 | w ∈ Γ ∗ }.

We say that operation o is of level n, written l(o) = n, if o is either pushn or
popn, or pushw

1 if n = 1. We can now define the model studied in this paper.

Definition 2.2. A higher-order context-free process of level n (or n-HCFP) is
a pair H = (Γ, ∆), where Γ is a finite alphabet and ∆ ∈ Γ × On is a finite set
of transitions. A configuration of H is a n-store over Γ . H defines a transition
relation ↪→

H
between n-stores (or ↪→ when H is clear from the context), where

s ↪→
H

s′ ⇐⇒ ∃(a, o) ∈ ∆ such that top1(s) = a and s′ = o(s).

The level l(d) of a transition d = (a, o) is simply the level of o. Let us give
a few more notations concerning HCFP computations. Let H = (Γ, ∆) be a
n-HCFP. A run of H starting from some store s0 is a sequence s0s1s2 . . . such
that for all i ≥ 0, si ↪→ si+1. The reflexive and transitive closure of ↪→ is written
∗

↪→ and called the reachability relation. For a given set C of n-stores, we also
define the constrained transition relation ↪→C = ↪→ ∩ (C ×C), and its reflexive
and transitive closure

∗
↪→C . Now for any set of n-stores S, we consider the sets:

postH[C](S) = { s | ∃s′ ∈ S, s′ ↪→C s },

post∗
H[C](S) = { s | ∃s′ ∈ S, s′ ∗

↪→C s },

preH[C](S) = { s | ∃s′ ∈ S, s ↪→C s′ },

pre∗
H[C](S) = { s | ∃s′ ∈ S, s

∗
↪→C s′ }.

When C is the set Sn of all n-stores, we omit it in notations and simply write
for instance preH(S) instead of preH[C](S). We will also omit H when it is clear
from the context. When H consists of a single transition d, we may write pred(S)
instead of preH(S).

3 Sets of Stores and Symbolic Representation

To be able to design symbolic verification techniques over higher-order context-
free processes, we need a way to finitely represent infinite sets (or languages) of
configurations. In this section we present the sets of configurations (i.e. sets of
stores) we consider, as well as the family of automata which recognize them.
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A n-store s = [s1 . . . sl] over Γ is associated to a word w(s) = [w(s1) . . . w(sl)],
in which store letters in Γ only appear at nesting depth n. A set of stores over Γ
is called regular if its set of associated words is accepted by a finite automaton
over Γ ′ = Γ ∪{ [ , ] }, which in this case we call a store automaton. We will often
make no distinction between a store s and its associated word w(s). Due to the
nested structure of pushdown stores, it will sometimes be more convenient to
characterize sets of stores using nested store automata.

Definition 3.1. A level 1 nested store automaton is a finite automaton whose
transitions have labels in Γ . A nested store automaton of level n ≥ 2 is a finite
automaton whose transitions are labelled by level n − 1 nested automata over Γ .

The existence of a transition labelled by B between two control states p and
q in a finite automaton A is written p

B−→
A

q, or simply p
B−→ q when A is clear

from the context. Let A = (Q, Γ, δ, q0, qf ) be a level n nested automaton2 with
n ≥ 2. The level k language of A for k ∈ [1, n] is defined recursively as:

Lk(A) = { [Lk(A1) . . . Lk(Al)] | [A1 . . .Al] ∈ Ln(A) } if k < n,

Lk(A) = { [A1 . . .Al] | q0
A1−→
A

. . .
Al−→
A

qf } if k = n.

For simplicity, we often abbreviate L1(A) as L(A). We say a nested automa-
ton B occurs in A if B labels a transition of A, or occurs in the label of one.
Level n automata are well suited to representing sets of n-stores, but have the
same expressive power as standard level 1 store automata.

Proposition 3.2. The store languages accepted by nested store automata are
the regular store languages.

Moreover, regular n-store languages are closed under union, intersection and
complement in Sn. We define for later use the set of automata { An

a | a ∈ Γ, n ∈
N } such that for all a and n, L(An

a) = { s ∈ Sn | top1(s) = a }. We also write
A×B the product operation over automata such that L(A×B) = L(A)∩L(B).

4 Symbolic Reachability Analysis

Our goal in this section is to investigate effective techniques to compute the sets
pre(S), post(S), pre∗(S) and post∗(S) for a given n-HCFP H, in the case where
S is a regular set of stores. For level 1 pushdown systems, it is a well-known
result that both pre∗

H(S) and post∗
H(S) are regular. We will see that this is still

the case for pre(S) and pre∗(S) in the higher-order case, but not for post(S)
(hence not for post∗(S) either).

2 Note that we only consider automata with a single final state.
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4.1 Forward Reachability

Proposition 4.1. Given a n-HCFP H and a regular set of n-stores S, the set
post(S) is in general not regular. This set is a context-sensitive language.

Proof. Let post (a,o)(S) denote the set { s′ | ∃s ∈ S, top1(s) = a ∧ s′ = o(s) }.
Suppose S is a regular set of n-stores, then if d = (a, pushw

1 ) or d = (a, popk), it
is not difficult to see that post (a,o)(S) is regular. However, if d = (a, pushk) with
k > 1, then post (a,o)(S) is the set { [n−k+1t t w | [n−k+1t w ∈ S }. It can be shown
using the usual pumping arguments that this set is not regular, because of the
duplication of t. However, one can straightforwardly build a linearly bounded
Turing machine recognizing this set. ��

4.2 Backward Reachability

We first propose a transformation on automata which corresponds to the pre
operation on their language. In a second time, we extend this construction to
deal with the more difficult computation of pre∗ sets.

Proposition 4.2. Given a n-HCFP H and a regular set of n-stores S, the set
pre(S) is regular and effectively computable.

We introduce a construction which, for a given HCFP transition d and a given
regular set of n-stores S recognized by a level n nested automaton A, allows us to
compute a nested automaton A′

d recognizing the set pre(S) of direct predecessors
of S by d. This construction is a transformation over nested automata, which
we call Td. We define A′

d = Td(A) = (Q′, Γ, δ′, q′
0, qf ) as follows.

If l(d) < n, we propagate the transformation to the first level n−1 automaton
encountered along each path. We thus have Q′ = Q, q′

0 = q0 and

δ′ = { q0
Td(A1)−→ q1 | q0

A1−→
A

q1 } ∪ { q
B−→ q′ | q

B−→
A

q′ ∧ q 
= q0 }.

If l(d) = n, we distinguish three cases according to the nature of d:

1. If d = (a, pushw
1 ), then Q′ = Q ∪ {q′

0} and δ′ = δ ∪ { q′
0

a−→ q1 | q0
w−→
A

q1 }.

2. If d = (a, pushn) and n > 1, then Q′ = Q ∪ {q′
0} and

δ′ = δ ∪ { q′
0

B−→ q2 | ∃q1, q0
A1−→
A

q1
A2−→
A

q2 } where B = A1 × A2 × A(n−1)
a .

3. If d = (a, popn), then Q′ = Q ∪ {q′
0} and δ′ = δ ∪ { q′

0
A(n−1)

a−→ q0 }.

It is not difficult to prove that L(A′
d) = pred(L(A)). Hence, if ∆ is the set of

transitions of H, then we have pre(S) = pre(L(A)) =
⋃

d∈∆ L(A′
d).

This technique can be extended to compute the set pre∗(S) of all predecessors
of a regular set of stores S.

Theorem 4.3. Given a n-HCFP H and a regular set of n-stores S, the set
pre∗(S) is regular and effectively computable.
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To compute pre∗(S), we have to deal with the problem of termination. A
simple iteration of our previous construction will in general not terminate, as
each step would add control states to the automaton. As a matter of fact, even
the sequence (prei(S))i≥0, defined as pre0(S) = S and for all n ≥ 1 pren(S) =
pren−1(S) ∪ pre(pren−1(S)), does not reach a fix-point in general. For instance,
if d = (a, pop1), then for all n, pren([a]) = { [ai] | i ≤ n } 
= pren+1([a]).

To build pre∗(S) for some regular S, we modify the previous construction
in order to keep constant the number of states in the nested automaton we
manipulate. The idea, instead of creating new control states, is to add edges
to the automaton until saturation, eventually creating loops to represent at
once multiple applications of a HCFP transition. Then, we prove that this new
algorithm terminates and is correct.

Let us first define operation Td for any n-HCFP transition d (see Figure 1
for an illustration). Let A = (Q, Γ, δ, q0, qf ) and A′ = (Q, Γ, δ′, q0, qf ) be nested
n-store automata over Γ ′ = Γ ∪ { [, ] }, and d a n-HCFP transition. We define
A′ = Td(A) as follows.

If the level of d is less than n, then we simply propagate the transformation
to the first level n − 1 automaton encountered along each path:

δ′ = { q0
Td(A1)−→ q1 | q0

A1−→
A

q1 } ∪ { q
B−→ q′ | q

B−→
A

q′ ∧ q 
= q0 }.

If l(d) = n then as previously we distinguish three cases according to d:

1. If n = 1 and d = (a, pushw
1 ), then δ′ = δ ∪ { q0

a−→ q1 | q0
w−→
A

q1 }.

2. If d = (a, pushn) for some n > 1, then
δ′ = δ ∪ { q0

B−→ q2 | ∃q1, q0
A1−→
A

q1
A2−→
A

q2 } where B = A1 × A2 × A(n−1)
a .

3. If d = (a, popn), then δ′ = δ ∪ { q0
A(n−1)

a−→ q0 }

Suppose H = (Γ, ∆) with ∆ = { d0, . . . , dl−1 }. Given an automaton A such
that S = L(A), consider the sequence (Ai)i≥0 defined as A0 = A and for all
i ≥ 0 and j = i mod l, Ai+1 = Tdj

(Ai). In order to obtain the result, we have
to prove that this sequence always reaches a fix-point (Lemma 4.4) and this
fix-point is an automaton actually recognizing pre∗(S) (Lemmas 4.5 and 4.6).

i

A

i

A

a

w i

A
A1 A2

B A(n−1)
a

Fig. 1. Transformation Td(A) for d = (a, pushw
1 ), (a, pushk) and (a, popk)

Lemma 4.4 (Termination). For all nested n-store automaton A and n-HCFP
H = (Γ, ∆), the sequence (Ai)i≥0 defined with respect to A eventually stabilizes:
∃k ≥ 0, ∀k′ ∈ ∆, Ak′ = Ak, which implies L(Ak) =

⋃
i≥0 L(Ai).
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Proof. First, notice that for all d, Td does not change the set of control states of
any automaton occurring in A, and only adds transitions. This means (Ai)i≥0
is monotonous in the size of each Ai.

To establish the termination of the conctruction, we prove that the number of
transitions which can be added to A0 is finite. Note that by definition of Td, the
number of states of each Ai is constant. Moreover, each new transition originates
from the initial state of the automaton it is added to. Hence, the total number
of transitions which can be added to a given automaton is equal to |Vn| · |Q|,
where Vn is the level n vocabulary and Q its set of states. Since |Q| does not
change, we only have to prove that Vn is finite for all n. If n = 1, V1 = Γ ,
and the property holds. Now suppose n > 1 and the property holds up to level
n − 1. By induction hypothesis, Vn−1 is finite. With this set of labels, one can
build a finite number N of different level n − 1 automata which is exponential
in |Vn−1| · K, where K depends on the number of level n − 1 automata in A0
and of their sets of control states. As each transition of a level n automaton is
labelled by a product of level n − 1 automata, then |Vn| is itself exponential in
N , and thus doubly exponential in |Vn−1|. Remark that, as a consequence, the
number of steps of the construction is non-elementary in n. ��

Lemma 4.5 (Soundness).
⋃

i≥0 L(Ai) ⊆ pre∗
H(S).

Proof (Sketch). We prove by induction on i the equivalent result that ∀i, L(Ai) ⊆
pre∗

H(S). The base case is trivial since by definition A0 = A and L(A) = S ⊆
pre∗

H(S). For the inductive step, we consider a store s accepted by a run in Ai+1
and reason by induction on the number m of new level k transitions used in this
run, where k is the level of the operation d such that Ai+1 = Td(Ai). The idea
is to decompose each run containing m new transitions into a first part with less
than m new transitions, one new transition, and a second part also containing
less than m new transitions. Then, by induction hypothesis on m and i, one can
re-compose a path in Ai recognizing some store s′ such that s′ ∈ pre∗

H(S) and
s ∈ pre∗

H(s′). ��

Lemma 4.6 (Completeness). pre∗
H(S) ⊆

⋃
i≥0 L(Ai).

Proof (Sketch). We prove the sufficient property that for all nested store automa-
ton A and HCFP transition d, pred(L(A)) ⊆ L(Td(A)). We consider automata A
and A′ such that A′ = Td(A), and any pair of stores s ∈ L(A) and s′ ∈ predj

(s).
It suffices to isolate a run in A recognizing s and enumerate the possible forms
of s′ with respect to s and d to be able to exhibit a possible run in A′ accepting
s′, by definition of Td. This establishes the fact that Td adds to the language L
of its argument at least the set of direct predecessors of stores of L by d. ��

As a direct consequence of Proposition 4.2 and Theorem 4.3, we obtain a
symbolic model checking algorithm for the logic E(F,X) with regular store lan-
guages as atomic predicates, i.e. the fragment of the temporal logic CTL for the
modal operators EF (there exists a path where eventually a property holds) and
EX (there exist an immediate successor satisfying a property).
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Theorem 4.7. For every HCFP H and formula ϕ of E(F,X), the set of config-
urations (stores) satisfying ϕ is regular and effectively computable.

5 Constraining Reachability

In this section we address the more general problem of computing a finite au-
tomaton recognizing pre∗

H[C](S) for any HCFP H and pair of regular store
languages C and S. We provide an extension of the construction of Proposition
4.3 allowing us to ensure that we only consider runs of H whose configurations
all belong to C. Again, from a given automaton A, we construct a sequence of
automata whose limit recognizes exactly pre∗

H[C](L(A)). The main (and only)
difference with the previous case is that we need to compute language inter-
sections at each iteration without invalidating our termination arguments (i.e.
without adding any new states to the original automaton). For this reason, we
use a class of alternating automata, which we call constrained nested automata.

Definition 5.1 (Constrained Nested Automata). Let B be a non-nested
m-store automaton3 (with m ≥ n). A level n B-constrained nested automaton
A is a nested automaton (QA, Γ, δA, iA, fA) with special transitions of the form
p

C−→
A

(q, r) where p, q ∈ QA, r is a control state of B and C is a level n − 1

B-constrained nested automaton.

For lack of space, we are not able to provide here the complete semantics
of these automata. However, the intuitive idea is quite simple. Suppose A is a
B-constrained nested n-store automaton, and B also recognizes n-stores. First,
we require all the words accepted by A to be also accepted by B: L(A) ⊆ L(B).
Then, in any run of A where a transition of the form p

D−→ (q, r) occurs, the
remaining part of the input word should be accepted both by A when resuming
from state q and by B when starting from state r. Of course, when expanding D
into a word of its language, it may require additional checks in B. As a matter
of fact, constrained nested automata can be transformed into equivalent level 1
alternating automata. As such, the languages they accept are all regular.

Proposition 5.2. Constrained nested automata accept regular languages.

The construction we want to provide needs to refer to whole sets of paths in
a level 1 store automaton recognizing the constraint language. To do this, we
need to introduce a couple of additional definitions and notations.

Definition 5.3. Let A be a finite store automaton over Γ ′ = Γ ∪{ [ , ] }. A state
p of A is of level 0 if it has no successor by [ and no predecessor by ]. It is of
level k if all its successors by [ and predecessors by ] are of level k − 1. The level
of p is written l(p).

3 i.e. a standard, level 1 finite state automaton.
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We can show that any automaton recognizing only n-stores is equivalent to
an automaton whose control states all have a well-defined level. A notion of level
can also be defined for paths. A level n path in a store automaton is a path
p1 . . . pk with l(p1) = l(pk) = n and ∀i ∈ [2, k − 1], l(pi) < n. All such paths
are labelled by n-stores. Now, to concisely refer to the whole set of level n paths
between two level n control states, we introduce the following notation. Let

Q = { q ∈ QA | l(q) < n ∧ p1
+−→
A

q
+−→
A

p2 }

be the set of all states of A occurring on a level n path between p1 and p2. If Q

is not empty, we write p1
B
�
A

p2, where B is defined as:

B =
(
QB = Q ∪ {p1, p2}, Γ ′, δB = δA ∩ (QB × Γ ′ × QB), p1, p2

)
.

Thanks to these few notions, we can state our result:

Theorem 5.4. Given a n-HCFP H and regular sets of n-stores S and C, the
set pre∗

H[C](S) is regular and effectively computable.

To address this problem, we propose a modified version of the construc-
tion of the previous section, which uses constrained nested automata. Let d =
(a, o) be a HCFP transition rule, A = (QA, Γ, δ, i, f) and A′ = (QA, Γ, δ′, i, f)
two nested k-store automata constrained by a level 1 n-store automaton B =
(QB, Γ ′, δB, iB, fB) accepting C (with n ≥ k). We define a transformation TB

dj
(A),

which is very similar to Tdj
, except that we need to add alternating transitions

to ensure that no new store is accepted by A′ unless it is the transformation of
a store previously accepted by B (Cf. Figure 2). If l(d) < k, we propagate the
transformation to the first level k − 1 automaton along each path:

δ′ = { i
T B

d (C)−→ (p, q) | i
C−→
A

(p, q) } ∪ { p
C−→ (p′, q′) ∈ δ | p 
= i }.

If l(d) = n, we distinguish three cases according to the nature of d:

1. If d = (a, pushw
1 ), then

δ′ = δ ∪
{

i
a−→ (p, q) | i

w−→
Ai

(p, q′) ∧ ∃q1, q ∈ QB,

l(q1) = l(q) = 0, iB
[n−→
B

q1
w−→
B

q
}
.

2. If d = (a, pushk), then for m = n−k+1 and C = (C1×C2)×(B1×B2)×A(k−1)
a ,

δ′ = δ ∪
{

i
C−→ (p, q) | i

C1−→
Ai

C2−→
Ai

(p, q′) ∧ ∃ q1, q2, q ∈ QB,

l(q1) = l(q2) = l(q) = k − 1, iB
[m−→
B

q1
B1
�
B

q2
B2
�
B

q
}
.
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iB

C1 C2i

A

B
[∗ B1 B2

C
i

A

B
[∗

a

w

wiB iB

i

A

A(k−1)
a

B
[∗

Fig. 2. transformation T B
d (A) for d = (a, pushw

1 ), (a, pushk) and (a, popk)

3. If d = (a, popk), then for m = n − k + 1,

δ′ = δ ∪
{

i
A(k−1)

a−→ (i, q) | ∃q ∈ QB, l(q) = k − 1, iB
[m−→
B1

q
}
.

Suppose H = (Γ, ∆) with ∆ = { d0, . . . , dl−1 }. Given an automaton A such
that S = L(A), consider the sequence (Ai)i≥0 defined as A0 = AB (the B-
constrained automaton with the same set of states and transitions as A, whose
language is L(A) ∩ L(B)) and for all i ≥ 0 and j = i mod l, Ai+1 = TB

dj
(Ai).

By definition of TB
d , the number of states in each Ai does not vary, and since

the number of control states of B is finite the same termination arguments as
in Lemma 4.4 still hold. It is then quite straightforward to extend the proofs of
Lemma 4.5 and Lemma 4.6 to the constrained case.

This more general construction also allows us to extend Theorem 4.7 to the
larger fragment E(U,X) of CTL, where formulas can now contain the modal
operator EU (there exists a path along which a first property continuously holds
until a second property eventually holds) instead of just EF.

Theorem 5.5. Given a HCFP H and formula ϕ of E(U,X), the set of configu-
rations (stores) satisfying ϕ is regular and effectively computable.

6 Conclusion

We have provided an automata-based symbolic technique for backward reach-
ability analysis of higher-order context-free processes. This technique can be
used to check temporal properties expressed in the logic E(U,X). In this respect,
our results provide a first step toward developing symbolic techniques for the
model-checking of higher-order context-free or pushdown processes.

Several important questions remain open and are left for future investigation.
In particular, it would be interesting to extend our approach to the more general
case of higher-order pushdown systems, i.e. by taking into account a set of control
states. This does not seem to be technically trivial, and naive extensions of our
construction lead to procedures which are not guaranteed to terminate.

Another interesting issue is to generalize our symbolic approach to more
general properties than reachability and/or safety, including liveness properties.
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Finally, it would also be very interesting to extend our symbolic techniques in
order to solve games (such as safety and parity games) and to compute repre-
sentations of the sets of all winning configurations for these games.
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