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Abstract. Data Grids seek to harness geographically distributed resources for 
large-scale data-intensive problems. Such problems involve loosely coupled 
jobs and large data sets distributed remotely. Data Grids have found applica-
tions in scientific research fields of high-energy physics, life sciences etc. as 
well as in the enterprises. The issues that need to be considered in the Data Grid 
research area include resource management for computation and data. Compu-
tation management comprises scheduling of jobs, scalability, and response 
time; while data management includes replication and movement of data at se-
lected sites. As jobs are data intensive, data management issues often become 
integral to the problems of scheduling and effective resource management in 
the Data Grids. The paper deals with the problem of integrating the scheduling 
and replication strategies. As part of the solution, we have proposed an Inte-
grated Replication and Scheduling Strategy (IRS) which aims at an iterative 
improvement of the performance based on the coupling between the scheduling 
and replication strategies. Results suggest that, in the context of our experi-
ments, IRS performs better than several well-known replication strategies. 

1   Introduction 

In an increasing number of scientific and enterprise applications, large data collec-
tions are emerging as important resources that need to be shared and accessed by 
research teams dispersed geographically. In domains as diverse as global climate 
change, high energy physics, and computational genomics, the volume of interesting 
data will soon total petabytes[1]. The combination of large data size, geographic 
distribution of users and resources, diverse data sources, and computationally inten-
sive analysis results in complex and stringent performance demands that are not satis-
fied by any existing data management infrastructure. The literature offers numerous 
point solutions that address the issues of data management, data distribution and job 
scheduling (e.g., see [2,3]). However, no integrating architecture exists that allows 
one to identify requirements and components common to different systems and hence 
apply different technologies in a coordinated fashion to a range of data-intensive 
application domains. Motivated by these considerations, researchers have launched a 
collaborative effort called Data Grids to design and produce such an integrating ar-
chitecture.  
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1.1   Motivation and Objectives 

Most previous scheduling work has considered data locality/storage issues as secon-
dary to job placement. Casanova et al. [4] describe an adaptive scheduling algorithm 
for parameter sweep applications that uses a centralized scheduler to compute an 
optimal placement of data prior to job execution. Banino et. al [5] talks about sched-
uling in a heterogeneous scenario. Work on data replication strategies for Grids in-
cludes [6], where the authors examined dynamic replica placement strategies in a 
hierarchical Grid environment. Recently, some work has been carried out which 
combines the scheduling and replication strategies to provide better overall perform-
ance in Data Grids [7]. Paper [8] talks about combining the replication and schedul-
ing strategies in a more organized manner. The authors assumed three components: 
an External Scheduler (ES), which determines where (i.e. to which site) to send jobs 
that originate at that site; a Local Scheduler (LS), which determines the order in 
which jobs that are allocated to that site are executed; and a Data Scheduler (DS), 
responsible for determining if and when to replicate data and/or delete local files. The 
Grid architecture considered in this paper is similar to one proposed in [8]. 

In Data Grid, both scheduling and replication aim at reducing the latency for job 
execution. While scheduling does that by directing the jobs to certain sites so that the 
latency involved in data movement and job processing is reduced, replication moves 
the data around so that the data access time during scheduling is reduced. The key 
contribution of the paper lies in the idea of the possible integration between schedul-
ing and replication called Integrated Replication and Scheduling (IRS) Approach. 
Most of the works in this field have concentrated either on replication or scheduling 
aspects of the problem. Though, some hybrid strategies have been proposed in [7], 
the first real effort to study the combination of these two strategies was first done in 
[8]. In [8], the authors have assumed that at a time each job will access only a single 
data resource like a file. However, in practical situations one job may require multiple 
files. In this paper, we propose a replication-scheduling algorithm which iteratively 
improves the performance of the Data Grids. The main objectives of the paper are to 
develop and evaluate an iterative replication and scheduling strategy. 

The assumptions made are: (i) Data Grid is considered to be an undirected graph. 
Hence, the transfer cost is same both ways, (ii) a two-stage scheduling as mentioned 
in [8] is assumed, (iii) the Grid is more or less stable i.e., the chances of link and node 
failures and rare, (iv) the data is mostly handled in a read-only mode, (vi) the jobs are 
non-preemptable. The rest of the paper is organized as followed. In Section 2 we 
outline our IRS algorithms in detail with suitable examples. In Section 3, we present 
and discuss the performance test results vis-à-vis some other approaches. We con-
clude in Section 4 by pointing out the salient contributions and future work. 

1.2   Data Replication (DR) and Job Scheduling (JS) Problem 

We model a job request as a 3-tuple J = < S , F
~ , C

~  >, where Sj  is the site at which 

the job is fired, F
~

is the list of files needed by the job and C
~

is the computation time 
required by the job J at site Sj . A site is modeled as a 3-tuple S = <

sPVF ,,ˆ >, where 
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F̂ is the set of files stored in the site S, V is the storage capacity at that site and  
sP is 

the computation capacity at that site.  It is to be noted that 
sP  is expressed in sec/GB. 

In [8], the authors have stated that 
sP  varies between 10 sec/GB to 50 sec/GB. The 

Job Scheduling (JS) problem states that: Let iJ be a job, and Ŝ = { nSSS .......2,1 } be the set 

of sites, then the problem is to schedule the job iJ  to a site jS , where SS j
ˆ∈ , such that 

the latency between submitting the job and job execution is minimized. A Demand 
Matrix T

SF ji
D mjni ...1,...1 ==∀ , is created based on a set of jobs J within a time interval T. 

The replication involves creation of identical copies of data files and their distribution 
over the nodes in a Grid. The Data Replication (DR) problem states that: Let T

SF ji
D be a 

demand matrix and  Ŝ  be a set of sites; the aim is to distribute a set of files to the 
sites, so that the latency is minimized based on the demand matrix and the volume 
constraint at each site is maintained. In this paper, an Integrated Replication and 
Scheduling (IRS) approach is proposed which combines the replication and schedul-
ing schemes. Data Replication (DR) algorithm is a centralized algorithm running at 
certain interval of time. After the arrival of jobs, each External Schedulers take the 
help of replication information and schedule so that the job scheduled has the least 
latency in terms of execution.  

2   Integrated Replication and Scheduling (IRS) Approach 

We start by defining some operational terms. 

Normalized Demand (
iFη ): Ratio of the demand for file iF  to the demand of all files.  
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File Latency ( ij
k∆ ):  Latency for a file kF to be moved from site 

iS to
jS . 

Computational Latency ( ijω ):  Latency for a job i to be executed at site jS  
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Queuing Latency ( ijQ ): Latency for a job i due to the queuing at the site jS (queue size 

( iq ). In case of assumption that all the jobs take the same time for execution, then 
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Slots Available ( jγ ):  Average number of files that can be stored in site jS . Thus, 

τ
γ j

j

V
= , τ = average file size 

(4) 
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2.1   Job Scheduling (JS) Algorithm 

The JS algorithm has two parts – (a) Job Scheduling and (b) Matrix Updating.  

Job Scheduling Strategies: Two different Job Scheduling Strategies have been pro-
posed: Matching based Job Scheduling (MJS) and Cost Based Job Scheduling (CJS).  
Matching based Job Scheduling (MJS): In MJS, the jobs are scheduled to those sites 
which have the highest match in terms of data (maximum number of files for the job 
available at the site). Any tie is broken by reducing the latency involved in moving 
the data which is not present in the scheduled site from the site(s) containing the data. 
It is possible that MJS may distribute the jobs to the same site resulting in the queue 
size increase in that site. To distribute the jobs to different sites the scheduling is done 

based  on  
iq

q
mv .=  factor, where m is the maximum match and q  is the average queue 

size and iq is the queue size at the site. MJS schedules based on the maximum v 
value. Figure 1 shows the topology of a Data Grid. S1, S2, S3 and S4 are the different 
sites in the Data Grid. The numbers and the arrows show the latency to move a file 
from one data site to the other. The elements in each site indicate the files that are 
present in each of those sites. Let a job come which requires files D1, D3 and D6. 
According to the MJS algorithm, both S2 and S4 are candidate sites where the job can 
be scheduled. If the job is scheduled in S2, then it takes 7 seconds to move the file D6 
from S3 (File Originating Site) to S2. On the other hand, if the job is scheduled onto 
S4, then it takes 4 seconds. Therefore, the job is scheduled onto site S4. 
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Fig. 1. Topology of an example Data Grid 

Cost Based Job Scheduling (CJS): Another alternative to matching based job schedul-
ing, a cost based job scheduling strategy is proposed. Cost ( s

ijC ) of scheduling a job iJ  

onto a site jS is defined as the combined cost of moving the data into the site jS , latency 

to compute the job iJ  in the site jS  and the wait time in the queue in the site jS . The 

job is scheduled onto the site which has the minimum s
ijC . Referring back to the example 

shown in Figure 1, we assume that in this case the computational time is 0 and queues at 
each site is also 0. Therefore s

ijC  is composed of only the data latency. The values of 
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s
ijC for j=1,2,3,4 are: s

iC 1 = 7 secs, s
iC 2 = 7 secs, s

iC 3 = 8 secs, s
iC 4 = 4 secs. Therefore, the 

job is scheduled onto site S4, same as MJS. Though both the algorithms provide similar 
performance in this example, generally CJS will be better if instantaneous queue infor-
mation is available. However, in case of partial information the comparison between 
these algorithms can be an interesting future study. 

Updating the Demand Matrix: In this step, the Demand Matrix is updated as illus-
trated below. The example is based on the topology shown in Fige 1. Let  
the files required by job iJ  be iF

~
. The data files required are: ),4,3,1(

~
1 DDDF =  

),5,2,1(
~

2 DDDF =  ),8,3,2(
~

3 DDDF =  ),7,3,1(
~

4 DDDF =  ),8,5,4(
~

5 DDDF =  ),7,5,1(
~

6 DDDF =  

),5,4,3(
~

7 DDDF =  ).8,7,1(
~

8 DDDF =  Based on the job requests, the given topology and 
the MJS; the following Demand Matrix can be constructed: 

Table 1. Demand Matrix for the topology in Figure 1 based on a job pattern 

Files\Sites S1 S2 S3 S4 Total 

D1 0 0 0 1 1 

D2 0 0 4 0 4 

D3 0 2 1 1 4 

D4 0 1 1 0 2 

D5 0 0 0 1 1 

D6 0 1 3 2 6 

D7 0 0 1 1 2 

D8 0 2 2 0 4 

Total 0 6 12 6 24 

Scheduling of Jobs with Data Ordering: Till now we have assumed that each job 
requires data all at the same time i.e., at the time of starting the job. However, the cost 
of scheduling can be modified in case of order of data files. By order of data files we 
mean that say the job requires files ( 3,21 , fff ) at the start of the job and requires 

( 54 , ff ) later. Then files 54 , ff  can be obtained later than files 3,21 , fff .  Therefore, 

∑∑∑∑
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Let 
1112,11 ... kfff  be the set of files required initially (Step 1),  2222,21 ... kfff be the 

number of files required in Step 2, 
jjkjj fff ...2,1 be the files required in Step j, and 

ppkpp fff ...2,1 be the files required in Step p (last step), then 
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Where L(i) is the latency at the ith step, K files are required at step i and L(p) is the 
total latency. 

2.2   Data Replication Strategy 

Data Replication Strategy has two steps: (i) Allocation of Replication Limits to each 
file and (ii) Replication. 

Allocation of Replication Limits: We define Replication Limit ( iχ ) of file iF  as the 

number of sites where the file iF  should be replicated. It is to be noted that each file 

should be replicated at least once, therefore the iχ is defined as: 

))).(((1,min(#
1
∑

=

Φ−+=
n

j
jFi i

ceilingsites γηχ  
(7) 

In the Equation 7, the minimum of the ceiling value and the #of sites is taken 
as a file could not be replicated more than the number of available sites.  
During the allocation of iχ , priority is given to the files having the highest  
Normalized Demand (

iFη ). Based on the Demand Matrix shown in table 1,  

the following 
iFη  values are calculated for each of the different files: 

.6/1,12/1,4/1,24/1,12/1,6/1,6/1,24/1 87654321 ======== DDDDDDDD ηηηηηηηη

Based on the 
iFη values calculated above, the Replication Limit allocations are: 

.2,1,2,1,1,2,2,1 87654321 ======== DDDDDDDD χχχχχχχχ  

Data Replication: Data Replication Strategy is based on the principle of choosing 
sites based on the expected latency that the site is going to provide. We assume that 
the data is placed at various storage elements as a result of replication strategy and no 
further caching takes place. Let the probability of a job scheduled in site kS  requiring 

the file iF  be ikp . Then the expected file latency ( ijδ ) of the file iF  scheduled in site 

jS  is defined as: 

kj

n

k
ikij lp .

1
∑

=
=δ  

(8) 
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(a)                                                  (b) 

Fig. 2. Illustration of the (a) Expected Latency, (b) Final Config 
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Figure 2(a) illustrates the concept of expected latency. Let a file be replicated in 
Site 1. Probabilities of using the file by a job scheduled in site S1, S2 and S3 are 0.2, 
0.5 and 0.3 respectively. Therefore the expected latency of the file in site S1 becomes 
(0*0.2 + 3*0.5 + 5*0.3) = 3 seconds. It is to be noted that the latency of the job re-
quiring the file in site S1 is 0, as the site contains the file. Similarly, Expected Com-

putation ( ijθ ) and Queuing Latencies ( ijα ) are given by: 

ijjjj

n

k
ijij qPp θατθ .    ),/.( ij

1

==∑
=

 
(9) 

Cost function for data replication strategy is += ijij
RC δ ijθ +

ijα , the algorithm aims 

at minimizing ij
RC . It is to be noted that this is an NP-Complete problem as it can be 

reduced to a K-Median problem [9]. The Data Replication Strategy is based on a 
simple greedy approach. Based on the Demand Matrix, a Normalized Demand is 
calculated (

iFη ) (See Equation 1). Replication algorithm starts with the node having 

the maximum 
iFη value. Then Replication Limit ( iχ ) is calculated, where iχ  indicates 

how many times the file iF  is replicated in the Data Grid. More the value of
iFη , 

higher is iχ . The best iχ sites are selected among n sites which has the lowest ij
RC . 

Then replication is carried out by the file having the second highest 
iFη value. This 

process is repeated until all the files are exhausted.  

An Example: The data replication strategy is shown in Table1 and Figure 1. The cost 
of the strategy is provided in Table 2. 

Table 2. Cost table based on the data replication strategy 

Files\ Sites S1 S2 S3 S4 

D6 3.83 5.50 2.50 3.00 

D8 3.50 3.50 3.50 5.00 

D3 3.00 3.25 4.50 4.00 

D2 5.00 7.00 0.00 4.00 

D4 3.50 3.50 3.50 5.00 

D7 4.00 6.50 2.00 2.00 

D5 3.00 6.00 4.00 0.00 

D1 3.00 6.00 4.00 0.00 

The final replication is shown in Figure 2(b). Based on the replication the latency 
is improved from 5.38 seconds to 2.25 seconds, an improvement of 58%. 
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3   Performance Studies 

To evaluate the performance of the proposed strategies, the OptorSim [10] simula-
tor was used, which is a commonly used simulator for the simulation of Data Grid 
environment. The simulation runs are taken with jobs arriving average exponential 
inter-arrival time of 0.25 seconds, the processing speed at the nodes are considered 
constant at 10 second/Gb of data. Number of jobs requesting a particular file  
is distributed exponentially. This gives an elliptical file distribution per job  
with an average of 7 and total files in the system (φ ) as 20. The initial file  
 

 
 
 
 
 
 
 
 

 

Fig. 3. Performance of schemes with (a) Bandwidth variation, (b) No. of Sites 

 
 

 

 

 

Fig. 4. Performance of schemes with (a) no. of slots, (b) Job Arrival 

distribution in the Grid is random. The data replication was carried out at  
pre-determined intervals during the runs. The parameters that were varied in simu-
lation runs are network bandwidth (467 to 1067 Mbps); number of computing and 
storage nodes (10 to 40); and storage capacity Vj (5 to 20 Gb). A separate set of 
runs were taken by varying the average job inter-arrival times (1 seconds to 8 sec-
onds). We have compared performance of our data replication strategy against no 
replication, and commonly used Least Recently Used (LRU), Least Frequently 
Used (LFU) replication strategies.  For job scheduling, the MJS version of our 
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scheduling algorithm is used (with α value in the average queue size factor taken as 
1). Essentially, during evaluation, the following combinations are considered : 
Ran-NoRep – random scheduling with no replication, Ran-LRU – random schedul-
ing with LRU replication strategy, RAN- LFU – random with LFU, Ran-DRS – 
random with our replication strategy, MJS-NoRep – our scheduling with no repli-
cation, MJS-LRU,MJS-LFU and MJS-DRS respectively.   

3.1   Discussions 

Figures 3 and 4 highlight the performance of the schemes in terms of variations in 
average job latency with respect to the variations in bandwidth, number of sites, SE 
size, and job arrival distributions. It is clear that the MJS scheduling scheme with 
DRS performs best in most of the cases. The cases with no data replication strategies 
perform far worse than other cases, and therefore, the results are omitted. For exam-
ple, average job latency with Ran-NoRep strategy with 10 sites is 1512 seconds – 10 
to 12 times the average job latencies observed in other schemes. 

The idle times for the processors were evenly distributed at high loads following 
MJS-DRS scheme with a standard deviation of 3. The average job queue sizes at high 
loads were also evenly distributed. The results show that with variation of bandwidth 
(figure 3(a)), the Ran-DRS scheme achieves a performance improvement of up-to 
19% over Ran-LFU and up-to 54% over Ran-LRU schemes. The MJS-DRS scheme 
results in a job latency improvement of an average of 56% over Random scheduling 
schemes and of 23% over other data replication schemes with our scheduling. With 
increasing numbers of computing elements n, the MJS-DRS scheme performs signifi-
cantly better than other schemes (figure 3(b)). At 40 nodes the MJS-DRS scheme is 
almost two times better than Ran-DRS scheme and even better than other replication 
schemes. The results of the job latency with variations of storage capacity, and hence, 
the number of gigabyte slots are interesting (figure 4(a)).  While at lower storage 
capacity (5 GB), other schemes perform marginally better than MJS-DRS; with in-
crease in capacity and  jγ  , MJS-DRS fares better than other schemes by an average 
of 17%. As evident from figure 4(b), the MJS-DRS scheme scales up better than other 
schemes with increase in load. With a decrease of average job inter-arrival time from 
5 seconds to 1 seconds, the average job latency increases by 2.3 times while in case of 
the other schemes the performance deteriorates by 10-12 times.  

We have also compared our scheduling – replication scheme against economy 
based replication strategy proposed in [11]. The preliminary results, as given in Table 
3, suggest that the MJS-DRS scheme improves job latency over EcoModel optimizer 
(EO) with ZipF file distribution. 

Table 3. Performance comparison of MJS-DRS with EcoModel optimizer 

Scheduler + Replication RS+EO  RS+DRS MJS+EO MJS +DRS 

Job Latency (secs) 106 104 69 48 
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4   Conclusions 

In this paper an interaction between replication and scheduling strategy called the 
Integrated Replication and Scheduling (IRS) strategy, has been proposed. The data 
replication is carried out in an asynchronous timer-controlled process that takes into 
account history of jobs and data access patterns and is primarily based on the notion 
of expected data file latency and a greedy optimization approach. The scheduling is 
carried out in a matching-based or a cost-based manner with view of transient system-
state data like queue length. The approach MJS-DRS has shown promising results 
with respect to the popular and commonly used data replication strategy, while the 
cost-based scheduling approach is yet to be tested. Contrary to [8], our experience 
shows that it is better to consider the interactions of replication and scheduling while 
scheduling in a Data Grid and replication strategy works well even if the jobs are not 
scheduled locally. In this paper, we have considered a centralized external scheduler 
which may prove costly with increase in Data Grid size. In subsequent works, we 
propose to extend this scheduling and replication scheme to a decentralized and hier-
archical environment. Further, we propose to analyze the sensitivity of the schemes 
with respect to variations viz in file sizes, processor speeds, effect of data arrival pat-
tern in job execution etc.  
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