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Abstract. A nondeterministic finite automaton with ε-transitions
(εNFA) accepts a regular language. Among the εNFA accepting a cer-
tain language some are more compact than others. This essay treats the
problem of how to compactify a given εNFA by reducing the number
of transitions. Compared to the standard techniques to minimize deter-
ministic complete finite automata (complete DFA) two novel features
matter in compactifying εNFA: the principle of transition partition and
the principle of transition union. An algorithm for compactifying εNFA
is presented that exploits the union principle. This algorithm has the
following property: if the algorithm returns an unambiguous automaton,
then this automaton is the transition minimal εNFA.

1 Introduction

Minimization of finite automata is important for theoretical and practical rea-
sons. In several application domains only small automata and their represen-
tations yield feasible solutions for practical problems. Basic algorithms for the
problem of minimizing deterministic finite automata (DFA) have been published
50 years ago [10, 15, 17]. About succinctness, the feature of nondeterminism in-
troduced in [21] allows to give much more compact automata. A nondeterministic
finite automaton (NFA) may be smaller than a DFA by an exponential factor
[16]. This even holds for unambiguous NFA [23, 26, 22]; ie NFA, which have at
most one accepting computation for every word.

This essay treats the problem of how to compactify a given nondeterministic
finite automaton with ε-transitions (εNFA). In general, the problem to compute
a state minimal εNFA from a given εNFA is pspace-complete, by reduction to a
problem given in [1, 6, p. 174], whereas in the deterministic case the problem to
compute minimal complete DFA can be solved in time O(n log n) [8] — a DFA
is complete if each state has a transition for all inputs. Hereby, the minimal
complete DFA is unique up to isomorphism [10, 17] and the number of states
and the number of transitions are simultaneously minimized. A state minimal
complete DFA is a transition minimal complete DFA, and vice versa. This does
not hold for NFA and εNFA.

Essentially, there are three ways to define a minimization problem for NFA
resp. εNFA : to minimize the number of states or the number of transitions or a
sophisticated weighted sum of both. All of them can be solved by an exhaustive
search algorithm in time 2O(n2). In the formal language community, it is tradi-
tional to minimize the number of states. The approaches to this problem, that
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work by searching a minimal subautomaton, started with [5]. Many algorithms
and heuristics have been proposed by [12, 13, 3, 4, 2, 14].

Another approach to reduce the number of states is due to [25, 20], where the
minimization techniques for complete DFA are applied [9, 18, 19]. According to
their reduction criteria, a NFA is most compact if there are no equivalent states.
But in general, this does not mean state minimization, because there may be
NFA accepting the same language using a smaller number of states.

Contrary, this essay investigates transition minimization. We do so mainly for
three reasons : the size of an automaton is primarily influenced by the number of
transitions, eg regarding an adjacency list, which is an efficient linear represen-
tation of an automaton. Secondly, the minimal unambiguous ε-complete εNFA
is unique up to isomorphism. And finally, our algorithm to reduce εNFA with
respect to the number of transitions performs better than the best known al-
gorithms to compute state minimal NFA. The problem to compute a transition
minimal εNFA from a given εNFA is pspace-complete by reduction to a problem
described in [1, 6, p. 174]. The time complexity for our algorithm depends on the
time needed to compute NFA equivalences or NFA complements. At the time,
we therefore obtain a bound of O(2n) for the running time of the algorithm.

The essay proceeds as follows. Section 2 introduces the formalism of εNFA, ex-
plains how the compactness of an εNFA is measured and defines the problem, to
be solved. Section 3 elaborates the theory necessary to reduce the number of tran-
sitions. This theory and the proofs of the theorems are presented in more detail
and with examples in [11]. Section 4 presents the algorithm, proves its correctness
and determines its complexity. In Section 5 we conclude with final remarks.

In the sequel, N denotes the set of natural numbers including 0, Σ is the set
of input symbols, Σ∗ the set of finite words over Σ including the empty word
λ. Variables u, v, w ∈ Σ∗ stand for words, P, F ⊆ Σ∗ for sets of words, A, B for
automata, s, t ∈ T for transitions, and p ∈ T ∗ for finite paths with p = p1...pn

and n ∈ N. By default, indices are omitted if it is clear from the context, what
is meant.

2 Problem

Definition 1. An εNFA A = (Q, Σ, I, F, E, T ) is given by

– a finite set of states Q
– a finite set of input symbols Σ
– a set of initial states I ⊆ Q
– a set of final states F ⊆ Q
– a set of ε-transitions E ⊆ Q × Q
– a set of transitions T ⊆ Q × Σ × Q

A word w ∈ Σ∗, including the empty word λ ∈ Σ∗, is accepted by the automaton,
w ∈ L(A), if there is a path from an initial state via the automaton’s transi-
tions to a final state yielding w. We come back to that point later. Two εNFA A
and B are equivalent if and only if L(A) = L(B). Among the εNFA accepting the
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same language there are some that are more compact than others. In our case,
the measurement of compactness is based on the number of transitions. More
precisely, on the number of transitions not counting ε-transitions. For εNFA A
and B, the term “A is more compact than B”, for short A < B, is defined by:

Definition 2 (Compactness). A < B :⇐⇒ L(A) = L(B) and |TA| < |TB |
Problem : The problem is to find an algorithm, that computes a most compact
automaton, ie: to compute from any given εNFA A an εNFA B with L(A) =
L(B) such that C �< B for all εNFA C.

Theorem 1 (Main Theorem). There is an algorithm with running time O(2n)
that does always find an εNFA at least as compact as the input εNFA. The al-
gorithm returns an εNFA, which is transition minimal if unambiguous.

3 Theory

3.1 Acceptance Criterium

Words are accepted by an automaton along transition paths from initial to final
states. We make this more precise by introducing a follow–relation and a label–
path homomorphism in contrast to a direct definition as it is commonly used
(eg [24, 9]).

The follow–relation −→ expresses the connectivity of transitions within an
εNFA A. For s, t ∈ T , the statement s −→ t displays that s is connected via
states and ε-transitions to t. For convenience, we add a new transition t0 �∈ T ,
set T0 := T ∪ {t0} and define the follow–relation −→ on T0 ×T0. We denote the
source state and the target state of a transition t as source(t) and target(t):

Definition 3 (follow–relation). For s, t ∈ T :

– s −→ t :⇔ target(s) E∗ source(t)
– t0 −→ t :⇔ There is an initial state q ∈ I with q E∗ source(t)
– s −→ t0 :⇔ There is a final state q ∈ F with target(s) E∗ q

Transitions t with t0 −→ t are called initial transitions, transitions s with s −→
t0 are called final transitions.

A path p ∈ T ∗ is a sequence p = t1... tn with n ∈ N of transitions ti ∈ T
connected by the follow–relation each labeled l(ti) ∈ Σ. The word yielding from
the path is given by the label–path homomorphism l : T ∗

0 → Σ∗ with l(p) =
l(t1)... l(tn). More precisely, t0 transitions are allowed to be at the beginning or
at the end or both for the purpose of accepting paths:

Definition 4 (label–path homomorphism). l(stp) := l(s)l(tp) ⇔ s −→ t
with l(λ) := λ and l(t0) := λ.

Note, that the definition incorporates the connectivity via the follow–relation,
elsewhere l is partially undefined.

Proposition 1. ∀p ∈ T ∗ : |l(p)| = |p|
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The accepted language L(A) of an εNFA A, given in the notion of the follow–
relation and the label–path homomorphism l, is defined on paths p of connected
transitions from an initial to a final transition yielding words w according to l:

Definition 5. L(A) = {w ∈ Σ∗ there is a path p ∈ T ∗ with l(t0pt0) = w}
An εNFA A is unambiguous if and only if for each w ∈ L(A) there is exactly
one path p with l(t0pt0) = w.

Regarding the definition of the unambiguousness of an εNFA, arbitrary many
ε-transitions are not relevant with respect to this essay. That point would oth-
erwise provoke to distinct strong and weak unambiguousness by the means of
ε-transitions.

The information given by the follow–relation of an automaton A is sufficient
to reconstruct an automaton that accepts the language L(A). This reconstruction
is not unique, but can be done canonically or small regarding the number of states
and ε-transitions.
Fact : From any follow–relation an εNFA can be reconstructed.
For convenience, we assume in the following, without the loss of generality, that
every εNFA considered has only productive transitions t ∈ T — there is a linear
time algorithm to eliminate every non-productive transition. A transition is pro-
ductive if and only if it is connected to an initial and a final state over a path of
other transitions possibly including ε-transitions, ie: it might be responsible for
the acceptance of at least one word of the language. Thus, in the following, for
all εNFA considered, and transitions t ∈ T it holds: t0 −→+ t −→+ t0.

3.2 Future and Past

In this section, we will determine the semantics of the transitions by exploring
what a transition t ∈ T is responsible for — the future ϕ(t) and the past π(t).
Similar ideas for states already appeared in [12, 6, 2].

Along a path to accept a word w, there is a transition t processing one of the
letters of w. The letters before are part of the past π(t). The letters, which are
to be processed, belong to future ϕ(t), whereby the present l(t) is part of both
π(t) and ϕ(t). This reflects the setting of the transition t among the others:

Definition 6 (future and past). ϕ, π : T → Σ∗

– ϕ(t) = {w ∈ Σ∗ there is a path p with l(pt0) = w and p1 = t}
– π(t) = {w ∈ Σ∗ there is a path p with l(t0p) = w and p|w| = t}

We define the language M :1 of words of M ⊆ Σ∗ without the last letter and
1:M without the first letter:

Definition 7. M :1 := {w ∈ Σ∗ wa ∈ M} and 1:M := {w ∈ Σ∗ aw ∈ M}
According to future ϕ(t) and past π(t) there are the strict future 1:ϕ(t) and the
strict past π(t):1 each without the present l(t). Because the present l(t) of a
transition t is unique, we observe obviously, that past is strict past combined
with the present and analogously future is present combined with strict future:
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Proposition 2. π(t) = π(t):1 l(t) and ϕ(t) = l(t) 1:ϕ(t)

By a little more algebraic investigation of the label–path homomorphism l, we
get for all transitions t, all words w, v ∈ Σ∗ and all a ∈ Σ that:

Lemma 1. vaw ∈ L(A) ⇔ ∃ t ∈ T : va ∈ π(t) and aw ∈ ϕ(t)
In case that the εNFA is unambiguous, the property holds for exactly one t ∈ T .

The accepted language of an εNFA A is completely determined by its future and
past and from its strict future and strict past:

Proposition 3. L(A) =
⋃

s →
A

t

π(s)ϕ(t) =
⋃

t∈T

π(t):1 l(t) 1:ϕ(t)

More central is the point that future ϕ and past π of an εNFA may be ob-
tained by a fixpoint construction as they fulfill the equation system if we set
ϕ(t0) := {λ} =: π(t0):

Lemma 2 (fixpoint). ϕ(s) =
⋃

s →
A

t

l(s)ϕ(t) and π(t) =
⋃

s →
A

t

π(s)l(t)

The Fixpoint Lemma implies directly a correspondence between the follow–
relation and the future and past:

Corollary 1. For transitions s and t with same label l(s) = l(t) it holds:
s −→ = t −→ implies ϕ(s) = ϕ(t) and −→ s = −→ t implies π(s) = π(t)

3.3 Slicing

Central to the Minimizing Theorem 2 is the notion of slicing a regular language.
Slices are unified to most compact slices, ST , which forms a compact εNFA.

Definition 8 (slice). Given a regular language L ⊆ Σ∗. For all P, F ⊆ Σ∗,
a ∈ Σ :

(P, a, F ) is a slice of L :⇔ P �= ∅ and F �= ∅ and PaF ⊆ L

A slicing of L is a set of slices of L. In particular, let S be the set of all slices
of L. We define a partial order on S:

(P1, a, F1) ≤ (P2, a, F2) :⇔ P1 ⊆ P2 and F1 ⊆ F2

We define ST ⊆ S, the set of maximal slices of L, by

ST := {(P, a, F ) ∈ S there is no (P ′, a, F ′) ∈ S with (P, a, F ) < (P ′, a, F ′)}
Lemma 3. Given the set of all slices S of a regular language L, every linearly
ordered set X ⊆ S has a maximum in S, which is:

(
⋃

(P,a,F )∈X

P, a,
⋃

(P,a,F )∈X

F )

Proof : Let us assume the settings ∪P := ∪(P,a,F )∈XP and ∪F = ∪(P,a,F )∈XF .
First, we show that we have defined a slice of L. Because future F and past P
of a slice (P, a, F ) ∈ X are not empty, the unions ∪P and ∪F are not empty,
either.
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It remains to show ∪Pa∪F ⊆ L. Every w ∈ ∪Pa∪F is split into subwords
w1 ∈ ∪P and w2 ∈ ∪F with w = w1aw2, those come out of slices x, y ∈ X with
w1 ∈ Px and w2 ∈ Fy. These slices are ordered. We assume without the loss of
generality that x ≤ y, which implies w1 ∈ Px ⊆ Py and w1aw2 ∈ PyaFy ⊆ L.
So, w = w1aw2 ∈ L and consequently ∪Pa∪F ⊆ L. 
�

Due to the fact that every slice is part of a maximal linearly ordered set, we
have:

Corollary 2. ∀x ∈ S, ∃ y ∈ ST : x ≤ y

In the following, we want to read an automaton out of a slicing of L. In order
to do so, we transform every slice into a transition. Usually, there are more than
a finite number of slices. So, let us relax the finiteness of εNFA for the moment.
We define the automaton AS from the slicing S of L via the follow–relation.
The other automata are subautomata of AS , especially the ones corresponding
to the finite slicings, which are subsets of S; eg ST is a finite slicing of a regular
language L. We come back to this point within the Minimizing Theorem 2.

Definition 9 (AS , AST , AF̄ ). Assume t0 �∈ S and S0 := S ∪ {t0}. The follow–-
relation −→⊆ S0 × S0 is defined for all slices (P1, a, F1) and (P2, b, F2) ∈ S :

(P1, a, F1) −→ (P2, b, F2) :⇔ P1a ⊆ P2 and bF2 ⊆ F1
t0 −→ (P2, b, F2) :⇔ λ ∈ P2

(P1, a, F1) −→ t0 :⇔ λ ∈ F1
[ t0 −→ t0 :⇔ λ ∈ L ]

The last case fits if λ is not excluded from L from the beginning.

Lemma 4. L(AS′) ⊆ L for each slicing S′ ⊆ S.

Sketch of proof : Let w = a1... an ∈ L(AS′). There is a path p ∈ T ∗ with
l(t0pt0) = w. Examining the path p = p1... pn, it sequences slices of the form
pi = (Pi, ai, Fi) ∈ S with the initial slice p1 and final slice pn due to λ ∈ P1 and
λ∈Fn. The follow–relation implies a1 ∈P1a1 ⊆P2 and by the induction principle
a1... an ∈ Pnan. Together with λ ∈ Fn, we get w = a1... an ∈ PnanFn ⊆ L. 
�
Lemma 5. The regular language L is accepted by AS and AST :

L(AS) = L and L(AST ) = L

Sketch of proof : Let w = a1... an ∈ L we prove by induction:
L ⊆ L(AS): Let pk = ({a1... ak−1}, ak, {ak+1... an}) = (Pk, ak, Fk) ∈ S. The
sequence p = p1... pn is an accepting path in AS .
L ⊆ L(AST ): By Corollary 2 there is, for each slice pk, a slice p∗

k = (P ∗
k , ak,

F ∗
k ) ∈ ST with pk ≤ p∗

k. That forms an accepting path p∗ = p∗
1... p

∗
n. To prove

that, we use intermediate slices (P̃k+1, ak+1, F̃k+1) = (P ∗
k ak, ak+1, {w | ak+1w ∈

F ∗
k }) to analyze ak+1F

∗
k+1 − F ∗

k in order to prove p∗
k −→ p∗

k+1. 
�
Lemma 6. Given a regular language L and a slicing S′ ⊆ S of L. Within the
εNFA AS′ we observe that for all slices (P, a, F ) ∈ S′, which are transitions in
AS′ , it holds:
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– π(P, a, F ) ⊆ Pa and ϕ(P, a, F ) ⊆ aF

Moreover, if S′ = S or S′ = ST :

– π(P, a, F ) = Pa and ϕ(P, a, F ) = aF

Sketch of proof : By induction on the word length, we reason about the follow–
relation. In case of π, consider the predecessors introduced by the fix point
lemma, 2, and show that π(P, a, F ) =

⋃
(P̃ ,b,F̃ )→(P,a,F )π(P̃ , b, F̃ )a, and finally

P̃ b ⊆ P if (P̃ , b, F̃ ) → (P, a, F ). A proof works analogously for ϕ.
The second part uses, in addition to the idea in the part above, an idea

similar to the one of the proof of Lemma 5: For each slice (P, a, F ) ∈ S analyse
({w|wb ∈ P}, b, aF )—which has also a maximum in ST in case S′ = ST —being
connected to (P, a, F ) by the follow–relation. 
�

3.4 Minimal Unambiguous εNFA

The following theorem is presented in the style of [9, 18, 19].

Theorem 2. The three following statements are equivalent for languages L ⊆ Σ∗

if the slicing ST of L induces an unambiguous εNFA AST :

– L is accepted by an εNFA
– L = L(AF̄ ) for some finite slicing F̄ ⊆ S
– ST is finite

Furthermore it holds:

– |ST | ≤ |F̄ | ≤ |TA|

Corollary 3. An unambiguous εNFA AST is transition minimal.

Proof : (1) → (2) : Let A be an εNFA with L = L(A). For transitions t ∈ T
we define t̄ := (π(t):1, l(t), 1:ϕ(t)) to construct a finite slicing F̄ = {t̄|t ∈ T} —
Proposition 3 includes π(t):1 l(t)1:ϕ(t) ⊆ L. And F̄ is finite: |F̄ | ≤ |T |.

It remains to show, that L = L(AF̄ ): We show for transitions s and t ∈ T0A

that s −→A t implies s̄ −→ t̄ provided that t̄0 := t0. Hence, every accepting path
of A is an accepting path of AF̄ , ie: L = L(A) ⊆ L(AF̄ ) ⊆ L, and by Corollary 4
then L(AF̄ ) = L.

Assume s −→A t. By the Fix Point Lemma 2, we get π(s)l(t) ⊆ π(t). There-
fore π(s):1l(s)P.2= π(s) = π(s)l(t):1 ⊆ π(t):1. That means π(s):1l(s) ⊆ π(t):1 and
similarly l(t)1:ϕ(t) ⊆ 1:ϕ(s), which implies s̄ −→ t̄ by the definition of the follow
relation, 9. The cases of t0 are easy to show.

(2) → (3) : Assume a finite slicing F̄ ⊆ S with L(AF̄ ) = L. By the Lemma 2
we know ∀x ∈ F̄ ⊆ S, ∃ y ∈ ST : x ≤ y. Hence, we are allowed to assume a
function f : F̄ → ST with x ≤ f(x) ∈ ST . We show that f is surjective.

For all slices (P, a, F ) ∈ ST there are w1 ∈ P and w2 ∈ F with w1aw2 ∈
PaF ⊆ L = L(AF̄ ). This implies by Lemma 1 and 6 that there is a slice (P̃ , a, F̃ )
in the finite slicing F̄ with w1a ∈ πF̄ (P̃ , a, F̃ ) ⊆ P̃ a ⊆ Pa = πST (P, a, F ) and
aw2 ∈ ϕF̄ (P̃ , a, F̃ ) ⊆ aF̃ ⊆ aF = ϕST (P, a, F ).
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Applying the function f to the slice (P̃ , a, F̃ ) we will prove that we get
the same slice, which we have started with. For that purpose, we assume a
slice (P ′, a, F ′) with f(P̃ , a, F̃ ) = (P ′, a, F ′) and we are going to show that
(P, a, F ) = (P ′, a, F ′). For that slice holds (P̃ , a, F̃ ) ≤ (P ′, a, F ′) and therefore
w1a ∈ P̃ a ⊆ P ′a = πST (P ′, a, F ′) and aw2 ∈ aF̃ ⊆ aF ′ = ϕST (P ′, a, F ′).
That means we have found to (P, a, F ) another slice (P ′, a, F ′) responsible to
accept the word wav. But for unambiguous AST there can be only one slice, by
Lemma 1. Thus it must be that (P, a, F ) = (P ′, a, F ′) = f(P̃ , a, F̃ ). We conclude
that f is surjective, ie: f(F̄ ) = ST , from which it follows that |ST | ≤ |F̄ | and
therefore ST is finite.

(3) → (1) : We take AST for that automaton into account. Because of
Lemma 5 it is L(AST ) = L.

4 The Algorithm

In this section, an algorithm is outlined to minimize an εNFA A. It reduces the
set of transitions T0 = {t0, t1, . . . , tn}. The algorithm is given in pseudo code.
Takes as input a boolean adjacency matrix A : T0 × T0 → {0, 1} representing
the follow–relation of the input automaton, ie: A(s, t) = 1 ⇔ s −→A t. Those
prerequisites are fixed in the declaration (line 0-1).

The algorithm proceeds in two phases. The first pass (line 2-8), which we
might name ε-completion, introduces ε-transitions without changing the original
regular language. That the language doesn’t change is assured by the test L(A) =
L(A0) in line 6. The second pass (line 9-13) eliminates superfluous transitions
in order to reduce the εNFA A. Afterwards, the algorithm returns a result in A,
which is the automaton with the remaining transitions.

Algorithm

(0) T0 = [0, 1, . . . , n] ; =̂ {t0, t1, . . . , tn}
(1) A : T0 × T0 → {0, 1} ; =̂ A(s, t) = 1 ⇔ s −→A t

(2) A0 = A ;
(3) for s = 0 to n do
(4) for t = 0 to n do
(5) A(s, t) = 1 ;
(6) if L(A0) �= L(A) then A(s, t) = 0
(7) end
(8) end ;
(9) for s = 1 to n do

(10) for t = s + 1 to n do
(11) if l(s) = l(t) and A(s, ) = A(t, ) then delete(s)
(12) end
(13) end

Theorem 3. The algorithm on input of an εNFA A outputs an εNFA B, so that
L(A) = L(B) and B ≤ A. Moreover, if B is unambiguous then B is transition
minimal.

We prove this theorem in the following subsection.
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4.1 Correctness

We shall now be concerned with the correctness of the algorithm. Within the
first pass we are adding ε-transition to the automaton. As a result there are
more paths possible to accept the words of L. The sole chance to change the
language is to accept more words, which is exactly ruled out by the test in line
(6) of the algorithm. Moreover, we have

Proposition 4. It is sufficient to check L(A) �⊆ L(A0) with regard to line (6).

The second pass eliminates superfluous transitions if there is still an equivalent
transition within the automaton covering all accepting paths of the transition.
Hence, it still holds L(A0) = L(A) after the second pass. In fact, the only chance
to fail the invariant L(A0) = L(A) is in line (5), that is instantly corrected in
line (6) thereafter.

We are deleting transitions; none are added, ie: A ≤ A0. We have sketched
that the algorithm is correct in the sense that it still returns an automaton,
which accepts the same language compared to the input automaton, having a
smaller or equal number of transitions.

Let us now investigate the algorithm’s minimization property, ie the fact,
that the returned automaton is transition minimal if it is unambiguous. For
that purpose, we use the notations of the Theorem 2. Then each transition
t ∈ TA has got assigned the strict future Ft and the strict past Pt, yielding
slice t̄ = (Pt, a, Ft) according to the automaton A’s finite slicing F̄ , which is
mapped via function f to ST — recall the construction of the function f of the
Theorem 2:

t̄ = (Pt, a, Ft) ∈ F̄ and f(t̄) ∈ ST

Consider the first pass, the ε-completion, in which ε-transitions are placed if
and only if the language is not changed. At least this is the case if and only
if their correspondent transitions f(s̄) and f(t̄), with respect to the automaton
according to ST , are connected f(s̄) −→ST f(t̄). We observe:

Lemma 7. f(s̄)−→ST f(t̄) implies s−→At

Proof : By the setting of f in Theorem 2 it is s̄ ≤ f(s̄) = (Ps, a, Fs) and t̄ ≤
f(t̄) = (Pt, b, Ft), which implies π(s) = (π(s):1)a ⊆ Psa and ϕ(t) = b(1:ϕ(t)) ⊆
bFt ⊆ Fs. We conclude π(s)ϕ(t) ⊆ PsaFs ⊆ L. In that case, the algorithm
connects s and t by an ε-transition, which does not change the original language
L(A) = L we have started with.
Via the proof of Lemma 5 it also holds: s−→At =⇒ f(s̄)−→ST f(t̄) in every
stage of the algorithm. That is why we obtain after the first pass:

Corollary 4. s−→At if and only if f(s̄)−→ST f(t̄)

The second pass of the algorithm deletes all except one of equivalent transitions.
Two transitions s and t are equivalent if and only if there is a semantically
more compact transition x ∈ ST with s̄ ≤ x ≥ t̄. Actually, this transition is
f(s̄) = x = f(t̄) — see Lemma 8. We define:
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Definition 10. s ≡ t :⇐⇒ f(s̄) = f(t̄)

Within the proof it turns out that after the first pass of the algorithm the
semantics of the transitions in automaton A in terms of future and past are the
same as in the automaton according to ST . The deletion of transitions cleans
up by dropping the superfluous material. It results in an automaton with equal
many transitions having equal semantics, compared to the one of f(F̄ ) = ST , if
ST is unambiguous.

Lemma 8. f(s̄) = f(t̄) if and only if l(s) = l(t) and s−→A = t−→A

Sketch of proof : Slices are equal iff future and past are equal — show π(s̄) =
π(f(s̄)) and ϕ(s̄) = ϕ(f(s̄)) by maintaining Corollary 4. It is sufficient to check
s−→A = t−→A because of ε-completeness. 
�

This completes the correctness proof as the algorithm computes f(F̄ ) from
the input automaton. If ST is unambiguous, it holds that f(F̄ ) = ST . Thus the
result is transition minimal. If ST is not unambiguous, the algorithm returns a
subautomaton f(F̄ ) ⊆ ST . Considering all this, and Lemma 8, we conclude:

Corollary 5. ST forms a unambiguous εNFA:
– If there is a minimal unambiguous εNFA, then the algorithm returns it.
– The minimal unambiguous ε-complete εNFA is unique upto isomorphism.

Corollary 6.

– If the algorithm returns an ambiguous εNFA then a minimal εNFA is a
subautomaton thereof.

4.2 Complexity

We consider the deterministic worst case time complexity of the algorithm. Let
t(n) be the deterministic time complexity for the test whether L(A) = L(B)
or not for two εNFA A and B. Then the algorithm runs in deterministic time
O(n2t(n)+n3). At the time one only knows t(n) ∈ O(2n). Therefore the running
time of the algorithm is in

O(n22n + n3) ⊆ 2O(n)

The observation in Proposition 4 is interesting because it allows us to speed up
the first pass. Instead of the equivalence test, we should better run an implication
test:

L(A) ⊆ L(A0) ⇔ L(A) ∩ ¬L(A0) = ∅
Here the most time consuming operation is the complement ¬L(A0) =L(¬A0)

— the automaton has to be made complete and deterministic via the power set
construction [21] in order to complement it — but this expression only depends
on A0 and can be precomputed. Hence, the implication test has to do the com-
plement operation just once. In every test, to compute the intersection takes
O(n2) steps, combined with the test of emptiness, O(n). Let t(n) the determin-
istic time complexity to compute the complement. It is t(n) ∈ O(2n) [7]. Hence,
the worst case time complexity with this optimization is
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O(t(n) + n2(n2 + n) + n3) ⊆ O(2n + n4 + 2n3) = O(2n)

Moreover, there is a rich variety of possibilities to further optimize the run-
ning time of the algorithm. But this is out of the scope for this paper. Finally,
it is worth to mention. that the test whether the returned automaton is unam-
biguous and therefore transition minimal is easy to check in deterministic time
O(n2), eg [24, p. 97].

5 Conclusion

Minimization of εNFA was investigated, in particular the theory and an algo-
rithm was developed to reduce the number of transitions of a given εNFA. In
general, this problem is pspace-complete. The algorithm presented reduces the
problem of transition minimization polynomially to NFA equivalences, or alter-
natively to NFA complements; and runs in deterministic time O(2n).

Generally observed, the union principle was exploited. By this means, two tran-
sitions t1 and t2 are equivalent if there is a semantically more compact transition
t with t1 ≤ t ≥ t2. The algorithm unions the transitions such that t1 ∪ t2 ≤ t.
Essentially, the reduction is based on partial orders; as opposed to state equiva-
lences in the deterministic case of DFA. The fact that states resp. transitions in
NFA are no objects of equivalence classes, is the main difference to other work.

The union principle is sufficient to reduce εNFA to minimal unambiguous
εNFA. In other cases, the minimal εNFA it not unambiguous, a partition prin-
ciple may be applicable, eg a transition t is superfluous if it can be partitioned
into t1 and t2 with t = t1 ∪ t2 such that there are more compact transitions tc1
and tc2 with t1 ≤ tc1 and t2 ≤ tc2.

It remains the main open question for further work whether the union and the
partition principle together are sufficient to minimize the number of transitions
of an εNFA, in general.

Acknowledgements. Stephan Weber and Arfst Nickelsen are gratefully thanked
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nicht-deterministischen Automaten. EIK: Elektronische Informationsverarbeitung
und Kybernetik, 3:351–362, 1967.

21. Michael O. Rabin and Dana S. Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 3:114–125, 1959.

22. Bala Ravikumar and Oscar H. Ibarra. Relating the type of ambiguity of finite
automata to the succinctness of their representation. SIAM Journal on Computing,
18(6):1263–1282, 1989.

23. Erik M. Schmidt. Succinctness of descriptions of context-free, regular, and finite
languages. Technical Report DAIMI PB-84, Department of Computer Science,
University of Aarhus, Denmark, 1978.

24. Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory, Vol. I: Languages and
Parsing. EATCS Monographs on Theoretical Computer Science. Springer, 1988.

25. Peter H. Starke. Einige Bemerkungen über nicht-deterministische Automaten.
EIK: Elektronische Informationsverarbeitung und Kybernetik, 2:61–82, 1966.

26. Richard E. Stearns and Harry B. Hunt, III. On the equivalence and containment
problems for unambiguous regular expressions, grammars, and automata. In IEEE:
22nd Annual Symposium on Foundations of Computer Science, pages 74–81, 1981.


	Introduction
	Problem
	Theory
	Acceptance Criterium
	Future and Past
	Slicing
	Minimal Unambiguous NFA

	The Algorithm
	Correctness
	Complexity

	Conclusion



