
A BDD-Like Implementation of an Automata
Package

Jean-Michel Couvreur

LSV, ENS Cachan, Cachan, France
couvreur@lsv.ens-cachan.fr

Finite Automata are basic structures that appear in many areas of Computer
Science and other disciplines. The emergence of new tools based on automata
for the manipulation of infinite structures [4, 5, 1] makes a crucial challenge of
improving the efficiency of automata packages. The present work is motivated
by model-checking problems. where most of the algorithms are based on fixed
point computations that share many identical subcomputations. A promising
track is the realization of a BDD-like package because BDDs have proved these
capability to take advantage of this aspect when using cache technique. Since
Bryant’s original publication of BDD algorithms [2], there has been a great deal
of research in the area. One of the most powerful applications of BDDs has been
symbolic model checking, used to formally verify digital circuits and other finite
state systems [3]. A BDD package is based on an efficient implementation of the
if-then-else (ITE) operator. It uses essentially two principles:

– (1) a hash table, called unique table, maintains a strong canonical form in
BDDs and stores a forest of BDDs sharing common substructures,

– (2) a hash table, called computed cache, keeps subresults when evaluating a
recursive ITE operation.

Applying the BDD principle to automata is not that easy. Thus a solution to
our problem has to design new principles to overcome the following difficulties:
define a strong canonical form for automata, handle a forest of automata shar-
ing common substructures, design a constant time procedure to check automata
equality and an efficient hash function. Notice that classic notion of minimal
automata are far from solving these problems. One needs to design a new struc-
ture, well-adapted to substructures sharing and a new algorithm transforming
an automaton into this new structure, guaranteeing a strong canonical form.

In this paper we propose a data structure, called shared automata, for rep-
resenting deterministic finite automata. Informally, a shared automaton codes
a strongly connected component of an automaton and its exit states. Thus, an
automaton may be considered as an acyclic graph of shared automata. This
representation is well-adapted to substructure sharing between automata. We
have designed an incremental algorithm based on this decomposition producing
shared automata where states respect some canonical order. During the canoni-
sation of an automaton, produced shared automata are stored in a unique table,
guaranteeing a strong canonical form like for BDDs. In our system, automata
operations, as set operations, are obtained when computing on-the-fly a non
canonical representation of the result while applying the canonical algorithm.

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 310–311, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

mailto:couvreur@lsv.ens-cachan.fr

A BDD-Like Implementation of an Automata Package 311

Table 1. Experimentation results for some Petri nets

Model | {Place} | | {Transition} | LASH PresTaf

LEA 30 35 6min 36s 1min 13s

Manufacturing System 14 13 9min 37s 1min 4s

CSM 13 8 14min 38s 1min 2s

PNCSA 31 36 66min 3min22

ConsProd 18 14 1316min 3min55

During this evaluation, subresults are stored in a computer cache, avoiding un-
necessary re-evaluation of subexpressions. We experimentally compare PresTaf, a
direct implementation of the Presburger arithmetic built on the shared automata
package, and the Presburger package LASH [5] based on standard automata al-
gorithms. The goal of this experimentation is to evaluate the benefits that shared
automata techniques can bring to systems using standard automata algorithms.
Comparison with other kind of Presburger package is out of the scope of our ex-
perimentation. We chose a classic problem verification: the backward symbolic
state space exploration for Petri nets. Experimental results (see Table 1) show
the great benefit of the new canonical structure applied to this kind of problems.
As BDD [6], the main factor of this benefit is the computed cache. Indeed, the
iterations of a state space exploration share many subproblems.

References

1. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration of Sym-
bolic Transition systems. In CAV ’03, volume 2725 of LNCS, pages 118–121, 2003.

2. R. Bryant. Graph based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, 35(8):677–691, 1986.

3. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
Model Checking: 10e20 states and beyond. Information and Computation, 98(2):97–
109, 1998.

4. J. Elgaard, N. Klarlund, and A. Moller. Mona 1.x: new techniques for WS1S and
WS2S. In CAV ’98, volume 1427 of LNCS, 1998.

5. P. Wolper and B. Boigelot. On the construction of automata from linear arithmetic
constraints. In TACAS’00, volume 1785 of LNCS, pages 1–19, 2000.

6. B. Yang, R. E. Bryant, D. R. O’Hallaron, A. Biere, O. Coudert, G. Janssen, R. K.
Ranjan, and F. Somenzi. A performance study of BDD-based model checking. In
FMCAD’98, pages 255–289, 1998.

