
 L. Bougé and V.K. Prasanna (Eds.): HiPC 2004, LNCS 3296, pp. 375–385, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Integration of Scheduling and Replication in Data Grids

Anirban Chakrabarti, R.A. Dheepak, and Shubhashis Sengupta

Software Engineering and Technology Laboratory,
Infosys Technologies Ltd, Bangalore (India)

Tel: 91 80 852 0261
{anirban_chakrabarti, dheepak_ra,
shubhashis_sengupta}@infosys.com

Abstract. Data Grids seek to harness geographically distributed resources for
large-scale data-intensive problems. Such problems involve loosely coupled
jobs and large data sets distributed remotely. Data Grids have found applica-
tions in scientific research fields of high-energy physics, life sciences etc. as
well as in the enterprises. The issues that need to be considered in the Data Grid
research area include resource management for computation and data. Compu-
tation management comprises scheduling of jobs, scalability, and response
time; while data management includes replication and movement of data at se-
lected sites. As jobs are data intensive, data management issues often become
integral to the problems of scheduling and effective resource management in
the Data Grids. The paper deals with the problem of integrating the scheduling
and replication strategies. As part of the solution, we have proposed an Inte-
grated Replication and Scheduling Strategy (IRS) which aims at an iterative
improvement of the performance based on the coupling between the scheduling
and replication strategies. Results suggest that, in the context of our experi-
ments, IRS performs better than several well-known replication strategies.

1 Introduction

In an increasing number of scientific and enterprise applications, large data collec-
tions are emerging as important resources that need to be shared and accessed by
research teams dispersed geographically. In domains as diverse as global climate
change, high energy physics, and computational genomics, the volume of interesting
data will soon total petabytes[1]. The combination of large data size, geographic
distribution of users and resources, diverse data sources, and computationally inten-
sive analysis results in complex and stringent performance demands that are not satis-
fied by any existing data management infrastructure. The literature offers numerous
point solutions that address the issues of data management, data distribution and job
scheduling (e.g., see [2,3]). However, no integrating architecture exists that allows
one to identify requirements and components common to different systems and hence
apply different technologies in a coordinated fashion to a range of data-intensive
application domains. Motivated by these considerations, researchers have launched a
collaborative effort called Data Grids to design and produce such an integrating ar-
chitecture.

A. Chakrabarti, R.A. Dheepak, and S. Sengupta 376

1.1 Motivation and Objectives

Most previous scheduling work has considered data locality/storage issues as secon-
dary to job placement. Casanova et al. [4] describe an adaptive scheduling algorithm
for parameter sweep applications that uses a centralized scheduler to compute an
optimal placement of data prior to job execution. Banino et. al [5] talks about sched-
uling in a heterogeneous scenario. Work on data replication strategies for Grids in-
cludes [6], where the authors examined dynamic replica placement strategies in a
hierarchical Grid environment. Recently, some work has been carried out which
combines the scheduling and replication strategies to provide better overall perform-
ance in Data Grids [7]. Paper [8] talks about combining the replication and schedul-
ing strategies in a more organized manner. The authors assumed three components:
an External Scheduler (ES), which determines where (i.e. to which site) to send jobs
that originate at that site; a Local Scheduler (LS), which determines the order in
which jobs that are allocated to that site are executed; and a Data Scheduler (DS),
responsible for determining if and when to replicate data and/or delete local files. The
Grid architecture considered in this paper is similar to one proposed in [8].

In Data Grid, both scheduling and replication aim at reducing the latency for job
execution. While scheduling does that by directing the jobs to certain sites so that the
latency involved in data movement and job processing is reduced, replication moves
the data around so that the data access time during scheduling is reduced. The key
contribution of the paper lies in the idea of the possible integration between schedul-
ing and replication called Integrated Replication and Scheduling (IRS) Approach.
Most of the works in this field have concentrated either on replication or scheduling
aspects of the problem. Though, some hybrid strategies have been proposed in [7],
the first real effort to study the combination of these two strategies was first done in
[8]. In [8], the authors have assumed that at a time each job will access only a single
data resource like a file. However, in practical situations one job may require multiple
files. In this paper, we propose a replication-scheduling algorithm which iteratively
improves the performance of the Data Grids. The main objectives of the paper are to
develop and evaluate an iterative replication and scheduling strategy.

The assumptions made are: (i) Data Grid is considered to be an undirected graph.
Hence, the transfer cost is same both ways, (ii) a two-stage scheduling as mentioned
in [8] is assumed, (iii) the Grid is more or less stable i.e., the chances of link and node
failures and rare, (iv) the data is mostly handled in a read-only mode, (vi) the jobs are
non-preemptable. The rest of the paper is organized as followed. In Section 2 we
outline our IRS algorithms in detail with suitable examples. In Section 3, we present
and discuss the performance test results vis-à-vis some other approaches. We con-
clude in Section 4 by pointing out the salient contributions and future work.

1.2 Data Replication (DR) and Job Scheduling (JS) Problem

We model a job request as a 3-tuple J = < S , F
~ , C

~ >, where Sj is the site at which

the job is fired, F
~

is the list of files needed by the job and C
~

is the computation time
required by the job J at site Sj . A site is modeled as a 3-tuple S = <

sPVF ,,ˆ >, where

Integration of Scheduling and Replication in Data Grids 377

F̂ is the set of files stored in the site S, V is the storage capacity at that site and
sP is

the computation capacity at that site. It is to be noted that
sP is expressed in sec/GB.

In [8], the authors have stated that
sP varies between 10 sec/GB to 50 sec/GB. The

Job Scheduling (JS) problem states that: Let iJ be a job, and Ŝ = { nSSS2,1 } be the set

of sites, then the problem is to schedule the job iJ to a site jS , where SS j
ˆ∈ , such that

the latency between submitting the job and job execution is minimized. A Demand
Matrix T

SF ji
D mjni ...1,...1 ==∀ , is created based on a set of jobs J within a time interval T.

The replication involves creation of identical copies of data files and their distribution
over the nodes in a Grid. The Data Replication (DR) problem states that: Let T

SF ji
D be a

demand matrix and Ŝ be a set of sites; the aim is to distribute a set of files to the
sites, so that the latency is minimized based on the demand matrix and the volume
constraint at each site is maintained. In this paper, an Integrated Replication and
Scheduling (IRS) approach is proposed which combines the replication and schedul-
ing schemes. Data Replication (DR) algorithm is a centralized algorithm running at
certain interval of time. After the arrival of jobs, each External Schedulers take the
help of replication information and schedule so that the job scheduled has the least
latency in terms of execution.

2 Integrated Replication and Scheduling (IRS) Approach

We start by defining some operational terms.

Normalized Demand (
iFη): Ratio of the demand for file iF to the demand of all files.

∑∑

∑

= =

==
n

j

m

i
SF

n

j
SF

F

ji

ji

i

D

D

1 1

1η

(1)

File Latency (ij
k∆): Latency for a file kF to be moved from site

iS to
jS .

Computational Latency (ijω): Latency for a job i to be executed at site jS

j

i

m

i
ij P

τ
ω

∑
== 1

(2)

Queuing Latency (ijQ): Latency for a job i due to the queuing at the site jS (queue size

(iq). In case of assumption that all the jobs take the same time for execution, then

j

i

m

i
j

ij
P

q
Q

τ∑
== 1

. (3)

Slots Available (jγ): Average number of files that can be stored in site jS . Thus,

τ
γ j

j

V
= , τ = average file size

(4)

A. Chakrabarti, R.A. Dheepak, and S. Sengupta 378

2.1 Job Scheduling (JS) Algorithm

The JS algorithm has two parts – (a) Job Scheduling and (b) Matrix Updating.

Job Scheduling Strategies: Two different Job Scheduling Strategies have been pro-
posed: Matching based Job Scheduling (MJS) and Cost Based Job Scheduling (CJS).
Matching based Job Scheduling (MJS): In MJS, the jobs are scheduled to those sites
which have the highest match in terms of data (maximum number of files for the job
available at the site). Any tie is broken by reducing the latency involved in moving
the data which is not present in the scheduled site from the site(s) containing the data.
It is possible that MJS may distribute the jobs to the same site resulting in the queue
size increase in that site. To distribute the jobs to different sites the scheduling is done

based on
iq

q
mv .= factor, where m is the maximum match and q is the average queue

size and iq is the queue size at the site. MJS schedules based on the maximum v
value. Figure 1 shows the topology of a Data Grid. S1, S2, S3 and S4 are the different
sites in the Data Grid. The numbers and the arrows show the latency to move a file
from one data site to the other. The elements in each site indicate the files that are
present in each of those sites. Let a job come which requires files D1, D3 and D6.
According to the MJS algorithm, both S2 and S4 are candidate sites where the job can
be scheduled. If the job is scheduled in S2, then it takes 7 seconds to move the file D6
from S3 (File Originating Site) to S2. On the other hand, if the job is scheduled onto
S4, then it takes 4 seconds. Therefore, the job is scheduled onto site S4.

D1

D3

D8

D1

D4

D7

D1

D3

D5

D2

D4

D6

2
se

cs

3 secs

4
se

cs

7 secs

5 secs

6 secs

S1

S2

S3

S4

Fig. 1. Topology of an example Data Grid

Cost Based Job Scheduling (CJS): Another alternative to matching based job schedul-
ing, a cost based job scheduling strategy is proposed. Cost (s

ijC) of scheduling a job iJ

onto a site jS is defined as the combined cost of moving the data into the site jS , latency

to compute the job iJ in the site jS and the wait time in the queue in the site jS . The

job is scheduled onto the site which has the minimum s
ijC . Referring back to the example

shown in Figure 1, we assume that in this case the computational time is 0 and queues at
each site is also 0. Therefore s

ijC is composed of only the data latency. The values of

Integration of Scheduling and Replication in Data Grids 379

s
ijC for j=1,2,3,4 are: s

iC 1 = 7 secs, s
iC 2 = 7 secs, s

iC 3 = 8 secs, s
iC 4 = 4 secs. Therefore, the

job is scheduled onto site S4, same as MJS. Though both the algorithms provide similar
performance in this example, generally CJS will be better if instantaneous queue infor-
mation is available. However, in case of partial information the comparison between
these algorithms can be an interesting future study.

Updating the Demand Matrix: In this step, the Demand Matrix is updated as illus-
trated below. The example is based on the topology shown in Fige 1. Let
the files required by job iJ be iF

~
. The data files required are:),4,3,1(

~
1 DDDF =

),5,2,1(
~

2 DDDF =),8,3,2(
~

3 DDDF =),7,3,1(
~

4 DDDF =),8,5,4(
~

5 DDDF =),7,5,1(
~

6 DDDF =

),5,4,3(
~

7 DDDF =).8,7,1(
~

8 DDDF = Based on the job requests, the given topology and
the MJS; the following Demand Matrix can be constructed:

Table 1. Demand Matrix for the topology in Figure 1 based on a job pattern

Files\Sites S1 S2 S3 S4 Total

D1 0 0 0 1 1

D2 0 0 4 0 4

D3 0 2 1 1 4

D4 0 1 1 0 2

D5 0 0 0 1 1

D6 0 1 3 2 6

D7 0 0 1 1 2

D8 0 2 2 0 4

Total 0 6 12 6 24

Scheduling of Jobs with Data Ordering: Till now we have assumed that each job
requires data all at the same time i.e., at the time of starting the job. However, the cost
of scheduling can be modified in case of order of data files. By order of data files we
mean that say the job requires files (3,21 , fff) at the start of the job and requires

(54 , ff) later. Then files 54 , ff can be obtained later than files 3,21 , fff . Therefore,

∑∑∑∑
====

+∆+∆=
5

4

5

4

3

1

3

1

,),max(
i

ij
j

ij
s

i
ij

j
ij

sLatency ωω
(5)

Let
1112,11 ... kfff be the set of files required initially (Step 1), 2222,21 ... kfff be the

number of files required in Step 2,
jjkjj fff ...2,1 be the files required in Step j, and

ppkpp fff ...2,1 be the files required in Step p (last step), then

∑∑
==

+∆−=
ii K

j
ij

K

j
ijiLiL

11

)),1(max()(ω

∑∑

==
+∆=

11

11

)1(
K

j
ij

K

j

ij
sL ϖ

 (6)

A. Chakrabarti, R.A. Dheepak, and S. Sengupta 380

Where L(i) is the latency at the ith step, K files are required at step i and L(p) is the
total latency.

2.2 Data Replication Strategy

Data Replication Strategy has two steps: (i) Allocation of Replication Limits to each
file and (ii) Replication.

Allocation of Replication Limits: We define Replication Limit (iχ) of file iF as the

number of sites where the file iF should be replicated. It is to be noted that each file

should be replicated at least once, therefore the iχ is defined as:

))).(((1,min(#
1
∑

=

Φ−+=
n

j
jFi i

ceilingsites γηχ
(7)

In the Equation 7, the minimum of the ceiling value and the #of sites is taken
as a file could not be replicated more than the number of available sites.
During the allocation of iχ , priority is given to the files having the highest
Normalized Demand (

iFη). Based on the Demand Matrix shown in table 1,

the following
iFη values are calculated for each of the different files:

.6/1,12/1,4/1,24/1,12/1,6/1,6/1,24/1 87654321 ======== DDDDDDDD ηηηηηηηη

Based on the
iFη values calculated above, the Replication Limit allocations are:

.2,1,2,1,1,2,2,1 87654321 ======== DDDDDDDD χχχχχχχχ

Data Replication: Data Replication Strategy is based on the principle of choosing
sites based on the expected latency that the site is going to provide. We assume that
the data is placed at various storage elements as a result of replication strategy and no
further caching takes place. Let the probability of a job scheduled in site kS requiring

the file iF be ikp . Then the expected file latency (ijδ) of the file iF scheduled in site

jS is defined as:

kj

n

k
ikij lp .

1
∑

=
=δ

(8)

3 secs

5 secs

Prob = 0.2
Prob = 0.5

Prob = 0.3

S1 S2 S3

D1

D3

D8

D3

D4

D5

D2

D6

D7

D2

D6

D8

2
se

cs

3 secs

4
se

cs

7 secs

5 se cs

6 secs

S1

S2

S3

S4

(a) (b)

Fig. 2. Illustration of the (a) Expected Latency, (b) Final Config

Integration of Scheduling and Replication in Data Grids 381

Figure 2(a) illustrates the concept of expected latency. Let a file be replicated in
Site 1. Probabilities of using the file by a job scheduled in site S1, S2 and S3 are 0.2,
0.5 and 0.3 respectively. Therefore the expected latency of the file in site S1 becomes
(0*0.2 + 3*0.5 + 5*0.3) = 3 seconds. It is to be noted that the latency of the job re-
quiring the file in site S1 is 0, as the site contains the file. Similarly, Expected Com-

putation (ijθ) and Queuing Latencies (ijα) are given by:

ijjjj

n

k
ijij qPp θατθ .),/.(ij

1

==∑
=

(9)

Cost function for data replication strategy is += ijij
RC δ ijθ +

ijα , the algorithm aims

at minimizing ij
RC . It is to be noted that this is an NP-Complete problem as it can be

reduced to a K-Median problem [9]. The Data Replication Strategy is based on a
simple greedy approach. Based on the Demand Matrix, a Normalized Demand is
calculated (

iFη) (See Equation 1). Replication algorithm starts with the node having

the maximum
iFη value. Then Replication Limit (iχ) is calculated, where iχ indicates

how many times the file iF is replicated in the Data Grid. More the value of
iFη ,

higher is iχ . The best iχ sites are selected among n sites which has the lowest ij
RC .

Then replication is carried out by the file having the second highest
iFη value. This

process is repeated until all the files are exhausted.

An Example: The data replication strategy is shown in Table1 and Figure 1. The cost
of the strategy is provided in Table 2.

Table 2. Cost table based on the data replication strategy

Files\ Sites S1 S2 S3 S4

D6 3.83 5.50 2.50 3.00

D8 3.50 3.50 3.50 5.00

D3 3.00 3.25 4.50 4.00

D2 5.00 7.00 0.00 4.00

D4 3.50 3.50 3.50 5.00

D7 4.00 6.50 2.00 2.00

D5 3.00 6.00 4.00 0.00

D1 3.00 6.00 4.00 0.00

The final replication is shown in Figure 2(b). Based on the replication the latency
is improved from 5.38 seconds to 2.25 seconds, an improvement of 58%.

A. Chakrabarti, R.A. Dheepak, and S. Sengupta 382

3 Performance Studies

To evaluate the performance of the proposed strategies, the OptorSim [10] simula-
tor was used, which is a commonly used simulator for the simulation of Data Grid
environment. The simulation runs are taken with jobs arriving average exponential
inter-arrival time of 0.25 seconds, the processing speed at the nodes are considered
constant at 10 second/Gb of data. Number of jobs requesting a particular file
is distributed exponentially. This gives an elliptical file distribution per job
with an average of 7 and total files in the system (φ) as 20. The initial file

Fig. 3. Performance of schemes with (a) Bandwidth variation, (b) No. of Sites

Fig. 4. Performance of schemes with (a) no. of slots, (b) Job Arrival

distribution in the Grid is random. The data replication was carried out at
pre-determined intervals during the runs. The parameters that were varied in simu-
lation runs are network bandwidth (467 to 1067 Mbps); number of computing and
storage nodes (10 to 40); and storage capacity Vj (5 to 20 Gb). A separate set of
runs were taken by varying the average job inter-arrival times (1 seconds to 8 sec-
onds). We have compared performance of our data replication strategy against no
replication, and commonly used Least Recently Used (LRU), Least Frequently
Used (LFU) replication strategies. For job scheduling, the MJS version of our

Variation with
Bandwidth

260

182

146

119

200

154

120

97

168
152

114
104

277

203

153

126

192

127

99
87

145

95
82 83

0

50

100

150

200

250

300

467 667 867 1067

Bandwidth (Mbps)

A
vg

 J
o

b
 L

at
en

cy
 (

S
ec

s)

Ran-LRU

Ran-LFU
Ran-DRS

MJS-LRU

MJS-LFU

MJS - DRS

Variation with
No of Sites

126
117

108

118

104

93 95 9694

68
64

60

137

125
119

129

98

65
73

98

88

26
19 16

0

20

40

60

80

100

120

140

160

10 20 30 40

No of Sites

A
vg

 J
o

b
 L

at
en

cy
 (

S
ec

s)

Ran-LRU

Ran-LFU

Ran-DRS
MJS-LRU

MJS-LFU

MJS - DRS

Variation with Slots

488

137

64 59

508

122

61 66

574

117

57 40

489

150

63 68

465

118

63 62

683

94

43 36

0

100

200

300

400

500

600

700

800

5 10 15 20

No of Gb sized storage slots

A
vg

 J
o

b
 L

at
en

cy
 (

S
ec

s)

Ran-LRU

Ran-LFU

Ran-DRS

MJS-LRU

MJS-LFU

MJS - DRS

Variation with job arrivals

3 4

113

2 4

79

6 7

85

11 12

106

3 6

58

19 19

48

0

20

40

60

80

100

120

8 5 1

Avg. inter-arrival time (secs)

A
vg

 J
o

b
 L

at
en

cy
 (

se
cs

)

Ran-LRU

Ran-LFU

Ran-DRS

MJS-LRU

MJS-LFU

MJS - DRS

Integration of Scheduling and Replication in Data Grids 383

scheduling algorithm is used (with α value in the average queue size factor taken as
1). Essentially, during evaluation, the following combinations are considered :
Ran-NoRep – random scheduling with no replication, Ran-LRU – random schedul-
ing with LRU replication strategy, RAN- LFU – random with LFU, Ran-DRS –
random with our replication strategy, MJS-NoRep – our scheduling with no repli-
cation, MJS-LRU,MJS-LFU and MJS-DRS respectively.

3.1 Discussions

Figures 3 and 4 highlight the performance of the schemes in terms of variations in
average job latency with respect to the variations in bandwidth, number of sites, SE
size, and job arrival distributions. It is clear that the MJS scheduling scheme with
DRS performs best in most of the cases. The cases with no data replication strategies
perform far worse than other cases, and therefore, the results are omitted. For exam-
ple, average job latency with Ran-NoRep strategy with 10 sites is 1512 seconds – 10
to 12 times the average job latencies observed in other schemes.

The idle times for the processors were evenly distributed at high loads following
MJS-DRS scheme with a standard deviation of 3. The average job queue sizes at high
loads were also evenly distributed. The results show that with variation of bandwidth
(figure 3(a)), the Ran-DRS scheme achieves a performance improvement of up-to
19% over Ran-LFU and up-to 54% over Ran-LRU schemes. The MJS-DRS scheme
results in a job latency improvement of an average of 56% over Random scheduling
schemes and of 23% over other data replication schemes with our scheduling. With
increasing numbers of computing elements n, the MJS-DRS scheme performs signifi-
cantly better than other schemes (figure 3(b)). At 40 nodes the MJS-DRS scheme is
almost two times better than Ran-DRS scheme and even better than other replication
schemes. The results of the job latency with variations of storage capacity, and hence,
the number of gigabyte slots are interesting (figure 4(a)). While at lower storage
capacity (5 GB), other schemes perform marginally better than MJS-DRS; with in-
crease in capacity and jγ , MJS-DRS fares better than other schemes by an average
of 17%. As evident from figure 4(b), the MJS-DRS scheme scales up better than other
schemes with increase in load. With a decrease of average job inter-arrival time from
5 seconds to 1 seconds, the average job latency increases by 2.3 times while in case of
the other schemes the performance deteriorates by 10-12 times.

We have also compared our scheduling – replication scheme against economy
based replication strategy proposed in [11]. The preliminary results, as given in Table
3, suggest that the MJS-DRS scheme improves job latency over EcoModel optimizer
(EO) with ZipF file distribution.

Table 3. Performance comparison of MJS-DRS with EcoModel optimizer

Scheduler + Replication RS+EO RS+DRS MJS+EO MJS +DRS

Job Latency (secs) 106 104 69 48

A. Chakrabarti, R.A. Dheepak, and S. Sengupta 384

4 Conclusions

In this paper an interaction between replication and scheduling strategy called the
Integrated Replication and Scheduling (IRS) strategy, has been proposed. The data
replication is carried out in an asynchronous timer-controlled process that takes into
account history of jobs and data access patterns and is primarily based on the notion
of expected data file latency and a greedy optimization approach. The scheduling is
carried out in a matching-based or a cost-based manner with view of transient system-
state data like queue length. The approach MJS-DRS has shown promising results
with respect to the popular and commonly used data replication strategy, while the
cost-based scheduling approach is yet to be tested. Contrary to [8], our experience
shows that it is better to consider the interactions of replication and scheduling while
scheduling in a Data Grid and replication strategy works well even if the jobs are not
scheduled locally. In this paper, we have considered a centralized external scheduler
which may prove costly with increase in Data Grid size. In subsequent works, we
propose to extend this scheduling and replication scheme to a decentralized and hier-
archical environment. Further, we propose to analyze the sensitivity of the schemes
with respect to variations viz in file sizes, processor speeds, effect of data arrival pat-
tern in job execution etc.

References

1. Chervenak, I. Foster, C. Kesselman, C. Salisbury, S. Tuecke, “The Data Grid: Towards an
Architecture for the Distributed Management and Analysis of Large Scientific Datasets,”
Journal of Network and Computer Applications, vol. 23, pp. 187-200, 2001.

2. M. Beck and T. Moore, “The Internet2 distributed storage infrastructure project: An archi-
tecture for internet content channels,” Computer Networking and ISDN Systems,1998.

3. Foster and C. Kasselman, “The Grid 2: Blueprint for a new Computing Infrastructure,”
Morgan Kaufman, 2004.

4. H. Casanova, G. Obertelli, F. Berman and R. Wolski, “The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid,” in Proc. SuperComputing’00, 2000.

5. C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert, “Scheduling
Strategies for Master-Slave tasking for Heterogeneous Processor Platforms,” in IEEE
Trans. On Parallel and Distributed Systems, vol. 15, no. 4, Apr. 2004.

6. K. Ranganathan and I. Foster, “Identifying Dynamic Replication Strategies for a High
Performance Data Grid,” in Proc. Second IWGC, 2001.

7. D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau and M. Livny, “Gathering at the
Well: Creating Communities for Grid I/O,” in Proc. SuperComputing 2001, 2001.

8. K. Ranganathan and I. Foster, “Simulation Studies of Computation and Data Scheduling
Algorithms for Data Grids,” in Journal of Grid Computing, vol. 1, no. 2, Apr. 2003.

9. R.R. Mettu and K.G. Plaxton, “The Online Median Problem”, in SIAM Journal on Com-
puting, Vol. 32, No. 3, pp 816- 832, 2003

Integration of Scheduling and Replication in Data Grids 385

10. W.H. Bell, D.G. Cameron et al., “Simulation of Dynamic Grid Replication Strategies in
OptorSim,” in Proc. Third Int’l Workshop on Grid Computing, 2002.

11. W.H. Bell, D.G. Cameron, R. Carvajal-Schiaffino, A. P. Millar, K. Stockinger and F. Zini,
“Evaluation of an Economy-Based File Replication Strategy for a Data Grid”, in Proc.
CCGrid, May 2003.

	Introduction
	Motivation and Objectives
	Data Replication (DR) and Job Scheduling (JS) Problem

	Integrated Replication and Scheduling (IRS) Approach
	Job Scheduling (JS) Algorithm
	Data Replication Strategy

	Performance Studies
	Discussions

	Conclusions

