
Finding Finite Automata That Certify
Termination of String Rewriting

Alfons Geser1,�, Dieter Hofbauer2, Johannes Waldmann3, and Hans Zantema4

1 National Institute of Aerospace, 144 Research Drive,
Hampton, Virginia 23666, USA

geser@nianet.org
2 Mühlengasse 16, D-34125 Kassel, Germany
dieter@theory.informatik.uni-kassel.de

3 Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig,
Fb IMN, PF 30 11 66, D-04251 Leipzig, Germany

waldmann@imn.htwk-leipzig.de
4 Department of Computer Science, Technische Universiteit Eindhoven,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
h.zantema@tue.nl

Abstract. We present a technique based on the construction of finite
automata to prove termination of string rewriting systems. Using this
technique the tools Matchbox and TORPA are able to prove termination of
particular string rewriting systems completely automatically for which
termination was considered to be very hard until recently.

1 Introduction

Consider a finite string over {a, b} and only one rule: if aabb occurs in the string
than it may be replaced by bbbaaa. The goal is to prove termination: prove
that application of this rule cannot go on forever. This is a surprisingly hard
problem for which only ad hoc proofs were available until recently [11, 13]. A set
of such string replacement rules is called a string rewriting system (SRS) or semi-
Thue system. In this paper we describe a technique based on the construction
of finite automata by which termination of such SRSs including this example
{aabb → bbbaaa} can be proved fully automatically.

It is widely accepted that being able to prove termination of programs is
highly desirable. String rewriting is one of the simplest paradigms having full
computational power, and is extensively studied, e.g., in Book and Otto [3].
For instance, Turing machine computation is easily seen to be a special case of
string rewriting. Therefore it is natural to consider techniques for automatically
proving termination of SRSs. On the other hand string rewriting can be seen as a

� Partly supported by the National Aeronautics and Space Administration under
NASA Contract No. NAS1-97046 while this author was in residence at the NIA.

M. Domaratzki et al. (Eds.): CIAA 2004, LNCS 3317, pp. 134–145, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Finding Finite Automata That Certify Termination of String Rewriting 135

special case of term rewriting, for which a wide range of termination techniques
has been developed; for a recent overview see Zantema [14].

In order to prove termination of an SRS R, we construct an infinite SRS
match(R), obtained from R by labelling the symbols by natural numbers. By
construction, on the one hand, match(R)-steps simulate R-steps, and on the
other hand, every finite subsystem of match(R) terminates. Now we construct
a finite automaton such that an accepting computation of s is transformed into
an accepting computation of t whenever s rewrites to t by a match(R)-step.
This closure property entails that the simulation of an R-derivation involves
only a finite subsystem of match(R). Termination of R follows. Since in this way
a bound on the labels occurring in derivations is established, this is called the
match-bound approach.

The inspiration of match-bounds was taken from Ravikumar’s change-bounds.
Ravikumar [10] proposes an infinite SRS similar to match(R), and shows that
change-bounded length-preserving SRSs preserve regular languages. It is easy
to see that change-bounds imply match-bounds, while also the converse can be
proved to hold. However, in contrast to change-bounds, match-bounds work also
for SRSs that do not preserve lengths.

An earlier version of the match-bound approach was presented before [5, 6].
Here we describe the basic approach in a more general setting. The reason for
doing this is twofold: the presentation is more modular and therefore hopefully
simpler, and this generalization can be used for variants and extensions of the
method. Indeed in this new setting we are able to give short proofs of the main
theorems.

Our main new contribution is to describe new algorithms to construct ap-
propriate automata. In the earlier approach [5, 6] some of us described how a
suitable rewriting closure of a language may effectively preserve regularity. The
main algorithm then consisted of constructing an automaton that accepts ex-
actly the desired rewriting closure. A drawback of this approach is that even for
very small SRSs like aabb → bbbaaa intermediate automata with thousands of
states are constructed, while the final automaton for this example consists only
of 42 states.

In the new approach, the constructed automaton need no longer be exact:
it may accept any superset of the desired rewriting closure. Therefore the new
approach is called approximate. Like the exact approach, the approximate ap-
proach is correct: the constructed automaton certifies termination of the SRS. In
contrast to the exact approach, it may fail. However, we have observed that the
approximate approach often succeeds, and even yields the same automaton as
the exact approach. The approximate approach is usually much more economi-
cal: all intermediate automata are no bigger than the final one. This efficiency
allows one to solve examples that the exact approach, in spite of its completeness,
could not handle within reasonable time and memory.

The match-bound technique is one of the few techniques that are able to prove
termination on a given language: no infinite rewrite sequence exists starting with
some string in the language. Most other techniques only prove (uniform) termi-

136 A. Geser et al.

nation: no infinite rewrite sequence exists at all. Therefore it profits from the
theory of forward closures, according to which full termination can be concluded
from termination on a particular language.

Versions of the approximate approach have been implemented in three tools:
Matchbox, TORPA, and AProVE. The tool Matchbox [12] was the first tool that
implemented the match-bound approach, and it offers a variety of match-bound
related computations. The tool TORPA [15] is a tool for proving termination of
string rewriting by various techniques: polynomial interpretations, recursive path
order, semantic labelling, dependency pairs and finally one particular version of
match-bounds for forward closures. The tool AProVE [7] is a tool for proving
termination of term rewriting mainly by dependency pairs, but also covering
various other techniques. In the most recent version the approach using match-
bounds for forward closures was copied from TORPA. In the category ”string
rewriting” in the termination competition of the 7th International Workshop on
Termination in 2004 these three tools ranked third, first, and second, respectively.

The paper is organized as follows. In Section 2 the basic theory is presented,
including preliminaries and all proofs, except for the proofs of forward closure
theory. Next in Section 3 the various ways of finding compatible automata are
discussed: the exact approach and the approximate approach. For the latter, two
variants are discussed: the one that has been implemented in TORPA, and the one
that has been implemented in Matchbox.

2 Basic Theory

A string rewrite system (SRS) over an alphabet Σ is a set R ⊆ Σ∗×Σ∗. Elements
(�, r) ∈ R are called rules and are written as � → r; the string � is called the
left hand side (lhs) and r is called the right hand side (rhs) of the rule. A string
s ∈ Σ∗ rewrites to a string t ∈ Σ∗ with respect to an SRS R, written as s →R t if
strings u, v ∈ Σ∗ and a rule � → r ∈ R exist such that s = u�v and t = urv. The
reflexive transitive closure of →R is written as →∗

R. In this paper we consider
both finite and infinite SRSs over both finite and infinite alphabets, on the other
hand all automata we consider are finite.

A sequence t1, t2, t3, . . . is called an R-derivation if ti →R ti+1 for all i =
1, 2, 3, An SRS R is called terminating on a language L ⊆ Σ∗ if no infinite
R-derivation t1, t2, t3, . . . exists such that t1 ∈ L. An SRS R is called terminating
if no infinite R-derivation exists at all, i.e., it is terminating on Σ∗. Any SRS
having an empty lhs is non-terminating, hence we generally assume that each
lhs is non-empty.

For a map h : Σ′ → Σ we reuse the notation h for its morphism extension
h : Σ′∗ → Σ∗ by h(ε) = ε and h(uv) = h(u)h(v), and to languages over Σ′ by
h(L) = {h(u) | u ∈ L}.

Let R be an SRS over an alphabet Σ, and let L ⊆ Σ∗. Let R′ be an SRS over
an alphabet Σ′, and let L′ ⊆ Σ′∗. The triple (Σ′, R′, L′) is called an enrichment
of (Σ, R, L) by h : Σ′ → Σ if L = h(L′) and

Finding Finite Automata That Certify Termination of String Rewriting 137

h(�′) = � ∧ (� → r) ∈ R ⇒ ∃r′ ∈ Σ′∗. (�′ → r′) ∈ R′ ∧ h(r′) = r

for all �′ ∈ Σ′∗ and (� → r) ∈ R. From the enrichment property, it follows that

h(s′) →R t ⇒ ∃t′ ∈ Σ′∗. s′ →R′ t′ ∧ t = h(t′)

for all s′, t′ ∈ Σ′∗, and so if R′ terminates on L′ then R terminates on L.
For an SRS R over an alphabet Σ for which all lhs’s are non-empty we define

the infinite SRS match(R) over Σ×N to consist of all rules (a1, n1) · · · (ap, np) →
(b1, m1) · · · (bq, mq) for which a1 · · · ap → b1 · · · bq ∈ R and mi = 1+minj=1,...,p ni

for all i = 1, . . . , q. For instance, if R contains the rule aa → aba, then
(a, 3)(a, 1) → (a, 2)(b, 2)(a, 2) is a rule of match(R).

We define base : Σ × N → Σ by base((a, n)) = a for all a ∈ Σ, n ∈ N,
and lift0 : Σ → Σ × N by lift0(a) = (a, 0) for all a ∈ Σ. By construction,
(Σ × N, match(R), lift0(L)) is an enrichment of (Σ, R, L) by base.

An SRS R′ over Σ′ is called locally terminating if for every finite alphabet
Σ′

0 ⊆ Σ′ the SRS R′
0 = { �′ → r′ ∈ R′ | �′, r′ ∈ Σ′∗

0 } is terminating.

Theorem 1. Let R be any finite SRS over Σ. Then match(R) is locally termi-
nating.

Proof. Let Σ′
0 ⊆ Σ′ = Σ×N be finite; we have to prove that R′

0 as defined above
for R′ = match(R) is terminating. Let n be the maximum value for which there
is a ∈ Σ such that (a, n) ∈ Σ′

0. Assume that R′
0 admits an infinite derivation,

then there is also an infinite R′
0-derivation in which all symbols (a, k) satisfy

k ≤ n. Let m be a number such that for every rhs of R the length is less than
m. Now for a symbol (a, k) define its weight W ((a, k)) = mn−k, and for a string
of symbols the weight is the sum of the weights of the symbols. For every rule
�′ → r′ in R′

0 we have r′ = (b1, k), (b2, k), . . . , (bq, k) while �′ contains a symbol
(a, k − 1). Hence

W (�′) ≥ W ((a, k − 1)) = mn−k+1 > q · mn−k = W (r′).

Hence in every step of the infinite derivation the weight in N strictly de-
creases, contradiction. 	

Finiteness of R is not essential for validity of Theorem 1: using multisets
easily a proof can be given not requiring finiteness. However, we intend to use
Theorem 1 only for finite systems and we will use the present proof using weights
to conclude a result on derivational complexity.

All automata we consider in this paper are standard non-deterministic finite-
state automata. For two states p, q in an automaton A over Σ and a string u ∈ Σ∗

we write p
u→A q if there is a path from p to q in A in which the transitions are

successively labelled by the symbols in u. More precisely, the transition relation
a→A for a ∈ Σ is extended to Σ∗ by defining inductively p

au→A q if a state r
exists such that p

a→A r and r
u→A q, and p

ε→A p for all states p. Let A, L and R
be a finite automaton, a language and an SRS over an alphabet Σ, respectively.
Then A is called compatible with L and R if

138 A. Geser et al.

– L ⊆ L(A), and

– A is closed under R, i.e., if � → r ∈ R and p
�→A q for two states p, q of A,

then also p
r→A q.

A direct consequence of this definition is that if A is compatible with L and R,
then we have →∗

R(L) ⊆ L(A), where the set of R-successors →∗
R(L) is defined

by
→∗

R(L) = {u | ∃t ∈ L : t →∗
R u}.

If Σ is finite then such a compatible automaton trivially exists: take the
automaton for Σ∗ consisting of one state, and a-transitions from that state to
itself for every a ∈ Σ. We will focus on finding finite compatible automata for
infinite SRSs over infinite alphabets, starting from a language described by a
finite automaton.

Theorem 2. Let (Σ′, R′, L′) be an enrichment of (Σ, R, L) by h, let R′ be locally
terminating, and assume that L′ and R′ admit a compatible finite automaton.
Then R terminates on h(L′).

Proof. Suppose there is an infinite R-derivation u1 →R u2 →R u3 →R · · ·
for which u1 ∈ h(L′). Then there exists v1 ∈ L′ such that h(v1) = u1. By
repeated application of the definition of enrichment this gives rise to an infinite
R′-derivation v1 →R′ v2 →R′ v3 →R′ · · · for which h(vi) = ui for i = 1, 2, 3,
Let A be a finite automaton compatible with L′ and R′; let Σ′

0 be the finite
set of transition labels occurring in A. Since L′ ⊆ L(A) we have p0

v1→A pf for
the initial state p0 and a final state pf , since A is closed under R′ we obtain
by induction on i that p0

vi→A pf for all i = 1, 2, 3, Hence for every rule
�′ → r′ ∈ R′ that is applied in the infinite derivation v1 →R′ v2 →R′ v3 →R′ · · ·
there are states p, q in A satisfying p

�′
→A q and p

r′
→A q. Hence in the infinite

derivation only rules from R′
0 are applied, contradicting the assumption that R′

is locally terminating. 	

Theorem 2 will be used as follows. If termination of R on a language L
over Σ has to be proved then we define L0 = lift0(L) = {(s, 0) | s ∈ L }. By
definition, base(L0) = L. Now according to Theorems 1 and 2 it suffices to find
a compatible automaton for L0 and match(R). Due to the form of the weights
we used in the proof of Theorem 1 this does not only prove termination of R on
L but even linear derivational complexity: there is a constant C such that every
R-derivation starting in s ∈ L has length at most C · |s|.

To prove termination on Σ∗ (usually simply called termination) we may
apply this approach for L = Σ∗. However, by a result of Dershowitz [4] on
forward closures, we may also choose another language for L that may be smaller.
Thus we can prove termination for SRSs that do not satisfy linear derivational
complexity, like {ab → ba} or {ab → bba}.

We describe forward closures by rewriting using an extended SRS R# [5, 6];
this way we characterize termination on Σ∗ by termination on a small regular

Finding Finite Automata That Certify Termination of String Rewriting 139

set, which makes it amenable to automation. A self-contained presentation of
this R#-approach including all proofs will appear in [16].

For an SRS R over an alphabet Σ we define the SRS R# over Σ ∪ {#} by

R# = R ∪ { �1# → r | � → r ∈ R ∧ � = �1�2 ∧ �1 �= ε �= �2 }.

Write rhs(R) for the set of rhs’s of R.

Theorem 3. Let R be a finite SRS. Then R is terminating if and only if R# is
terminating on rhs(R) · {#}∗.

We omit the proof. Combining Theorems 1, 2, and 3 now for proving (uni-
form) termination of a finite SRS R it suffices to find a compatible automaton
for lift0(rhs(R) · {#}∗) and match(R#).

3 Finding a Compatible Automaton

Due to the observations we made termination of an SRS can be proved by
proving the existence of a finite automaton A compatible with a language L and a
(usually infinite) SRS R. Such an automaton A is called exact if L(A) = →∗

R(L).
We describe two basic ways of constructing a compatible automaton: an exact

approach that always yields an exact automaton in case of success, and an ap-
proximate approach that yields a compatible automaton that need not be exact.
Each approach starts from an automaton that accepts L.

3.1 The Exact Approach

The exact approach is based on the notion of a deleting string rewriting system [8,
9]. A string rewriting system R over an alphabet Σ is called deleting if it has no
empty lhs and there is an irreflexive partial order > on Σ (a precedence) such
that for each rule � → r in R and for each letter a in r, there is some letter b in
� with b > a.

Similar to the proof of Theorem 1 it is easy to see that every deleting string
rewriting system over a finite alphabet is terminating. The class of deleting string
rewriting systems enjoys the following strong effective decomposition property.
An SRS is called context-free if every lhs has length at most 1.

Theorem 4 ([9]). If R is a finite deleting string rewriting system over a finite
alphabet Σ, then there are, effectively, an extended alphabet Γ ⊇ Σ, a terminat-
ing, context-free SRS T over Γ , and a context-free SRS C over Γ , such that for
each language L ⊆ Σ∗, →∗

R(L) = ←∗
C(→∗

T (L)) ∩ Σ∗.

The exact approach consists of using this decomposition to construct an au-
tomaton that accepts →∗

R(L) from an automaton that accepts L. Let matchk(R)
be the restriction of match(R) to the (finite) alphabet Σ×{0, . . . , k}. It is obvious
that matchk(R) is deleting, so Theorem 4 applies. Now a finite automaton Ak is

140 A. Geser et al.

constructed such that L(Ak) = base(→∗
matchk(R)(lift0(L))). We do this construc-

tion successively for k = 0, 1, 2, If some k is found that satisfies Lk = Lk+1
then Ak is the desired exact automaton compatible with match(R) and L.

The extended alphabet may turn out to be rather large (a few hundred letters
even for small systems), so the automaton for →∗

T (L) has many states as well.
We do not give details here; to give a flavor we sketch a small fragment of this
approach as it occurs for computing A2 for the single rule aa → aba.

Let R be the SRS consisting of the rules aa → cdc, ac → cdc, ca → cdc, cc →
fgf . This SRS is a renaming of (the accessible part–see [5, 6]–of) the system
match2({aa → aba}). Observe that R is deleting with a > c > d > f > g. Using
Theorem 4 we get the decomposition Γ = Σ ∪ {b, e, a1, a2, a3, a22, a32, a11, c2};

T =

{
a → b, a → cda2, a → cda3, a → a1dc, c → e,

c → fgc2, a2 → fga22, a3 → fga32, a1 → a11gc2;

C =

{
c → a2b, e → a2b, c → a3c, e → a3c, c → ca1,

e → ca1, f → c2e, c2 → a22b, c2 → a32c, f → ca11.

Now let L = {a}∗. The automaton for →∗
T (L) is constructed by supplement-

ing, as long as possible, a path p
r→ q for each transition p

x→ q and rule x → r
in T .

For a better overview, we render the initial state in the center of the left
figure without the looping transitions labelled by a and b.

The automaton for ←∗
C(→∗

T (L)) is obtained by adding, as long as possible,
a transition p

x→ q for each path p
r→ q and rule x → r in C, see [1, 2]. The

result is given in the right figure, rendering only the new transitions. Finally,
the automaton for →∗

R(L) is obtained by dropping all transitions labelled with
Γ \ Σ letters.

3.2 The Approximate Approach

The intermediate automata constructed during the exact approach may be much
bigger than the final compatible automaton. For simple examples these interme-
diate automata may have thousands of nodes and may take minutes to compute.

Finding Finite Automata That Certify Termination of String Rewriting 141

We therefore introduce an approximate approach that avoids the construction
of automata that are bigger than the result.

The basic idea of this approach is to start with an automaton that accepts
exactly L, and then to add only states and transitions as needed for closure
under rewriting. More precisely, the procedure systematically looks for coun-
terexamples to closure under rewriting, i.e., for states p, q and rules � → r ∈ R

such that p
�→A q ∧ p

r

�→A q. States and transitions are added to the automaton
such that p

r→A q. The procedure repeats this step until either there are no
counterexamples left, in which case the resulting automaton is compatible; or
the resources are exceeded and the construction has failed.

There are various strategies how to add states and transitions suitably; we
will describe two of them.

Our approach is currently restricted to the case where each right hand side is
non-empty. Empty right hand sides can be included by automata having epsilon-
transitions. Alternatively, empty right hand sides can be eliminated by prepro-
cessing the SRS as we will see in an example.

The Strategy in TORPA [15]. If A has to be extended in order to satisfy p
r→A q

in TORPA this is done as follows. As stated above, we assume that r is non-empty,
so we may write r = au for a ∈ Σ, u ∈ Σ∗. It is checked whether a state n exists
satisfying n

u→A q. If so, then only one single transition p
a→A n is added. If not,

then a completely fresh path from p to q is constructed: if r = a1 · · · ak then
k − 1 fresh states n1, . . . , nk−1 and k fresh transitions

p
a1→A n1, n1

a2→A n2, . . . , nk−2
ak−1→ A nk−1, nk−1

ak→A q

are added. In both cases the extended automaton A indeed satisfies p
r→A q.

This strategy is particularly powerful for proving termination using match(R)
and forward closures. As a simple example consider the SRS R consisting of the
single rule aba → abbba. Due to Theorem 3 termination of R may be proved by
proving that R# is terminating on {abbba}·{#}∗, where R# consists of the rules

aba → abbba, a# → abbba, ab# → abbba.

Due to Theorems 1 and 2 it now suffices to find a compatible automaton for
{a0b0b0b0a0} · {#0}∗ and match(R#). Here we shortly write xi rather than (x, i)
for x ∈ {a, b,#}, i ∈ N, and match(R#) consists of the rules

aibjak → ambmbmbmam for i, j, k, m ∈ N, m = min{i, j, k} + 1
ai#0 → a1b1b1b1a1 for i ∈ N

aibj#0 → a1b1b1b1a1 for i, j ∈ N.

Formally match(R#) also contains rules with #i in the left hand side for i > 0,
but it is easy to see that these will never be involved in derivations starting from
a string not containing #i for i > 0. This observation holds for every SRS, not
only this example. Now the search for a compatible automaton may start. We
start by the following automaton for {a0b0b0b0a0} · {#0}∗:

142 A. Geser et al.

The numbering of the nodes is as generated in TORPA where the initial node
is always 1 and the final node is always 2.

The first counterexample we find is 6
a0#0→ A 2 for the rule a0#0 → a1b1b1b1a1

in match(R#). We have to construct a path from 6 to 2 labelled by a1b1b1b1a1.
As there is no path from any state to 2 labelled by b1b1b1a1, a fresh path is
added with the fresh states 7, 8, 9, 10 and transitions between them. The next
counterexample is 10

a1#0→ A 2 for the rule a1#0 → a1b1b1b1a1 of match(R#).
Here a path from 10 to 2 labelled by a1b1b1b1a1 has to be created. Since there is
already a path from 7 to 2 labelled by b1b1b1a1, only the single transition from
10 to 7 is added. There are no further counterexamples. This yields the following
compatible automaton:

This simple strategy was found during a trial to reconstruct by pencil and
paper the exact automaton for match(R#) for R = {aabb → bbbaaa} as it
was given in [5, 6]. Using this strategy, TORPA generates the same automaton,
only a few hundred times faster. Other, more involved strategies turned out
unsatisfactory for forward closures.

The Strategy in Matchbox [12]. For a rule � → r ∈ R and states p, q in A for
which p

�→A q holds but not p
r→A q, this strategy considers all decompositions

r = xyz and states p′, q′ such that p
x→A p′ and q′ z→A q and y �= ε. Then among

all possibilities one is chosen for which y has minimal length, and a new path
p′ y→A q′ is constructed.

The TORPA strategy can also be seen as a variant of this decomposition ap-
proach, constrained by |x| = 0 ∧ (|y| = 1 ∨ |z| = 0).

As an illustration of both strategies consider the automaton

for L = {aa} and the rule aa → aba. Then a path 1 aba→A 3 has to be created. In
the TORPA strategy it is observed that no state n exists satisfying n

ba→A 3. As a
consequence two fresh states 4, 5 and three fresh transitions are created:

Finding Finite Automata That Certify Termination of String Rewriting 143

After this single step the automaton is closed under rewriting.
In contrast, in the Matchbox strategy no fresh states are required at all: by

1 a→A 2 and 2 a→A 3 only one fresh b-transition from 2 to 2 is added:

and again after a single step the automaton is closed under rewriting. This
illustrates non-exactness of the Matchbox strategy: by the latter automaton A
the string abba is in L(A) but not in →∗

R(L).
Similar non-exactness occurs in the TORPA strategy, for instance by starting

from the automaton

and the same rule aa → aba in the TORPA strategy the transition 1 a→A 4 is
added, by which again the string abba is in L(A) but not in →∗

R(L).
We have experimented with several conceivable variants of such a strategy

for re-using transitions. Roughly speaking in using forward closures the TORPA-
strategy is often the most successful, while in not using forward closures the
Matchbox-strategy is often more powerful. In any case, the order in which paths
are handled strongly influences the process; and there does not seem to be a
straightforward complete strategy: one that terminates in all cases where the
exact computation is successful.

3.3 An Example with Empty Right Hand Sides

In an SRS one or more rules � → r may be replaced by a� → ar for all a ∈ Σ
without changing the termination behavior. As an example, consider the SRS R
consisting of the rules

Ab → baBA, Ba → abAB, Aa → ε, Bb → ε.

Due to empty rhs’s the approximate approach cannot be applied directly. How-
ever, by using the above observation termination of R may be concluded from
termination of the SRS consisting of the rules

Ab → baBA, Ba → abAB, aAa → a, bAa → b, AAa → A, BAa → B,

144 A. Geser et al.

aBb → a, bBb → b, ABb → A, BBb → B.

This is easily proved using our approximate approach for forward closures by an
automaton having only 14 states.

4 Conclusions

For an extensive class of string rewriting systems, termination can be shown
by the construction of a compatible automaton, i.e., a finite automaton that
has a suitable closure property. Whereas in theory the construction of an exact
compatible automaton always succeeds if it exists, i.e., if the system is match-
bounded, it may be prohibitively expensive. So we proposed an approximate
approach that is more efficient but may fail. For instance, this new approach
allows to prove termination of the single rule SRSs

{babaa → aaababab}, {babaa → abaabbaba}, {baaabbaa → aaabbaaabb}

within fractions of seconds by automata having 72, 98 and 155 states, respec-
tively. The exact approach, in contrast, fails due to lack of memory. All standard
techniques for proving termination [14] fail, too, for these examples.

The notion of match-bounds was inspired by Ravikumar [10], who showed
that change-bounded string rewriting preserves regularity of languages. Similar
to match(R), he defined a related system over the alphabet Σ × N to consist of
all rules (a1, n1) · · · (ap, np) → (b1, n1 + 1) · · · (bp, np + 1) for which a1 · · · ap →
b1 · · · bp is in the system R over Σ. This definition, however, is only meaningful
for length-preserving systems, where |�| = |r| for every rule � → r. For this
particular class of systems it can be shown that match-boundedness actually
coincides with change-boundedness.

Presently we work on extending these techniques to term rewriting. To this
end the automata are replaced by finite tree automata.

References

1. R. V. Book, M. Jantzen, and C. Wrathall. Monadic Thue systems. Theoret.
Comput. Sci., 19:231–251, 1982.

2. R. V. Book and F. Otto. Cancellation rules and extended word problems. Inform.
Process. Lett., 20:5–11, 1985.

3. R. V. Book and F. Otto. String-Rewriting Systems. Texts and Monographs in
Computer Science. Springer-Verlag, New York, 1993.

4. N. Dershowitz. Termination of linear rewriting systems. In S. Even and O. Kariv
(Eds.), Proc. 8th Int. Coll. on Automata, Languages and Programming ICALP-81,
Lecture Notes in Comput. Sci. Vol. 115, pp. 448-458. Springer-Verlag, 1981.

5. A. Geser, D. Hofbauer and J. Waldmann. Match-bounded string rewriting systems.
In B. Rovan and P. Vojtas (Eds.), Proc. 28th Int. Symp. Mathematical Foundations
of Computer Science MFCS-03, Lecture Notes in Comput. Sci. Vol. 2747, pp. 449-
459. Springer-Verlag, 2003.

Finding Finite Automata That Certify Termination of String Rewriting 145

6. A. Geser, D. Hofbauer and J. Waldmann. Match-bounded string rewriting systems.
NIA Report 2003-09, National Institute of Aerospace, Hampton, VA, USA. Avail-
able at http://research.nianet.org/~geser/papers/nia-matchbounded.html.
Accepted for Appl. Algebra Engrg. Comm. Comput..

7. J. Giesl, R. Thiemann, P. Schneider-Kamp and S. Falke. Automated
termination proofs with AProVE. In V. van Oostrom (Ed.), Proc.
15th Int. Conf. Rewriting Techniques and Applications RTA-04, Lecture
Notes in Comp. Sci., Springer, 2004. Tool and description available at
http://www-i2.informatik.rwth-aachen.de/AProVE/.

8. T. N. Hibbard. Context-limited grammars. J. ACM, 21(3):446–453, 1974.
9. D. Hofbauer and J. Waldmann. Deleting string rewriting systems preserve regu-

larity. In Proc. 7th Int. Conf. Developments in Language Theory DLT-03, Lect.
Notes Comp. Sci., Springer-Verlag, 2003. Accepted for Theoret. Comput. Sci..

10. B. Ravikumar. Peg-solitaire, string rewriting systems and finite automata. In
H.-W. Leong, H. Imai, and S. Jain (Eds.), Proc. 8th Int. Symp. Algorithms and
Computation ISAAC-97, Lecture Notes in Comput. Sci. Vol. 1350, pp. 233–242.
Springer-Verlag, 1997.

11. E. Tahhan Bittar. Complexité linéaire du problème de Zantema. C. R. Acad. Sci.
Paris Sér. I Inform. Théor., t. 323:1201–1206, 1996.

12. J. Waldmann. Matchbox: a tool for match-bounded string rewriting, In V. van
Oostrom (Ed.), Proc. 15th Int. Conf. Rewriting Techniques and Applications RTA-
04, Lecture Notes in Comp. Sci., Springer, 2004. Tool and description available at
http://theo1.informatik.uni-leipzig.de/matchbox/.

13. H. Zantema and A. Geser. A complete characterization of termination of 0p1q →
1r0s. Appl. Algebra Engrg. Comm. Comput., 11(1):1–25, 2000.

14. H. Zantema. Termination. In Term Rewriting Systems, by Terese, pages 181–259.
Cambridge University Press, 2003.

15. H. Zantema. TORPA: Termination of Rewriting Proved Automatically. In V. van
Oostrom (Ed.), Proc. 15th Int. Conf. Rewriting Techniques and Applications RTA-
04, Lecture Notes in Comp. Sci., Springer, 2004. Tool and description available at
http://www.win.tue.nl/~hzantema/torpa.html.

16. H. Zantema. Termination of string rewriting proved automatically. Accepted for
J. Automat. Reason., 2004.

	Introduction
	BasicTheory
	Finding a Compatible Automaton
	The Exact Approach
	The Approximate Approach
	An Example with Empty Right Hand Sides

	Conclusions
	References

