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Abstract. Tandem mass spectrometry (MS/MS) is the most impor-
tant method for the peptide and protein identification. One approach
to interpret the MS/MS data is de novo sequencing, which is becoming
more and more accurate and important. However De novo sequencing
usually can only confidently determine partial sequences, while the unde-
termined parts are represented by “mass gaps”. We call such a partially
determined sequence a gapped sequence tag. When a gapped sequence tag
is searched in a database for protein identification, the determined parts
should match the database sequence exactly, while each mass gap should
match a substring of amino acids whose masses total up to the value of
the mass gap. In such a case, the standard string matching algorithm
does not work any more. In this paper, we present a new efficient algo-
rithm to find the matches of gapped sequence tags in a protein database.

1 Introduction

Proteins are essential to life, playing key roles in all biological processes. For ex-
ample, enzymes that catalyze reactions are proteins and antibodies in an immune
response are proteins. One of the first steps in understanding proteins is pro-
tein identification. Protein identification is to identify the primary structure of a
protein, which is a chain of amino acids. There are 20 different amino acids, and
therefore, the primary structure of a protein can be represented as a string over
an alphabet of size 20. Protein identification is a fundamental problem in Pro-
teomics. Nowadays, tandem mass spectrometry (MS/MS) is becoming the most
important and standard technology for this importance protein identification
problem [1]. In the current practice of protein identification using MS/MS, pu-
rified proteins are digested into short peptides with enzymes like trypsin. Then,
tandem mass spectra are measured for the peptides with a tandem mass spec-
trometer. Fig. 1 shows an example of MS/MS spectrum. A peak in the MS/MS
spectrum indicates the mass-to-charge ratio (m/z) of the type of ions that pro-
duce the peak, and the intensity of the peak indicates the number of the same
type of ions detected. Finally the MS/MS spectra are interpreted by computer
software to identify the amino acid sequences of the peptides and proteins.

Many algorithms have been developed and applied in software to interpret
the MS/MS data. They can be grouped into two major approaches. The first
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Fig. 1. An MS/MS spectrum

approach correlates MS/MS spectra with peptides in a protein database to find
the best matches [10, 18, 19, 25]. We call this approach database search approach.
Among the many software programs developed using this approach, Mascot [10]
and Sequest [18] are the two most well-known programs.

The other approach is de novo sequencing [6, 8, 9, 11, 12, 13, 15, 20, 23, 24],
which produces amino acid sequences of the peptides from the MS/MS data
directly without the help of the protein database. De novo sequencing software
often uses the mass difference between the peaks in an MS/MS spectrum to
determine the amino acids of the peptide. Because the MS/MS spectra are al-
ways not perfect due to the impure sample, incomplete fragmentation and other
factors in the MS/MS experiments, the mass difference between two peaks in an
MS/MS spectrum may not indicate the mass of only one amino acid. Instead,
it may be the sum of the mass of several amino acids. In this case, there can be
several combinations of amino acids have the same mass. For example, mass(EE)
= mass(GSN) = 258.1 Dalton. Even some single amino acids also have this kind
of ambiguous mass, like mass(L) = mass(I) and mass(N) = mass(GG).

As a result, most de novo sequencing software cannot determine these am-
biguous masses, therefore outputs erroneous results. We call this type of error
same mass segments replacement, i.e., one segment of amino acids has the similar
mass to another segment. There are some de novo sequencing software available,
such as commercial software PEAKS [14] and free software Lutefisk [23, 24]. Both
PEAKS and Lutefisk have their own mechanisms to reduce the effects of these
errors. Lutefisk outputs a mass gap when it cannot confidently determine the
sequence that fills the gap. One example output is

[258.1]TLMEYLE[114.0]PK,
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where the mass gaps [258.1] and [114.0] represent two short segments of amino
acids whose masses add up to 258.1 and 114.0 Dalton, respectively. We call such
a sequence tag the gapped sequence tag.

A possible match of such a tag in the database is EETLMEYLENPK, as
follows:

Tag: [258.1]TLMEYLE[114.0]PK
Match: [EE ]TLMEYLE[N ]PK,

where mass(EE) = 258.1 and mass(N)=114.0.
PEAKS uses different colors to represent different confidences on different

amino acids in a sequence. PEAKS version 1.x outputs the low confidence
level (< 80%) amino acids with black color, compared to the other colors (red,
green, blue) for higher confidences (95%-100%, 90%-95%, 80-90%) [14]. 1 Here
we use brackets for the low confidence level parts. For example, the output
[GSN]TLMEYLE[GG]PK indicates that PEAKS is not confident at the two seg-
ments GSN and GG. Clearly, this [GSN]TLMEYLE[GG]PK can be converted to
Lutefisk’s output format by replacing GSN with the mass gap [258.1] and GG
with [114.0].

The determined parts of sequence tags produced by Lutefisk and high con-
fident parts of PEAKS are very likely the correct sequences. Therefore, when
the gapped sequence tag is searched in a database, we require the determined
parts to match exactly. However, the mass gaps should be matched by substrings
whose total masses equal to the mass gaps.

2 Related Work

Software programs have been developed for the purpose of searching sequence
tags in the database to identify peptides and proteins. MS-BLAST [22] uses
a BLAST-like algorithm [4, 5], which first finds a seed in the database, and
then extends around the seed attempting to find a match. MS-BLAST can find
approximate matches using a homology model. However, MS-BLAST does not
accept inputs with mass gaps. When mass gaps are present in a query, MS-
BLAST requires the user to find all possible exact matches of the tag, and then it
uses all those possibilities as query and searches them all together simultaneously.
This may create too many possible exact matches when there are very long
mass gaps.

Another software program, OpenSea [21], considers the mass gaps and other
de novo sequencing errors. But the mass gaps can only be matched by substrings
with up to 3 amino acids. Therefore OpenSea does not work for long mass
gaps either.

In this paper, we present our approach to match gapped sequence tags against
database sequences. Our approach separates the query sequence tags into seg-
ments by mass gaps. A segment is a short run of amino acid sequence. We modify

1 The color scheme has been changed slightly in later versions of the software.
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Aho-Corasick automaton to find the exact matches of those segments, and a neat
algorithm is used to assemble the exact matches together to get the match of
the whole gapped sequence tag. We note that a straightforward assembly will
not result into a linear running time as our algorithm does.

3 An Algorithm to Match Sequence Tags

In this section, we first describe our algorithm to match one gapped sequence
tag against the protein database. Then by slightly modifications, we extend it
to simultaneously match multiple gapped sequence tags against the database.

3.1 Problem Definition

In this section we define our problem more formally. Let Σ be an alphabet
of constant size. Each letter a in Σ is associated with a mass m(a). Let s =
s[1]s[2] . . . s[k] be a string. |s| = k denotes the length of the string, and m(s) =
∑|s|

i=1 m(s[i]).
A gapped sequence tag P is represented by m substrings, p1, p2, . . . , pm,

and m − 1 mass gaps, M1, M2, . . . , Mm−1. We want to find all the strings
s in the database, such that, s = p1q1p2 . . . qm−1pm, and m(qj) = Mj for
j = 1, 2, . . . , m − 1. We use the notation |P | to denote the total length of the m
substrings, p1, p2, . . ., and pm.

It is possible that a mass gap is at the beginning of or the end of a gapped
tag. In such a case, we simply let p1 or pm to be null string that matches every
position of the database.

Our idea is to use the standard algorithm for multiple string matching to find
every occurrence of every substring pi; and carefully assemble the occurrences
together to get the match of the whole gapped sequence tag. The difficulty is
that qj can have variable lengths. However, as later shown in the paper, the
constraint m(qj) = Mj allows us to do the assembly efficiently.

In the following section, we first briefly review the Aho-Corasick algorithm
for multiple string matching.

3.2 Aho-Corasick Algorithm

As the extension of Knuth-Morris-Pratt algorithm [16], the Aho-Corasick algo-
rithm is a widely used algorithm that finds all occurrences of multiple patterns
in a text using an automaton in linear time. This algorithm serves as the ba-
sis for the UNIX tool fgrep, and has many applications in bioinformatics. For
example, the Tandem Repeat Occurrence Locator (TROLL) [2] is an applica-
tion developed on the basis of Aho-Corasick algorithm to find tandem repeats of
pre-selected motifs from DNA sequence. Another application called CHAOS [7]
using an algorithm including a simplified version of the Aho-Corasick algorithm
to find local alignments, which are used as anchor points to improve the running
time of DIALIGN [17], a slow but sensitive multiple-alignment tool.
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An Aho-Corasick automaton can be constructed by the following two steps:
firstly, construct a trie and goto functions from the multiple patterns to be
searched. The goto function maps a pair (s, α), where s is a state and α is an
input symbol, into a state or the message fail. Secondly, add failure and output
functions. The failure function f(s) maps a state into another state s′. L(s′) is
the longest proper suffix of L(s) such that L(s) is a prefix of some pattern. An
output function out(s) gives the set of patterns matched when entering state s.
The time complexity of the construction of Aho-Corasick automaton is linearly
proportional to the total length of the patterns. The searching time is linear to
the text size, and the out(s) function will take O(z) time, where z is the total
number of occurrences of all the patterns. The details of constructing such an
automaton and proof of time complexity can be found in [3].

However, the Aho-Corasick algorithm or its variances cannot apply to our prob-
lem directly. We need to modify it to allow mass gaps between matched segments.

3.3 Our Algorithm

The alphabet set Σ is 20 amino acid letters. We construct an extended Aho-
Corasick automaton such that each state has 20 transitions according the seg-
ments in the sequence tag P . This automaton is a deterministic finite automaton,
which contains five elements: (Q, Σ, σ, q0, F ). Q is the set of states. Σ is an input
alphabet, i.e., 20 amino acid letters. σ is a transition function: σ : Q × Σ → Q.
q0 is the start state, q0 ∈ Q. The automaton is in the start state before the run
of each protein sequence in the database. F is a set of final states, F ∈ Q. Each
segment in the sequence tag will produce a final state while constructing the
extended Aho-Corasick automaton. Entering a final state, the automaton will
output matched position in the protein sequence and the number of segment in
the sequence tag.

There are two special pair of amino acids (I,L) and (K,Q). I and L have the
same mass, and K and Q have very similar mass. In most case, it is desired
that they are not considered to be mismatch. So we have an option that make
I and L have the same transition, K and Q have the same transition in each
state according the passed parameters when constructing the automaton. For
each protein sequence in the database, we will run this modified Aho-Corasick
automaton to find all the segment matches of the sequence tag P .

When a segment match is found, it is attempted to assemble with other
segment matches. For the joint of two adjacent segments, we need to compute the
mass of the substring between the two occurrences of the two segments. Let T be
the database string. Given any two positions i and j, it is possible to compute the
total mass of substring T [i..j] in O(1) time by building a accumulated protein
mass table while we read each amino acid from the database. Let acm[i] be
m(T [1..i]). Then m(T [i..j]) = acm[j] − acm[i − 1].

However, if we straightforwardly compute the mass value between every oc-
currence of segment pi and segment pi+1, the running time will be quadratic.
Also, because a gap can be filled by substrings of variable lengths, a linear time
algorithm cannot be achieved by trying every possible length of the substring.
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The Segments Assembly Procedure. We use a set of queues {q1, q2, . . . qm}
to keep the matches that can be potentially parts of a whole tag match and
discard the matches that do not have such a potential. Each qi corresponds to
the ith segment, pi, of the gapped sequence tag. For the segment match of the
first segment, p1, we simply add the match to q1. However, if pi is matched at
database position k for i > 1, before we add k to the queue qi, we check whether
there is a match of pi−1, such that the two matches have a mass gap equal to
Mi−1 in between. This can be done by checking the queue qi−1. Let k′ be the
first element in qi−1. Let M = m(T [(k′ + |pi−1|)..k]), the mass gap between
k′ + |pi−1| and k.

There are three cases:

Case 1: M < Mi−1.
This means the occurrence of pi at k cannot be joined with the occurrence of pi−1
at k′. Moreover, the former cannot be joined with any occurrences of pi−1 after
k′, because we use first-in-first-out queues. Therefore, we can safely discard k.
Case 2: M > Mi−1.
This means the occurrence of pi at k cannot be joined with the occurrence of
pi−1 at k′. Moreover, the latter cannot be joined with any occurrences of pi after
k, because we use first-in-first-out queues. Therefore, we can safely delete the
occurrence of pi−1 at k′ and continue to consider the next element in qi−1.
Case 3: M = Mi−1.
This means the occurrence of pi at k can be joined with the occurrence of pi−1
at k′. But the latter cannot be joined with any occurrences of pi after k, because
that will make the gap too large. Therefore, we can safely delete k′ from qi−1
but add k to qi.

Let i be the segment that matches the current database position k. Let acm[k]
be the accumulated mass of the database. Then our assembly process for this
match is shown in Figure 2.

Lemma 1. For any position k in qi, there is a substring T [j..k + |pi|], such that
T [j..k+ |pi|] matches p1M1...pi−1Mi−1pi. On the other hand, for every substring
T [j..k + |pi|] that matches p1M1...pi−1Mi−1pi, k is added into qi once.

Proof. We prove by induction on i. Obviously the lemma is true for i = 1 because
of line 2 of Algorithm Assembly. Now suppose the lemma is true for i = i0. We
want to prove it is true for i = i0 + 1.

When k is added into qi in line 13, we know that k′ was in qi−1. By induction,
we know that there is j such that T [j..k′ + |pi−1|] matches p1M1...pi−1. Also we
know by line 11 that the mass gap between the occurrence of pi−1 at k′ and
the occurrence of pi at k is equal to Mi−1. Therefore, T [j..k + |pi|] matches
p1M1...pi−1Mi−1pi.

On the other hand, if k is such that T [j..k+ |pi|] matches p1M1...pi−1Mi−1pi,
there must be k′ that T [j..k′ + |pi−1|] matches p1M1...pi−1. By induction, k′ is
added into qi−1, and it is removed only when k was added into qi in line 13.
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Algorithm Assembly(i, k)
1 if i = 1
2 add k to q1

3 else
4 while qi−1 is not empty do
5 k′ ← the first element of qi−1

6 massDiff ← (acm[k]− acm[k′ + |pi−1|])
7 if massDiff < Mi−1

8 break;
9 else if massDiff > Mi−1

10 delete k′ from qi−1

11 else
12 delete k′ from qi−1

13 append k to qi

14 break;
15 if qm is not empty
16 output k as a match of the whole tag

Fig. 2. The procedure is called whenever the ith segment, pi, is matched at the
database position k. In the algorithm, acm[k] is the accumulated mass of the database.
qi is a first-in-first-out queue

Lemma 2. The Assembly procedure will be called O(z) time, where z is the total
number of occurrences of the segments in the database. The total time that the
Assembly procedure takes is also O(z).

Proof. Because we only call the Assembly procedure whenever we find a match
of a segment, the procedure is called O(z) time.

Lines 1 − 2 and 15 − 16 of the Assembly procedure will take O(1) time for
each invocation of the procedure. And lines 5 − 14 will take O(1) time for each
iteration of the while loop. Therefore, we only need to prove that the while loop
is repeated O(z) time in total.

We note that there is one element deleted from the queues every time the
while loop is repeated, or the while will break in line 14. And we add at most
one element into the queue when a match of a segment is found. Therefore, at
most z elements will be added to the queues, and the total time of deletions can
be at most z. Therefore, the while loop is repeated in total O(z) time.

Theorem 1. By using the automaton described above and calling the Assembly
procedure whenever a segment match is found, all the matches of a gapped se-
quence tag can be found in O(n + |P | + z) time, where n is the database size,
|P | is the total length of the segments in the queries, and z is the number of
occurrences of the segments in the database.

Proof. The correctness directly follows Lemma 1. For the time complexity, there
are three main parts. First, constructing of the extended-AC automaton will
take O(|P |) time. Secondly, running the automaton against each amino acid
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letter in the protein database will take O(n) time. Thirdly, assembling segments
when a segment match is found in the database. From Lemma 2, the Assembly
procedure will take O(z) time in total.

Multiple Sequence Tags Match. The algorithm discussed above matches a
mass gapped sequence tag against the database. It can be modified to adapt to
multiple sequence tags. As mentioned in the first section of this paper, in an
MS/MS experiment, a protein is digested into many peptides and each peptide
will produce a corresponding MS/MS spectrum. The advantage of using multi-
ple sequences is clear: even if some of the sequence tags produced by de novo
sequencing software are wrong, the correct and partially correct sequence tags
can still provide enough information to identify the protein. To adapt to multiple
sequence tags, we need to the following modifications on our previous algorithm:

1. First, let the automaton include all the segments from all the sequence tags.
That is, let P = {P1, P2, . . . , PK} be the set of input query sequence tags
from de novo sequencing software. Then we include all the segments of all the
Pi in the construction of the extended Aho-Corasick automaton. For exam-
ple, if the query P contains three sequence tags: HGTVVLTALG[170.10]LK,
[184.12]ELFR and [276.14]EFLSD[184.12]LHVLHSK. The automaton is con-
structed to search the sequence segments {HGTVVLTALG, LK, ELFR,
EFLSD, LHVLFSK}.

2. The second modification is output function of the extended AC automaton.
We have to modify the output to include the information of which sequence

queuespeptide sequence
in the database

Output matched 

a segment match
is found

Token Construct

Extended AC Automaton

Sequence Tags Segments

Segments Assemble Procedure

K

Protein Sequence1
Protein Sequence2
Protein Sequence3  Database

      Protein

2
1

Fig. 3. The process overview of matching gapped sequence tags against a database
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tag in the query and which segment in this sequence tag is matched as well
as the segment match location in a protein sequence.

3. Third modification is about the queues implemented in segments assembly
procedure. Instead of using one set of queues, we need K sets of queues.
That is, qi,j corresponds to the jth segment of Pi. And whenever the jth

segment of Pi is matched in the database position k, qi,j−1 will be checked
to determine whether k is inserted to qi,j .

The rest of algorithm stays the same as before. It is easy to see the time
complexity of matching multiple sequence tags is O(n + |P| + z), where |P| is
the total length of the sequence segments in all Pi ∈ P. The process is illustrated
in Figure 3.

4 Experiments

We have implemented our algorithm into a Java program. We computed the de
novo sequencing results of 54 Q-Tof MS/MS spectra, using PEAKS and Lutefisk,
respectively. The 54 MS/MS spectra were obtained from the paper [14] of Ma
et al and can be found at www.csd.uwo.ca/∼bma/peaks. Both PEAKS and
Lutefisk output some sequence tags completely correct and some sequences only
partially correct. For example, PEAKS output [NGG]PVPKPK and Lutefisk
output [228.11]PVPKPK while the correct peptide sequence is DIPVPKPK. The
brackets in the PEAKS output indicates low confident level (lower than %80).
We submitted each of the sequences to our program to search in Swiss-Prot
protein database and examined whether the first match output by our program
is the correct sequence. Lutefisk only outputs gapped sequence tags when it is
not confident to some amino acids. PEAKS’ output is also converted to gapped
sequence tags by using the method discussed in the introduction.

Table 1 show the difference on the numbers (ratios) of correctly computed
sequences before and after using our program on the two sets of data.

Table 1. A comparison of peptide identification before and after using our program

PEAKS Lutefisk
Before our program 22 (41%) 11 (20%)
After our program 36 (67%) 23 (42%)

A more interesting use of our program is protein identification with multiple
sequence tags. The de novo sequencing results of the spectra for the same protein
can be submitted to our programm together. The 26 spectra we used are in
four groups, each for one of the four proteins, beta casein (bovine), myoglobin
(horse), albumin (bovine), and cytochrome C (horse). By submitting each group
of PEAKS (or Lutefisks) de novo sequencing results to our program, all of the
four proteins can be correctly identified. The organisms of the proteins can also
be identified except that beta casein (bovine) obtained the same score as beta
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casein (water buffalo). The reason is that the two proteins differ at only three
amino acids, which are not covered by the peptides of the MS/MS spectra.
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