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Abstract. We exploit properties of geometric algebras (GAs) to model
the 2D-3D pose estimation problem for free-form surfaces which are cou-
pled with kinematic chains. We further describe local and global surface
morphing approaches with GA and combine them with the 2D-3D pose
estimation problem. As an application of the presented approach, human
motion estimation is considered. The estimated joint angles are used to
deform surface patches to gain more realistic human models and there-
fore more accurate pose estimation results.

1 Introduction

A geometric algebra is a Clifford algebra with a specific geometric interpreta-
tion. The term geometric algebra was introduced by D. Hestenes, who applied
Clifford Algebras on classical geometry and mechanics in the early 1960’s [13].
Due to its properties, geometric algebra unifies mathematical systems which are
of interest for computer graphics and computer vision. Examples of such systems
are quaternions, dual-quaternions, Lie algebras, Lie groups, screw geometry in
Euclidean, affine, projective or conformal geometry. In this contribution we show
the applicability of conformal geometric algebra (CGA) [12, 15, 18] for solving
the 2D-3D pose estimation problem. We use the example of human motion mod-
eling and estimation [1, 4, 6, 9, 10] to show how it is possible to apply a unified
approach to extend a basic scenario to a complex application by exploiting prop-
erties of CGA.

Pose estimation is a common task in computer vision. For a definition of the
pose problem, we quote [11]: By pose we mean the transformation needed to
map an object model from its inherent coordinate system into agreement with
the sensory data. We deal with the 2D-3D pose estimation problem: we assume
an image of an object captured by a calibrated camera. Additionally to these
2D sensory data we also assume that a 3D representation of an object model is
given. 2D-3D pose estimation means to specify a rigid motion (containing both
3D rotation and 3D translation) which fits the object model data with the 2D
sensory data. The problem of 2D-3D pose estimation can be tackled from differ-
ent points of view such as geometric or numerical perspectives. In the literature,
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Euclidean, projective and conformal approaches can be found in combination
with Kalman-filter, SVD, Newton-Raphson or gradient descent approaches. It is
further crucial how objects are represented. The literature deals with point and
line based representations, kinematic chains, higher order curves/surfaces, up to
free-form contours or free-form surfaces. See [19] for an overview.

Geometric algebras can handle different object representations due to their
multi-vector concepts and they allow to transform entities (rotation, translation,
screw motion, reflection, refraction, etc.) with the help of the geometric product.
It is therefore a useful tool to model geometric and numerical aspects in a unified
language. For an introduction to geometric algebras, the reader is referred to
[7, 8, 13, 18, 19, 21]. A brief list of homepages and research projects on Clifford
algebras (with further links) can be found in [14].

For complex tasks, such as human motion estimation, a representation of the
human body as a simple joint and skeleton model can be inadequate. Indeed
the coupling of joints within a 2-parametric surface model gives a good initial
guess about human motion (see Figure 1), but the human anatomy allows for
much more degrees of freedom than, for example, three revolute joints for the
shoulder, two for the elbow and two for the wrist. The human being is able to
move the shoulder backward and forward, is able to raise and lower the shoulders
to certain degrees, and if such additional degrees of freedom are not modeled,
the pose results can become inaccurate or worthless. There is a need for an in-
teraction of computer vision and computer graphics: a realistic model is needed
to achieve accurate pose estimations, and, vice versa, accurate pose estimations
help to refine a realistic model. In this contribution we show how to use geomet-
ric algebra for adding surface morphing and joint deformation approaches into
surface modeling of a human being. We further show how to use this more com-
plex, but more realistic model in the theory of CGA for pose estimation. In this
contribution we are not dealing with the problem of recognizing or identifying
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Shoulder (back)
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Elbow

Fig. 1. Left: The pose scenario: the aim is to estimate the pose R, t and the joint

angles φi. Right: The names of the used joints
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a moving human. Instead we are dealing with the estimation of object-specific
parameters, like the pose and the joint angles.

We start this contribution with an introduction to silhouette based 2D-3D
pose estimation of free-form contours and free-form surfaces. We want to quote
Besl [3] for a definition: A free-form surface has a well defined surface that is con-
tinuous almost everywhere except at vertices, edges and cusps. Since we already
model the pose problem and surface representation in CGA, we will introduce
surface morphing in CGA in Section 3, so that we can directly use morphing
concepts in the pose scenario without changing our main algorithms. Section 4
presents some experimental results and Section 5 ends with a brief discussion.

2 Preliminary Work

Clifford or geometric algebras [21] can be used to deal with geometric aspects
of the pose problem. We only list a few properties which are important for
our studies. The elements in geometric algebras are called multivectors which
can be multiplied by using a geometric product. It allows a coordinate-free and
symbolic representation. We use conformal geometric algebra (CGA) for mod-
eling the pose problem. The CGA is build up on a conformal model which is
coupled with a homogeneous model to deal with kinematics and projective ge-
ometry simultaneously. In conclusion, we deal with the Euclidean, kinematic and
projective space in a uniform framework and can therefore cope with the pose
problem within one theory. In the equations we will use the inner product ·, the
outer product ∧, the commutator ×, and anticommutator × product, which can
be derived from the geometric product. Though we will also present equations
formulated in conformal geometric algebra, we only explain these symbolically
and want to refer to [19] for more detailed information.

2.1 Point Based Pose Estimation

For 2D-3D point based pose estimation we use constraint equations which com-
pare 2D image points with 3D object points. Assume an image point x and the
optical center O. These define a 3D projection ray Lx = e∧(O∧x) as a Plücker
line [17]. The motor M is defined as exponential of a twist Ψ , M = exp(− θ

2Ψ),
and formalizes the unknown rigid motion as a screw motion [17]. The motor M

is applied on an object point X as versor product, X ′ = MXM̃ , where M̃
represents the reverse of M . Then the rigidly transformed object point X ′ is
compared with the reconstructed line Lx by computing the error vector between
the point and the line. This specifies a constraint equation in geometric algebra:

(MXM̃) × (e ∧ (O ∧ x)) = 0

Note that we deal with a 3D formalization of the pose problem. The constraint
equations can be solved by linearization (i.e., solving the equations for the twist-
parameters which generate the screw motion) and by applying the Rodrigues
formula for a reconstruction of the group action [17]. Iteration leads to a gradient
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descent method in 3D space. This is presented in [19] in more detail where similar
equations have been introduced to compare 3D points with 2D lines (3D planes),
and 3D lines with 2D lines (3D planes).

Joints along a kinematic chain can be modeled as special screws with no pitch.
In [19] we have shown that the twist then corresponds to a scaled Plücker line
Ψ = θL in 3D space, which gives the location of the general rotation. Because
of this relation it is simple to move joints in space, and they can be transformed
by a motor M in a similar way Ψ ′ = MΨM̃ such as plain points.

2.2 Contour-Based Pose Estimation

We now model free-form contours and discuss their role for solving the pose
problem. The pose estimation algorithm for surface models (as introduced in
this paper) relies onto a contour based method. Therefore, a brief recapitulation
of [19] on contour based pose estimation is of importance. The main idea is
to interpret a 1-parametric 3D closed curve as three separate 1D signals which
represent the projections of the curve along the x, y and z axis, respectively. Since
the curve is assumed to be closed, the signals are periodic and can be analyzed by
applying a 1D discrete Fourier transform (1D-DFT). The inverse discrete Fourier
transform (1D-IDFT) enables us to reconstruct low-pass approximations of each
signal. Subject to the sampling theorem, this leads to the representation of the
1-parametric 3D curve C(φ) as follows:

C(φ) =
3∑

m=1

N∑
k=−N

pm
k exp

(
2πkφ

2N + 1
lm

)
The parameter m represents each dimension and the vectors pm

k are phase
vectors obtained from the 1D-DFT acting on dimension m. In this equation we
have replaced the imaginary unit i =

√−1 by three different rotation planes,
represented by the bivectors li, with li

2 = −1. Using only a low-index subset of
the Fourier coefficients results in a low-pass approximation of the object model
which is used to regularize the pose estimation algorithm. For pose estimation,
this model is then combined with a version of an ICP-algorithm [23].

2.3 Silhouette-Based Pose Estimation of Free-Form Surfaces

We assume a two-parametric surface [5] of the form

F (φ1, φ2) =
3∑

i=1

f i(φ1, φ2)ei

with three 2D functions f i(φ1, φ2) : IR2 → IR acting on the different Euclidean
base vectors ei (i = 1, . . . , 3). A two-parametric surface allows that two indepen-
dent parameters φ1 and φ2 are used for sampling a 2D surface in 3D space. For
a discrete number of sampled points, f i

n1,n2
, (n1 ∈ [−N1, N1];n2 ∈ [−N2, N2];

N1, N2 ∈ IN, i = 1, . . . , 3) on the surface, we can then interpolate the surface by
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using a 2D discrete Fourier transform (2D-DFT), and we apply an inverse 2D
discrete Fourier transform (2D-IDFT) for each base vector separately. Subject
to the sampling theorem, the surface can be written as a Fourier representation

F (φ1, φ2) =
3∑

i=1

N1∑
k1=−N1

N2∑
k2=−N2

pi
k1,k2

exp
(

2πk1φ1

2N1 + 1
li

)
exp

(
2πk2φ2

2N2 + 1
li

)

The complex Fourier coefficients are contained in the vectors pi
k1,k2

that lie
in the plane spanned by li. We will also call them phase vectors. These vectors
can be obtained by a 2D-DFT of the sample points f i

n1,n2
on the surface. We

now continue with the algorithm for silhouette-based pose estimation of surface
models.

We assume a properly extracted image contour of our object (i.e., in a frame
of the sequence). To compare points on the image silhouette with the 3D surface
model, we consider rim points on the surface (i.e., which are on an occluding
boundary of the object). This means we work with the 3D silhouette of the
surface model with respect to the camera. To ensure this, we project the 3D
surface on a virtual image. Then the contour is calculated and from the image
contour the 3D silhouette of the surface model is reconstructed. The contour
model is then applied within the contour-based pose estimation algorithm. Since
aspects of the surface model are changing during ICP-cycles, a new silhouette
will be estimated after each cycle to deal with occlusions within the surface
model. The algorithm for pose estimation of surface models is summarized in
Figure 2, and it is discussed in [20] in more detail.

2.4 Human Motion Estimation

We continue with our way how to couple kinematic chains within a surface
model. Then we present a pose estimation algorithm which estimates the pose
and angle configurations simultaneously.

A surface is given in terms of three 2-parametric functions with respect to
the parameters φ1 and φ2. Furthermore, we assume a set of joints Ji. By using
an extra function J (φ1, φ2) → [Ji|Ji : ith joint], we are able to give every node
a joint list along the kinematic chain. Note that we use [, ] and not {, }, since

Reconstruct projection rays from image points
Surface based pose estimation

Apply contour based pose estimation algorithm

I
C
P

Increase low−pass approximation of the surface model

Project the low−pass object model in the virtual image
Estimate the 3D silhouette

Use correspondence set to estimate the contour pose
Transform the contour model

Transform the surface model

Estimate the nearest point on the 3D contour to each ray

Fig. 2. Left: The algorithm for pose estimation of surface models. Right: A few example

images of a tracked car model on a turn-table
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the joints are given as an ordered sequence along the kinematic chain. Since the
arms contain two kinematic chains (i.e., for the left and right arm, separately), we
introduce a further index to separate the joints on the left arm from the ones on
the right arm. The joints themselves are represented as objects in an extra field in
form of a look-up table, and their parameters can be accessed immediately from
the joint index numbers. Furthermore, it is possible to transform the location of
the joints in space (as clarified in Section 2.1). For pose estimation of a point
Xn,in

attached to the nth joint along the kinematic chain, we generate constraint
equations of the form

(M(M1 . . . MnXn,in
M̃n . . . M̃1)M̃) × e ∧ (O ∧ xn,in

) = 0

To solve a set of such constraint equations we linearize the motor M with
respect to the unknown twist Ψ , and the motors M i with respect to the unknown
angles θi. The twists Ψi are known a priori.

The basic pose estimation algorithm is visualized in Figure 3. We start with
simple image processing steps to gain the silhouette information of the person
by using a color threshold and a Laplace operator. Then we project the surface
mesh in a virtual image and estimate its 3D contour. Each point on the 3D
contour carries a given joint index. Then we estimate the correspondences by
using an ICP-algorithm, generate the system of equations, solve them, transform
the object and its joints, and iterate this procedure. During iteration we start
with a low-pass object representation and refine it by using higher frequencies.
This helps to avoid local minima during iteration.

First results of the algorithm are shown on the left of Figure 4. The figure
contains two pose results; on each quadrant it shows the original image and
overlaid the projected 3D pose. The other two images show the estimated joint
angles in a virtual environment to visualize the error between the ground truth
and the estimated pose. The tracked image sequence contains 200 images. In
this sequence we use just three joints on each arm and neglect the shoulder
(back) joint. The right diagram of Figure 4 shows the estimated angles of the
joints during the image sequence. The angles can easily be identified with the
sequence. Since the movement of the body is continuous, the estimated curves
are also “relatively smooth”.

3 More Realistic Human Models

We are interested in using skinning approaches to model “more realistic” human
motions during pose estimation. The hypothesis at this stage is that the more
accurate the human being is modeled, the more accurate the pose result will be.
This requires two things in a first step, namely, to model joint transformations
and surface deformations during joint motions. So far, skin and muscle deforma-
tions are not yet modeled. Take, for example, the shoulder joint: If the shoulder
is moving, muscles are tensed and the skin is morphing. The task is to model
such deformations dependent on the joint angle. To achieve surface morphing,
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Tracking assumption Correspondence estimation Pose estimation

Iteration

Fig. 3. The basic algorithm: Iterative correspondence and pose estimation
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Fig. 4. Left: First pose results with a 6 DOF kinematic chain. Right: Angles of the left

and right arm during the tracked image sequence

we will express two known approaches for surface morphing in CGA. These are a
global approach and a local approach; the latter one uses radial basis functions.

3.1 Joint Motions

Joints along the kinematic chain can be modeled as screws with no pitch. We
already have shown that its twist then corresponds to a scaled Plücker line
Ψ = θL in space, which gives the location of the general rotation. Because of
this relation it is simple to move joints in space, and they can be transformed by a
motor M in a similar manner Ψ ′ = MΨM̃ as 3D points. To interpolate between
two given joint locations Ψ and Ψ ′, we can use a motor M = exp(−ρ

2Ξ), with
the property that for ρ = 2π it holds MΨM̃ = Ψ ′. Then M t = exp(− t2π

2 Ξ) for
t ∈ [0 . . . 1] leads to a motor which interpolates the joint location Ψ via M tΨM̃ t

towards Ψ ′.
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3.2 Global Surface Interpolation

We assume two free-form surfaces given as two-parametric functions in CGA as
follows:

F1(φ1, φ2) =
3∑

i=1

f i
1(φ1, φ2)ei and F2(φ1, φ2) =

3∑
i=1

f i
2(φ1, φ2)ei

For a given parameter t ∈ [0 . . . 1], the surfaces can be linearly interpolated
by evaluating

Ft(φ1, φ2) =

(
3∑

i=1

f i
1(φ1, φ2)ei

)
t +

(
3∑

i=1

f i
2(φ1, φ2)ei

)
(1 − t)

We perform a linear interpolation along the nodes, and this results in the
following:

Ft(φ1, φ2) =
{∑3

i=1 f i
1(φ1, φ2)ei = F1(φ1, φ2) , for t = 1∑3

i=1 f i
2(φ1, φ2)ei = F2(φ1, φ2) , for t = 0

Figure 5 shows examples of morphing a male into a female torso. Note that
we are only morphing surfaces with known and predefined topology. This means
that we have knowledge about the correspondences between the surfaces, and
morphing is realized by interpolating the corresponding nodes on the mesh.

The linear interpolation can be generalized by using an arbitrary function
ω(t) with the property

ω(t) =
{

0 , for t = 1
1 , for t = 0.

Then, an interpolation is still possible by using

Ft(φ1, φ2) =

(
3∑

i=1

f i
1(φ1, φ2)ei

)
ω(t) +

(
3∑

i=1

f i
2(φ1, φ2)ei

)
(1 − ω(t))

Figure 6 shows different possible functions which result in different inter-
polation dynamics. and Figure 7 illustrates these different dynamics: using the
square root function for weighting leads to a faster morphing at the beginning,
which slows down at the end, whereas squared weighting leads to a slower start
and a faster ending. Therefore, we can use non-linear weighting functions to gain
a natural morphing behavior dependent on the joint dynamics.

Figure 8 shows a comparison of the non-modified model (right) with a mor-
phed joint-transformed model (left). As it can be seen, the shoulder joint is
moving down and in-wards during motion, and, simultaneously, does the surface
of the shoulder part morph. The amount of morphing and joint transformation is
steered through the angle of the shoulder (up) joint (left and right, respectively).
As can be seen, the left motion appears more natural than the right one.
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Fig. 5. Morphing of a male into a female torso
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Fig. 6. Different weighting functions during interpolation

3.3 Local Surface Morphing

The use of radial basis functions for local morphing is common practice for
modeling facial expressions.

The basic idea is as follows: we move a node on the surface mesh, and we
move the neighboring nodes in a similar manner, but decreasingly with increasing
distance to the initiating node. It is further possible to deform the radial basis
function to allow a realistic morphing in the presence of bones or ligaments. The
classic equation for a radial basis function is

r(x, y) = exp
(
− (x − cx)2

rx

)
exp

(
− (y − cy)2

ry

)

with the centre (cx, cy) and the radius (rx, ry). The values (cx, cy) = (0, 0) and
(rx, ry) = (1, 1) lead to the classic Gaussian form as shown on the left of Figure 9.
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Fig. 7. Different interpolations. Left: square root, middle: linear and right: square

interpolation

The coupling of a radial basis function with the surface mesh leads to

FR(φ1, φ2) = T r

(
3∑

i=1

f i(φ1, φ2)ei

)
T̃ r

with

T r = 1 +
et

2
for t = e3r(φ1, φ2)

T is a translator which translates a node along an orientation, and the amount
of translation is steered through the value of the radial basis function. Note that
T is dependent on (φ1, φ2) and different for each node. In this case we model a
deformation along the e3-axes, but it can be any orientation, and the Gaussian
function can be arbitrarily scaled. For our human model we additionally steer the
amount of morphing through the joint angle θ1 of the shoulder (back) joint. This
means, if the shoulder is not moving forwards or backwards, we will not have
any morphing, but the more the arm is moving, the larger will be the amount
of morphing. With a scaling parameter λ, the morphing translator is completely
given as
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Fig. 8. Different arm positions of the morphed joint-transformed model (left) and non-

modified model (right)

T r = 1 +
et

2
with t = λθ1r(φ1, φ2)e3

In contrast to global morphing, local approaches have the advantage that
they can more easily be used in the context of multiple morphing patches. For
example, simultaneous shoulder morphing up/down and forwards/backwards is
hardly possible with a global approach, but simple with a local one.

Figure 9 shows on the left a typical radial basis function to realize local
surface morphing. The images on the right show a double morphing on the
shoulder: moving the arms up or down and forwards or backwards leads to
a suited deformation of the shoulder patch and a similar motion of the joint
locations.

4 Experiments

This section presents a few experiments using global and combined (i.e., global
and local) morphing methods. The implementation is done in C++ on a stan-
dard Linux PC (2.4 GHz) and we need 100ms for each frame, including image
processing, pose estimation and surface morphing.

The morphing effect during an image sequence can be seen in Figure 10.
A person is moving his arms down, and as it can be seen in the left images,
the shoulder is moving downwards, too. The pose result for the morphed/joint
transformed model is shown in the middle image, and the result for the non-
modified model is shown in the right image. As shown, the matching result of
the morphed/joint transformed object model is much better.

Figure 11 shows example images for a double-morphing in the shoulder area.
The shoulder is morphing downwards when the arms are moving down, and
forwards when the arms are moving forward. Both motions can occur simultane-
ously, leading to a more realistic motion behavior then using rigid joints. Since
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Fig. 9. Left: A 2D-radial basis function. Right: Double surface morphing on the

shoulder

Fig. 10. Comparison of pose results for the morphed/joint transformed model and the

non-modified model

Fig. 11. Pose results using two shoulder morphing operators

the morphing effect can be seen more easily during the whole sequence (in con-
trast to a few snap shots), the reader is invited to see the sequence at http://
www.citr.auckland.ac.nz/∼bodo/DMorph.mpg.
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5 Discussion

This contribution presents an embedding of global and local morphing techniques
in CGA. The motivation for this paper was to show the applicability of geometric
algebras to model complex geometric problems. At first we recalled the 2D-
3D pose estimation problem for free-form surface models. Then we extended a
surface model by joints and used the human motion estimation problem as an
example scenario for discussing CGA. Due to the complexity of human motions,
we introduced local and global morphing approaches in CGA to gain a more
realistic human model. The amount of deformation is steered through a related
joint angle. It is further possible to deform (e.g., the shoulder patch) even with
non-linear weighting functions or as coupled local and global deformation. The
experiments showed the usefulness of this approach to obtain more accurate
tracking results for human motions.

Acknowledgments

This work has been supported by the EC Grant IST-2001-3422 (VISATEC) and
by the DFG grants RO 2497/1-1 and RO 2497/1-2.

References

1. Allen B., Curless B. and Popovic Z. Articulated body deformation from range
scan data. In Proceedings 29th Annual Conf. Computer Graphics and Interactive
Techniques, San Antonio, Texas, pp. 612 - 619, 2002.

2. Arbter K. and Burkhardt H. Ein Fourier-Verfahren zur Bestimmung von Merk-
malen und Schätzung der Lageparameter ebener Raumkurven. Informationstech-
nik, Vol. 33, No. 1, pp. 19-26, 1991.

3. Besl P.J. The free-form surface matching problem. Machine Vision for Three-
Dimensional Scenes, Freemann H. (Ed.), pp. 25-71, Academic Press, 1990.

4. Bregler C. and Malik J. Tracking people with twists and exponential maps. Conf.
on Computer Vision and Pattern Recognition, Santa Barbara, California, pp. 8-15,
1998.

5. Campbell R.J. and Flynn P.J. A survey of free-form object representation and
recognition techniques. Computer Vision and Image Understanding, Vol. 81, pp.
166-210, 2001.

6. Chadwick J.E., Haumann D.R. and Parent R.E. Layered construction for de-
formable animated characters Computer Graphics, Vol. 23, No. 3, pp. 243-252,
1989.

7. Dorst L. The inner products of geometric algebra. In Applied Geometric Algebras
for Computer Science and Engineering, Dorst L., Doran C. and Lasenby J. (Eds.),
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