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Derivatives of regular expressions were first introduced by Brzozowski in [1].
By recursively computing all derivatives of a regular expression, and associating
a state with each unique derivative, a deterministic finite automaton can be
constructed. Convergence of this process is guaranteed if uniqueness of regular
expressions is recognized modulo associativity, commutativity, and idempotence
of the union operator. Additionaly, through simplification based on the identities
for regular expressions, the number of derivatives can be further reduced.

Alternative approaches to computing the derivatives automaton that we have
found either store duplicate copies of the parse trees, or compute and then de-
terminize the (non-deterministic) partial derivatives automaton. An implemen-
tation using an approach similar to ours was published by Mark Hopkins in a
1993 note on the comp.compilers newsgroup, see [2].

Regular expressions are commonly represented as parse trees, and compu-
tation of derivatives can easily be implemented using such trees. The regular
expression represented by a subtree of a parse tree is called a subexpression. Due
to the nature of the Brzozowski derivatives, the same subexpression is often con-
tained in more than one derivative. Such common subexpressions can be removed
through the process of global common subexpression elimination (GCSE).

Our implementation uses n-ary parse trees rather than binary parse trees.
This avoids the need of binary trees to keep the tree left (or right) heavy and
sorted for fast equivalence detection. When creating a new node in the parse
tree, with a given set (or list) of child nodes, we test for equivalent nodes by
checking the parents of one of the child nodes. By storing the set of parents
for each node in the parse tree, and through hash tables this can be done in
near-constant time.

The n-ary parse tree along with GCSE ensure that equivalence is detected
modulo associativity, idempotence and commutativity, which guarantees ter-
mination of the algorithm. Rewrite rules are used to implement simplification
through the identities. The generic rewrite system allows us to add additional
rewrite rules if desired. The rewrite rules are applied before GCSE.

Derivatives can be computed in two fashions: lazily (top-down), or eagerly
(bottom-up). The first approach derivatives are computed as they are needed
to find the derivatives of the parse tree root. The second approach computes
derivatives for all subexpressions as they become available from parsing. In many
cases, the exact same set of derivatives are computed in both methods, because
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Fig. 1. Combined Parse Trees for the Derivatives of (abc)∗

the derivatives of a regular expression are defined in terms of the derivatives of its
subexpressions. For the top-down approach there are cases where we can avoid
computing the derivatives of subexpressions as follows: for each node in the parse
tree we maintain a first-symbol set, which is the set of symbols for which that
node will have a non-empty derivative. This can be computed directly from the
parse tree. We only compute derivatives for those symbols in the first-symbol set.
The improvement becomes obvious for example for the intersection of regular
expressions ab and cd. Because the intersection of their first-symbol sets is empty,
we do not compute derivatives of ab or cd, or for their subexpressions in turn.
This benefits only the top-down approach, as the bottom-up approach already
computes the derivatives of both subexpressions before ever encountering the
node intersecting the two.

Figure 1 shows the combined parse graph for the derivatives of (abc)∗. Solid,
straight lines form the parse graph, while dashed, curved lines represent the
derivatives relations. The numbered edges indicate the order of concatenation in
the parse graph.
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