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Abstract. Spontaneous anonymous group (SAG) cryptography is a fun-
damental alternative to achieve thresholding without group secret or
setup. It has gained wide interests in applications to ad hoc groups. We
present a general construction of blind SAG 1-out-of-n and t-out-of-n sig-
nature schemes from essentially any major blind signature. In the case
when our scheme is built from blind Schnorr (resp. Okamoto-Schnorr)
signature, the parallel one-more unforgeability is reduced to Schnorr’s
ROS Problem in the random oracle model plus the generic group model.
In the process of our derivations, we obtain a generalization of Schnorr’s
result [17] from single public key to multiple public keys.

1 Introduction

The popular goals of group cryptography or threshold cryptography are usually:

Any t members of a group of n members can jointly demonstrate a
knowledge concerning the group that no combination of t − 1 or fewer
members can demonstrate.

There are threshold signature schemes that require no less than t members to
jointly generate. There are threshold decryption schemes (cryptosystems) that
require no less than t members to jointly decrypt. Besides unforgeability, other
properties such as robustness, adaptive adversary models, blind signatures, cul-
pability or exculpability, witness hiding, witness indistinguishability (anonymity)
are also significant research topics.

Since its inception, group cryptography and threshold cryptography [11] have
traditionally been achieved through the secret sharing technique [19, 4]. Also
since its inception [9], anonymous (insider-indistinguishable) group cryptography
has traditionally been achieved by the technique of blind signatures or other
forms of transfer proof-of-knowledge (TPoK). For further details, see [9, 7]

Recently a fundamental alternative has gained wide interests. In the spon-
taneity paradigm to group cryptography, there is no group secret. There is also
no setup. Any single entity can arbitrarily and spontaneously conscript n − 1
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diversion members to form a group, and complete a signature without the partici-
pation, or even knowledge, of the diversion members. The resulting signature can
be proven to be from one of the n group members. Yet the actual signer remains
anonymous (signer-indistinguishable), with irrevocable, exculpable anonymity.
The only requirement is that each group member has a published public key, for
the purpose of signature verification. There are also t-out-of-n threshold versions
where t entities joint to spontaneously conscript n − t diversion members.

Compared with traditional threshold signature schemes, spontaneous group
signatures achieved the definition goal quoted at the beginning of this section.
Yet there is no group secret. There is no group setup which requires the partic-
ipation of non-insider members.

Due to its flexibility and the ease (or lack) of setup, SAG cryptography has
been deemed perfectly suitable for applications in ad hoc groups [16, 6, 5].

Compared with traditional privacy (anonymity) protection schemes, spon-
taneous group cryptography is naturally anonymous. It achieves anonymity
without using blinding techniques. Furthermore, the anonymity in spontaneous
anonymous group (SAG) cryptography is very strong: in its basic version, the
anonymity is unconditional (information-theoretic), irrevocable, and exculpable.
The last property means that even if all communication sessions and all se-
cret keys are subpoenaed, the anonymity cannot be revealed. Variants of SAG
cryptography achieved different tradeoffs in anonymity based on candidate hard
problems and optional revocability and optional culpability.

Our Contributions: In this paper, we present the first blind [8] spontaneous
anonymous group (SAG) signature schemes. Based on essentially any major
blind signature, we construct ring-type [16, 1] 1-out-of-n blind SAG signatures
and CDS-type [10] t-out-of-n blind SAG signatures. The blindness of our SAG
blind signature depends on that of its underlying component blind signature.
The parallel one-more unforgeability of our SAG signature, when the underlying
component is the Schnorr (resp. Okamoto-Schnorr) blind signature, is reduced
to Schnorr’s ROS Problem [17], in the random oracle model [3] plus the generic
group model [14]. In the process, we extend Schnorr’s result [17] on single-key
parallel one-more unforgeability (p1m-uf) to obtain a reduction of multiple-key
parallel unforgeability (mk-p1m-uf) of Schnorr (resp. Okamoto-Schnorr) blind
signature to the ROS Problem, in the random oracle model plus the generic
group model.

Paper Organization: Background materials in Section 2. Security models and
definition of security notions in Section 3. Constructions of blind SAG signatures
in Section 4. Security analyses in Section 5. Conclusions in Section 6.

2 Background Materials

We review background results needed subsequently.
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2.1 General Background

A PoK (Proof-of-Knowledge) is a three-move interactive protocol consisting
of (Prover, Verifier). Common input consists of a public key, PK. Prover has the
additional input SK. The three moves are K=(T , C, S)=(commit, challenge,
response). Completness means, with all sides honest, results are as they should
be. Soundness means two random challenge-response pair to the same commit-
ment result in witness extraction. Special Soundness means: any two challenge-
response pair with the same commitment result in witness extraction.

A blind signature consists of the tuple (BlindSigner, Warden, Verifier) where
the three components form an interactive protocol as follows:

1. Common input to all three parties: PK. Additional input to BlindSigner:
SK.

2. BlindSigner sends t′ (commitment) to Warden.
3. Warden sends t to Verifier.
4. Verifier sends message m to Warden.
5. Warden sends c′ to BlindSigner.
6. BlindSigner sends s′ to Warden.
7. Warden sends s to Verifier.
8. Verifier confirms that (t, s) is a valid signature on m w.r.t. PK.

Typically, Warden is instantiated as a tuple of mappings (ft, fc, fs) and that
in various moves do the following:

1. Warden randomly generates ∆c and ∆s, computes t := ft(PK, t′, ∆c, ∆s),
and sends t to Verifier.

2. Verifier sends m to Warden.
3. Warden computes c := H(t, m) c′ := fc(PK, t′, ∆c, ∆s, c) and sends c′ to

BlindSigner.
4. BlindSigner computes s′ and sends it to Warden.
5. Warden computes s = fs(PK, t′, ∆c, ∆s, t, c, c

′, s′) and sends it to Verifier.

If (t′, c′, s′) is a valid PoK, then so is (t, c, s). Some examples below.
Schnorr blind signature[18]: Relation R = {(y = gx, x)|x ∈ {1, · · · , q}} with
(T , C, S : T = gSyC) and T = T ′g∆S y∆C ,
Okamoto-Schnorr blind signature [15]: Relation R = {(gx1hx2 , (x1, x2))|x1, x2 ∈
{1, · · · , q}}. with (T , C, S) = ( gr1hr2 , c, (s1, s2) = (x1 + r1c, x2 + r2c) )

Blindness: The signer of a blind signature has no information about the message
during and after a blind signature/TPoK protocol. Given any message-signature
pair, the signer cannot find out when and for whom it was signed.

2.2 Schnorr’s ROS Assumption

Schnorr [17] presented a then-new algorithm to compute the parallel one-more
forgery of Schnorr (resp. Okamoto-Schnorr) blind signatures. He showed the
equivalence of the parallel one-more unforgery of those two blind signatures and
the ROS Problem, in the random oracle model plus the generic group model.
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His techique also applied to many other blind signatures. In this paper, we will
use the following form of Schnorr’s ROS Problem:

The ROS Problem: Given 1 ≤ qB ≤ qH , typically qB << qH , and all com-
putations are in Zq. Compute a qH × qB matrix A, such that the probability of
computing the following problem is non-negligible:

Given random ĉ = [ĉ1, · · · , ĉqH
], compute J ⊂ {1, · · · , qH} with |J | =

qB+1, j0 ∈ J , {αj : j ∈ J} with αj0 �= 0, and β such that
∑

j∈J αj [Aj , ĉj ] =
β and {Aj : j ∈ J \ {j0}} are linearly independent.

Note Aj denote the j-th row vectors of A, and [Aj , ĉj ] denotes the lengthened
vector by one more entry ĉj .

2.3 Background About SAG Signature

First, the definition of SAG signatures.

Definition 1. Let L = {PK1, · · · , PKn} be a list of n public keys, θ be an
integer, 1 ≤ θ ≤ n, m be a message, and σ = (t1, · · · , tn, c1, · · · , cn, s1, · · · , sn) be
a tuple. Let H, H1, · · ·, Hn be full-domain collision-free secure hashing functions.
The tuple (L, n, θ, m, σ) is a ring-type SAG signature [16, 1] if the following all
hold:

1. θ = 1
2. For each i, 1 ≤ i ≤ n, we have ci = Hi(L, n, m, ti−1) and (ti, ci, si) is a valid

PoK conversation w.r.t. PKi. (t0 is interpreted as tn.)

The tuple is a CDS1-type SAG signature [10] if the following all hold

1. Each tuple (ti, ci, si) is a valid PoK conversation w.r.t. PKi, 1 ≤ i ≤ n.
2. The polynomial f interpolated from f(i) = ci, 0 ≤ i ≤ n, has degree at most

n − θ, where c0 = H(L, n, θ, m, t1, · · · , tn).

The tuple is a CDS2-type SAG signature if the following all hold

1. Each tuple (ti, ci, si) is a valid PoK conversation w.r.t. PKi, 1 ≤ i ≤ n.
2. For each 1 ≤ j ≤ θ,

∑
1≤i≤n ijci = Hj(L, n, θ, m, t1, · · · , tn).

Remark: To conserve bandwidth, the representation of an SAG signature
can be shortened. For example, if (t1, · · · , tn) can be efficiently constructed from
(c1, · · · , cn, s0, · · · , sn), then it can be omitted from the representation. In ring-
type SAG signatures, (c2, · · · , cn) can be further omitted since they can be con-
structed from (c1, s1, · · · , sn).

A Construction of Ring-Type SAG Signatures [16]: Given a list of public
keys L = {PK1, · · · , PKn}, a message m, a suitable hash function H, a secret
key SKπ corresponding to PKπ, a ring-type SAG signature can be constructed
as follows:
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1. Randomly generate a commitment T π.
2. For each i = π + 1, · · ·, n, 1, · · ·, π − 1, compute Ci = H(L, m, T i−1) and

then simualate a PoK conversation (T i, Ci, Si) w.r.t. PKi.
3. For i = π, compute Ci = H(L, m, T i−1) and then compute a PoK conversa-

tion (T i, Ci, Si) using the secret key SKi.
4. Output SAG signature (L, n, θ = 1, m, σ) where σ = (C1, S1, · · · , Sn) (thus

achieving bandwidth conservation).

A Construction of CDS1-Type (Resp. CDS2-Type) SAG Signature
[10]: Given list of public keys L = {PK1, · · · , PKn}, message m, suitable hash
function H. Let I ⊂ {1, · · · , n}, |I| = t. Given secret keys {SKπ : π ∈ I},
generate SAG signature as follows:

1. For each i /∈ I, simulate a PoK conversation (T i, Ci, Si) .
2. For each π ∈ I, randomly pick T π.
3. Compute C0 = H(L, n, θ, m, T 1, · · · , T n), and solve for Cπ’s, π ∈ I, such

that the polynomial f interpolated from f(i) = Ci, 0 ≤ i ≤ n, has degree
no more than n − θ. (resp. for CDS2-type, solve for Cπ’s, π ∈ I, such that∑

1≤i≤n ijCi = Hj(L, n, θ, m, t1, · · · , tn), 1 ≤ j ≤ θ.)
4. For each π ∈ I, compute a PoK conversation (T π, Cπ, Sπ) using SKπ.
5. Output an SAG signature (L, n, θ, m, σ) where σ = (f,S1, · · · , Sn) (achieving

bandwidth conservation).

Properties of SAG Signatures: The SAG signature has statistical ZK (zero-
knowledge) about its actual signers. Therefore, the signer anonymity is uncon-
ditional and exculpable. Furthermore, the SAG signature is a group signature
which requires essentially no setup, especially in terms of group key setup or
secret sharing of the group key. Any one user can conscript the public keys of
another n − 1 users to form an SAG signature without the participation or even
knowledge of the conscripted diversion signers. Such properties make SAG signa-
tures useful in diverse applications including whistle blowing[16], e-voting [13],
and ad hoc group cryptography [6].

2.4 Generic Group Model (GGM)

We will use the generic group model of [14, 20, 17]. Some highlights below.
Only a restricted set of operations are allowed. They include random gen-

eration of integers and group elements, group computations, exponentiations,
equality tests. There are only two data types: group elements and non-group
data.

It is assumed the the discrete logarithm problem is uncomputable in the
GGM[14].

We restrict ourselves to a polynomial number of steps. Therefore, there are
only a polynomial number of unassociated group elements base g, public keys
y1, · · ·, yn, commitments t1, · · ·, tqB

, randomly generated group elements u1, · · ·,
uqG

. The computation transcript at each step τ consists of

fτ = gaτ,−1
∏

i

y
aτ,i

i

∏

i′
t
bτ,i′
i′

∏

i′′
u

cτ,i′′
i′′ (1)
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Each computation can only depend on parameters in existence before that step,
resulting in zero exponent for parameters that come into existence after that
step.

Probabilities of hash collisions, discrete logarithm collisions, integer computa-
tion collisions are all assumed negligible. (Except those resulting from BlindSign
Oracle queries.)

3 Blind SAG Signature and Security Model

3.1 The Real World

A blind SAG signature scheme is a tuple (KeyGen, SAGWarden, BlindSignerPK1
,

· · ·, BlindSignerPKn
, SAGVerifier) where

KeyGen: Upon input a security parameter 1λ and generates public-private key
pair (PK, SK).

SAGVerifier: Upon input a tuple (L, n, θ, m, σ), outputs ACCEPT or REJECT.
BlindSignerPK1

, · · ·, BlindSignerPKn
are (ordinary) BlindSignerPK protocols de-

fined in the last Section.
SAGWarden: Upon input L′, n′, θ′, m′, it picks I ⊂ {1, · · · , n′}, |I| = θ′, and by

invoking BlindSignerPKi
, i ∈ I, produces an SAG signature (L′, n′, θ′, m′, σ′).

3.2 The Ideal World

1. SO (Signing Oracle): Upon input a public key PK ′ and any message m′, it
outputs a valid signature σ′.

2. SAGSign (SAG Signing Oracle): Upon input public key list L′, length n′,
threshold θ′, message m′, it outputs a valid SAG signature (L′, n′, θ′, m, σ′).

3. BlindSign (Blind Signing Oracle): Upon query, it conducts a 4-move interac-
tive protocol with the querier Q as follows:
(a) Move-0: Q sends PK ′.
(b) Move-1: BlindSign sends a commitment t to Q.
(c) Move-2: Q sends a challenge c to BlindSign.
(d) Move-3: BlindSign returns s such that (t, s) forms a valid PoK w.r.t. PK ′.

4. Random Oracle: Upon receiving a query, it outputs a random number. All
query-reply pairs are kept in record and no same reply for different queries.

3.3 Definitions of Security Notions

Definition 2. (Completeness) If all parties are honest in following the proto-
cols, then the output of the interactions with various oracles will produce valid
signatures.

Game UF

1. (Setup) Upon input a security parameter 1λ, generate parameters n, θ, and
invoke KeyGen n times to generate key pairs (SKi, PKi), 1 ≤ i ≤ n. The
above, except the secret keys, are published.
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2. A forger, F makes qB (resp. qS , qH , qA) queries to the BlindSigner (resp.
SO, random oracle, SAGSign).

3. F delivers > qB/θ valid SAG signatures (Li, ni, θ, mi, σi), 1 ≤ i ≤ qB + 1,
none of which coincides with any SAGSign query output.

Remark: For simplicity, we require F to deliver SAG signatures with the
same threshold θ, and each public key used in SAG signatures delivered by F
must have been generated in the Setup Phase of Game UF. In this paper, we
restrict ourselves to at most a polynomially many queries in terms of the security
parameter.

Definition 3. (Parallel One-more Unforgeability (p1m-uf)) A blind SAG signa-
ture scheme is parallel one-more unforgeable (against adaptive chosen-message,
chosen-public-key active attackers) if no PPT adversary can successfully com-
plete Game UF with non-negligible probability.

Remark: Specializing to n = θ = 1, the above definition is defining p1m-uf of
classic blind signatures.

Definition 4. (Blindness) A blind SAG signature scheme has blindness if the
probability distribution of the signature produced by Warden is indistinguishable
from the probability distribution of the signatures produced by Warden conditioned
on the blindsign conversation that produced it.

Roughly speaking,

Pr
{

SAG signature
by Warden

∣
∣
∣
∣

BlindSign Oracle
conversation

}

= Pr
{

SAG signature
by Warden

}

4 Constructing Blind SAG Signatures

We present the constructions of our blind SAG signatures.

4.1 Blind SAG Signature: CDS-Type [10]

Given a list of n public keys, L = {PK1, · · · , PKn}, message m, threshold θ, and
θ accesses to blind signer w.r.t. public keys from L, the following protocol gener-
ates a CDS1-type SAG signature (resp. CDS1-type, CDS2-type) (L, n, θ, m, σ):

1. Select I ⊂ {1, · · · , n}, |I| = θ.
2. For each i ∈ {1, · · · , n} \ I, generate PoK triple (ti, ci, si) w.r.t. PKi.
3. In θ sessions of the TPoK protocol, one for each i ∈ I, act as Warden equipped

with BlindSignerPKi
w.r.t. PKi, as follows:

(a) Obtain commitment t′i from BlindSignerPKi
, for each i ∈ I.

(b) For each i ∈ I, compute ∆s,i, ∆c,i, and ti = ft(PKi, t
′
i, ∆c,i, ∆s,i).

(c) Compute c0 = H(L, n, θ, m, t1, · · · , tn).
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(d) Compute ci for all i ∈ I such that the polynomial f interpolated from
f(i) = ci, 0 ≤ i ≤ n, has degree at most n − θ. (resp. for CDS2-type,
solve for Ci’s, i ∈ I, such that

∑
1≤i≤n ijCi = Hj(L, n, θ, m, t1, · · · , tn),

1 ≤ j ≤ θ.)
(e) For each i ∈ I, compute c′

i = fc(PKi, t
′
i, ∆c,i, ∆s,i, ci), and send c′

i to
BlindSignerPKi

.
(f) For each i ∈ I, receive s′

i from BlindSigner i, and compute si=fs(PKi,t′i,∆c,i,
∆s,i, ci, s′

i).
4. Output σ = (f, s1, · · · , sn).

The blind signature for individual index i is referred to as the underlying
blind signature scheme of the blind SAG signature scheme.

4.2 Blind SAG Signature: Ring-Type [16, 1]

Given a list of n public keys L = {PK1, · · · , PKn}, message m and accesses once
to BlindSignerPKi

w.r.t. PKi ∈ L, the following protocol generates a ring-type
SAG signature (L, n, m, σ):

1. Select π ∈ {1, · · · , n}.
2. Interact as Warden with BlindSignerPKπ

to obtain a commitment t′π, and
compute tπ = ft(PKπ, t′π, ∆c,π, ∆s,π) with randomly generated ∆c,π and
∆s,π).

3. Sequentially for each i = π+1, · · · , n, 1, π−1, compute ci = H(L, m, n, ti−1),
and then simulate a PoK triple (ti, ci, si) w.r.t. PKi.

4. Finish the interaction with BlindSignerPKπ
by

(a) Compute and send c′
π = fc(PKπ, t′π, ∆c,π, ∆s,π, cπ).

(b) Receive s′
π nd compute sπ = fs(PKπ, t′π, ∆c,π, ∆s,π, cπ, s′

π).
5. Output σ = (c1, · · · , cn, s1, · · · , sn).

5 Security Analysis

We prove the completeness, the blindness, and the parallel one-more unforge-
ability of our blind SAG signature schemes. In the process, we also prove an
extension of Schnorr’s [17] ROS result from single public key to multiple public
keys.

5.1 Multi-Key Parallel One-More Unforgeability of Blind
Signature

The following results are well-known.

Theorem 1. [17] The parallel one-more unforgeability (p1m-uf) of Schnorr (resp.
Okamoto-Schnorr) blind signature is equivalent to the ROS Problem in the ran-
dom oracle model plus the generic group model.



90 T.K. Chan et al.

In Schnorr’s security model [17], all queries to blindsign are w.r.t. a single
public key PK. We generalize it to multiple-key parallel one-more unforgeabil-
ity (mk-p1m-uf) by allowing the Adversary to query blindsign with K different
(PKi) , 1 ≤ i ≤ n, a total of qB times in order to produce a total of qB + 1
signatures each of which is verifiable against some members of the set of public
keys {PK1, · · · , PKK}. We will need this result.

Theorem 2. The multiple-key parallel one-more unforgeability (mk-p1m-uf) of
Schnorr (resp. Okamoto-Schnorr) blind signature is equivalent to the ROS Prob-
lem in the random oracle model plus the generic group model.

Proof in the Appendix.

5.2 Security of Our Blind SAG Signatures

Theorem 3. (Completeness) Our blind SAG signature has completeness.

Proof: Trivial.

Theorem 4. (Blindness) Assume L, n, θ are fixed. Our ring-type (resp. CDS1-
type, CDS2-type) blind SAG signature has blindness provided the underlying blind
signature also has it.

Proof Sketch: Denote the SAGBlindSign session communication transcripts by
Ki = (T i, Ci, Si), 1 ≤ i ≤ θ, and the SAG signature in question by (L, n, θ, m, σ)
where σ=(t1, · · · , tn,c1, · · · , cn, s1, · · · , sn). By the ZK of the underlying blind
signatures, (ti, ci, si) is ZK w.r.t. (T i, Ci, Si). Furthermore, (non-blind) SAG
signatures are ZK about which secret key actually generated it. Therefore σ
is ZK. ��

Theorem 5. (Unforgeability) Our ring-type (resp. CDS1-type with θ = 1, CDS2-
type with θ ≥ 1) SAG blind signature based on Schnorr or Okamoto-Schnorr
blind signature is parallel one-more unforgeable (p1m-uf) provided Schnorr’s
ROS Problem is hard, in the generic group model (GGM) plus the random oracle
model (ROM).

Proof in the Appendix.
Remark: The reduction in Theorem 1 is actually to the ROS Problem or the
Discrete Logarithm Problem (DLP). The reduction in Theorem 2 (resp. Theorem
5) is actually to the ROS Problem or the one-more discrete log (1mDL) problem.
(The 1mDL Problem: compute all discrete logarithms logg yi for 1 ≤ y ≤ qDL+1,
given g and y1, · · ·, yqDL+1 and a total of qDL queries to a Corruption Oracle,
which returns the discrete logarithms of qualified query values.) In the GGM, it
can be deducted that the probability of computing dicrete log collisions, which
include DLP and 1mDL, is negligible for PPT algorithms.
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6 Concluding Remarks

We have constructed blind SAG signatures, both ring-type and CDS-type. We
have reduced their parallel one-more unforgeability against adaptive chosen-
plaintext, adaptive chosen-public-key attackers, to the parallel one-more un-
forgeability of the component blind signature, and a candidate hard problem, in
two cases: where the underlying blind signature is the Schnorr (resp. Okamoto-
Schnorr) blind signature.

The security and privacy (anonymity) of the blind SAG signature based on
Schnorr blind signature is an interesting topic. The result of Schnorr[17] reduced
the security of the Schnorr blind signature to the ROS (Randomized Oversam-
pled Solvable system) Assumption. Recently, Wagner [21] gave a sub-exponential
time algorithm to solve the ROS problem. If the array entries are all elements
of a binary field, then the ROS Problem can be solved in polynomial time by a
method from [2] or [12].

It will be interesting to generalize Schnorr ROS reduction to the Schnorr-
based blind SAG signature. Since Schnorr identification scheme does not have
zero-knowledge, it will also be interesting to explore the exact zero-knowledge
properties of that blind SAG signature.

Acknowledgements. Helpful discussions with Duncan S. Wong are acknowl-
edged.
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A Proof Sketch of Theorem 2

We mimick Schnorr’s [17] proof. The generic mk-p1m attacker is as follows:

1. Obtain commitments: tk,i, 1 ≤ k ≤ K, 1 ≤ i ≤ qB,k; where
∑

k qB,k = qB .
2. Compute and then send challenges ck,i, 1 ≤ k ≤ K, 1 ≤ i ≤ qB,k.
3. Receive responses sk,i. Output qB +1 signatures (t̂�,j , ŝ�,j) on messages m̂�,j

where t̂�,j = gŝ�,j y
ĉ�,j

� , ĉ�,j = H(t̂�,j , m̂�,j); and 1 ≤ � ≤ K, 1 ≤ j ≤ q̂B,�,∑
� q̂B,� = qB + 1

The oracle conversations can be arbitrarily interleaved. The hash query ĉ�,j =
H(t̂�,j , m̂�,j) must have been made.

Let fτ(�,j) = ĉ�,j , for some index mapping τ .
In Eq(1), we can treat ui = yqB+i. The ui’s can be used as public keys in

querying the Signing Oracle. If they are not used as such, then set qB,qB+i = 0.
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They cannot be used as public keys in the delivered signatures, if the conditions
so require. Therefore, we can omit the u’s w.l.o.g. Expanding the subscript of
the t’s from one to two according to the current convention, we obtain

fτ(�,j) = gŝ�,j y
ĉ�,j

�

= gaτ(�,j),−1
∏

k′
y

aτ(�,j),k′
k′

∏

k

∏

i

t
bτ(�,j),k,i

k,i

= gaτ(�,j),−1
∏

k′
y

aτ(�,j),k′
k′

∏

k

∏

i

(gsk,iy
ck,i

k )bτ(�,j),k,i

and

1 = g∆s,�,j

∏

k′
y

∆c,�,j,k′
k′ , for each �, j,

where

∆s,�,j = −ŝ�,j + aτ(�,j),−1 +
∑

k

∑

i

sk,ibτ(�,j),k,i

∆c,�,j,k′ = −ĉ�,jδ(�, k′) + aτ(�,j),k′ +
∑

i

ck′,ibτ(�,j),k′,i.

where the Kronecker delta δ(u, v) = 1 when u = v and equals 0 otherwise. Note
that the last two ∆-coefficients are computable by the generic adversary, but not
by the Simulator. Therefore rewinding will not enable the Simulator to extract
any secret key.

Case (1): ∆s,�,j = ∆c,�,j,k′ = 0 for all �, j, k′. Then the generic adversary has
solved the ROS Problem:

ĉ�,j = aτ(�,j),� +
∑

i

c�,ibτ(�,j),�,i, all �, j.

where ĉ�,j ’s are qB + 1 hash outputs.
Case (2): the opposite. Then the generic adversary has computed a nontrivial

linear dependence among discrete logrithms of yk′ , i.e. the generic adversary has
solved the one-more discrete logarithm problem.

Remark: In the generic group model (GGM), the above linear dependence is a
formof discrete logarithmcollision. It can be deducted inGGMthat the probability
of a PPT algorithm being able to compute a discrete logarithm collision, including
the kind above, is negligible. ��

B Proof of Theorem 5

We prove for CDS1-type, θ = 1, first. The generic attacker in GGM of p1m-uf
of blind Schnorr SAG signature is as follows:

1. Input: a list of public keys L = {y1, · · · , yn}.
2. Receive commitments tk,i, 1 ≤ i ≤ qB,k from BlindSignerPKi

. Note
∑

k qB,k =
qB .
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3. Send challenges ck,i, receive responses sk,i.
4. Output SAG signatures σj = (t̂j,1, · · · , t̂j,n, ĉj,1, · · · , ĉj,n, ŝj,1, · · · , ŝj,n) on

message m̂j , 1 ≤ j ≤ qB + 1.

The queries ĉj,0 = H(L, n, θ, m̂j , t̂j,1, · · · , t̂j,n), 1 ≤ j ≤ qB + 1, must have
been made. Let the Lagrange interpolation be indicated

∑
0≤�′≤n γ�′ ĉj,�′ = 0.

By GGM, there exists a index mapping τ such that, for 1 ≤ j ≤ qB + 1 and
1 ≤ � ≤ n,

t̂j,� = gŝj,�y
ĉj,�

�

= gaτ(j,�),−1
∏

�′
y

aτ(j,�),�′
�′

∏

k,i

t
bτ(j,�),i

k,i

= gaτ(j,�),−1
∏

�′
y

aτ(j,�),�′
�′

∏

k,i

(gsk,iy
ck,i

k )bτ(j,�),i

1 = g∆s,j,�

∏

�′
y

∆c,j,�,�′
�′ where

∆s,j,� = −ŝj,� + aτ(j,�),−1 +
∑

k,i

sk,ibτ(j,�),k,i, all j, �

∆c,j,�,�′ = −ĉj,�δ(�, �′) +
∑

�′
aτ(j,�),�′ +

∑

k,i

ck,ibτ(j,�),k,i, all j, �, �′

The negligibility of discrete logarithm collision leads to

0 = −ĉj,�′ +
∑

�′
aτ(j,�′),�′ +

∑

k,i

ck,ibτ(j,�′),k,i, all j, �

−γ0ĉj,0 =
n∑

�′=1

γ�′ ĉj,�′

=
∑

1≤�′≤n

γ�′(
∑

�′
aτ(j,�′),�′ +

∑

k,i

ck,ibτ(j,�′),k,i)

for 1 ≤ j ≤ qB + 1. The generic adversary has solved the above ROS Problem,
where ĉj,0 are qB + 1 hash outputs.

CDS2-type, θ ≥ 1. Similar to the above, with the following modificaitons:
The hash queries are ĉ

(θ′)
j,0 = Hθ′(L, n, θ, m̂j , t̂j,1, · · · , t̂j,n), 1 ≤ j ≤ qB + 1,

1 ≤ θ′ ≤ θ, have been made. The ROS Problem is

−γ
(θ′)
0 ĉ

(θ′)
j,0 =

n∑

�′=1

γ
(θ′)
�′ ĉj,�′

=
∑

1≤�′≤n

γ
(θ′)
�′ (

∑

�′
aτ(j,�′),�′ +

∑

k,i

ck,ibτ(j,�′),k,i)

where ĉ
(θ′)
j,0 ’s are qB + 1 hash outputs expressed in terms of qB commitments

ck,i’s.
ring-type: The proof is similar and omitted. ��
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