
A. Sanfeliu et al. (Eds.): CIARP 2004, LNCS 3287, pp. 53–58, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Optimal Positioning of Sensors in 2D

Andrea Bottino and Aldo Laurentini

Dipartimento di Automatica e Informatica, Politecnico di Torino
Corso Duca degli Abruzzi, 24 – 10129 Torino, Italy

{andrea.bottino,aldo.laurentini}@polito.it

Abstract. Locating the minimum number of sensors able to see at the same
time the entire surface of an object is an important practical problem. Most
work presented in this area is restricted to 2D objects. In this paper we present a
sensor location algorithms with the following properties. In principle, the algo-
rithm could be extended to 3D objects. The solution given by the algorithm
converges toward the optimal solution when increasing the resolution of the
object. Limitations due to real sensors can be easily taken into account.

1 Introduction

Sensor planning is an important research area in computer vision. It consists of auto-
matically computing sensor positions or trajectories given a task to perform, the sen-
sor features and a model of the environment [1]. Sensor panning problems require
considering a number of constraints, first of all the visibility constraint. Although in
general the problem addressed is 3D, in some cases it can be restricted to 2D [2,7,11].
This is for instance the case of buildings, which can be modeled as objects obtained
by extrusion. Placing sensors able to see entirely a 2D environment is similar, but not
equal, to the popular Art Gallery Problem [4, 5], referring to the surveillance, or
“covering” of polygonal areas with or without polygonal holes. The difference is that
we are interested in observing only the boundary of the object. In addition, the task of
our sensors could be to observe the exterior boundary of a set of general polygons
(this problem is known as the fortress problem for a single polygon). Then, our 2D
visibility problem can be called the internal or external edge covering problem. At
present, no finite exact algorithm exists able to locate a minimum unrestricted set of
guards (sensors) in a given polygon. In addition, no approximate algorithm with
guaranteed approximation has been found. A detailed analysis of the edge covering
problem compared with the classic Art Gallery problem is reported in [3]. Among
other results, it is shown that in general a minimal set of guards for the Art Gallery
problem is not minimal for the interior edge covering, and that also the edge covering
problem is NP-hard. However, edge covering admits a restriction which makes prac-
tical sense and allows to construct a finite algorithm which supplies a minimum set of
viewpoints able to cover internal or external polygonal boundaries. The restriction is
that each edge must be observed entirely by at least one guard. It allows finding one
or more sets of regions where a minimal set of viewpoints can be independently lo-
cated. Observe that this idea is related with the practical requirement of observing a
feature in its entirety [14]. In addition the solution provided by the algorithm asymp-

54 Andrea Bottino and Aldo Laurentini

totically converges to the optimal solution of the unrestricted problem if the edges are
subdivided into shorter segments. Finally, the algorithm can easily take into account
several other constraints.

2 The Positioning Algorithm

Here we briefly present the essentials of the 2D sensor-positioning algorithm. The
steps of the algorithm are as follows.

1. Divide the space into a partition Π of maximal regions such that the same set of
edges is completely visible from all points of a region.

2. Find the dominant zones (a zone Z of Π is dominant if no other zone Z* exists
which covers the edges of Z plus some other).

3. Select the minimum number of dominant zones able to cover all the faces.

The idea of partition Π has also been proposed, in restricted cases, in [11] and
[12]. Step 1), and 2) of the algorithm, as shown in the paper, can be performed in
polynomial time. Step 3) is an instance of the well known set covering problem,
which in the worst case is exponential. However, covering the edges using the domi-
nant zone only usually substantially reduces the computation complexity. In addition,
in many cases several dominant zones are also essentials, that is cover some edges
not covered by any other dominant zone, and must be selected. Finally, polynomial
selection algorithms exist with guaranteed performance (see [13]).

In the following paragraph we will detail the steps of the algorithm. The environ-
ment is assumed to consist of simple polygons. Partition Π is built by means of a
particular set of lines, called the active visibility lines. Each resulting region will be
associated with the list of the edges that are completely visible from that zone. This
set can be built traversing the partition graph from an initial region whose set of visi-
ble edges is known. Observe that interior inspection is similar, with a polygon enclos-
ing the workspace and defining the outer border.

2.1 Visibility Lines

A visibility line (VL) relative to an edge divides the space into areas where the edge is
completely visible and areas where it is partially or totally hidden. The VLs relative
to an edge start at one of its vertices and lye in the half plane opposite to the inner
side of the object, as respect to the edge. The angle between this line and the edge is
in the range [0,π]. Also, each of this lines has a positive side, which is the side closer
to the originating edge. Examples can be seen in Fig. 1, where the arrows mark the
positive side of the VLs.

Fig. 1. VLs corresponding to the boundaries (a and b) of an edge

Optimal Positioning of Sensors in 2D 55

Each VL can have an active and an inactive part. Only the active VLs will be the
effective boundary of the region of complete visibility of the edge they are related to.
Active VLs can be found in two cases:

1. when the angle with its originating edge is π and the line does not enter the object
in the proximity of the originating vertex (Fig. 2(a))

2. when the line is passing through another vertex of the object and, in the
neighbourhood of this vertex, the inner side of the object lies on the negative side
of the line (Fig. 2(b)). The inactive part of the VL is the segment connecting the
originating and the intersecting vertices, while the active part is the remaining part
of the VL

In both cases, any active VL stops if it intersects the object somewhere else (see for
instance Fig. 2(a)).

Fig. 2. (a) active VL making an angle of π
with edge e. (b) VLs related to edge e; the
active part of each line is bold. The arrows
mark the positive side of the active VLs

Fig. 3. Extra conditions to identifiy active
VLs. (a) active VL intersecting an inactive
VL. (b) two active VLs intersecting. The
dashed lines represent inactive VLs

Two other conditions must be checked to identify an active VL:

1. if an active VL relative to an extreme of an edge intersect the inactive part of a
VL relative to the other extreme of the same edge, then the second active VL is
indeed inactive (e.g. L1 in Fig. 3(a) is inactive)

2. if the active parts of two VL relative to the two extremes of the same edge inter-
sect somewhere, then they both stop at the intersection point (e.g. L1 and L2 seg-
ments in Fig. 3(b) are not active)

We can associate to each active VL an operator ^, where ^j means that the line is the
boundary between a region where edge j is hidden and a region where the edge j is
visible. The operator has also a direction, which points at the area where the edge is
visible. In Fig. 4, we can see an example, where the operator ^ is applied to the VLs
related to edges 5 and 8.

Fig. 4. Some active VLs (thick lines) and associated operators ^

56 Andrea Bottino and Aldo Laurentini

2.2 The Partitioning Algorithm

Given the definition of active VL and operator ^, we can outline our partitioning
algorithm:

1. found all the active VLs and the associate operator ^
2. intersect all the active VLs and subdivide the plane in regions
3. select one region and compute the set of visibile edges V(e1,…,en)

for that zone
4. visit all the regions and compute their set of visible edges with

the following rules:
a. when crossing a boundary between R1 and R2 in the direction of

the operator ^, the operand (j) is added to the set of visible
edges of R2

b. when crossing a boundary between R1 and R2 in the opposite di-
rection of the operator ^, the operand (j) is removed from the
set of visible edges of R2

An example of how the algorithm works is shown in Fig. 5, where the starting region
has been marked with a different color. Note that several active VLs can be overlap-
ping (or, in other words, we can have single VLs with multiple operators ^ associ-
ated). The dominant zones are highlighted by boxing their list of visible edges. The
dominant zone in the upper left corner of the figure is also essential, and therefore it
must be selected in the solution. It immediately comes that also the zone in the lower
right corner must be selected to cover edges 6 and 7. The algorithm has been imple-
mented, and some examples are shown in Fig. 6. For each example, the partition Π is
shown, and the dominant regions that have been selected to cover all the edges are
highlighted. In table 1 the number of objects, edges, regions of the partition and sen-
sors placed for each case are summarized.

To find the active VLs, O(n2) pair of vertices must be considered. Checking if a
line intersects the polygon at one the vertices can be done in constant time. For each
edge, checking the extra conditions and finding the active segment requires intersect-
ing each line with any other and sorting the intersections. Overall O(n2) VLs can be
obtained in O(n3logn) time. A classic algorithm can create the partition Π in O(n4)
time. The partition can also be constructed by a plane sweep algorithm in O(p log p)
time, where p is the number of vertices of the partition (regions and edges also are
O(p)) [8]. The total time for computing partition Π is O(n3logn + p log p). Computing
the visible edges of the starting region takes O(n2) time [9]. The time required for
traversing the partition is O(p) [10]. The overall time bound of step 1 is O(n3logn + p
log p+p). To find d dominant zones, we must compare the sets of visible edges of
each region. This process can be shortened if we observe that a necessary condition
for a region to be dominant is that all the positive crossing directions of the edges of
the region lead to the interior of the region (except for the edges of the objects).
Given c candidate found with this rule, d dominant regions can be found in O(nc2)
time [3]. Steps 1 and 2 of the algorithm requires O(n3logn + p log p + p + nc2) time.
Step 3 requires, in the worst case, exponential time. However, an interesting alterna-
tive could be using a greedy heuristic, which selects the region covering the largest
number of uncovered edges each time, requiring polynomial time.

Optimal Positioning of Sensors in 2D 57

Fig. 5. Example of region labeling. The starting region is marked with a different color. The
dominant zone are the one whose visible edges list is surrounded by a box

Fig. 6. Various examples showing several objects, the corresponding VLs and space partition,
the dominant zones selected (drawn with a different background); for each zone, the cross
represent a possible placement of a sensor

3 Conclusions

In this paper a method for positioning a minimum number of sensors into a polygonal
environment has been presented for some sample cases. The approach has been im-
plemented and results have been presented. Future work will be focused on extending
the algorithm to 3D, maintaining the general idea of the 2D approach, that is: comput-
ing a partition Π of the viewing space of maximal regions Zi, finding the dominant
zones and selecting the minimum number of dominant zones able to cover all the
faces. The idea is to find a suitable definition for active visibility surfaces, equivalent
to the active VLs for the 2D case, in order to subdivide the space into regions where
the same set of surfaces is completely visible.

58 Andrea Bottino and Aldo Laurentini

Table 1. Total number of objects, edges, Active VLs, regions and sensors needed to cover all
the edges of the objects of the examples of Fig. 6

Objects Edges Active VLs Regions Sensors
1 10 17 23 3
2 14 33 68 3
3 18 61 168 3
4 22 80 275 4

References

1. Scott W.R, Roth G. (2003) View Planning for Automated Three-Dimensional Object Re-
construction and Inspection. ACM Computing Surveys, Vol. 35(1), pp. 64–96

2. Kazakakis G. D., Argyros A.A. (2002) Fast positioning of limited visibility guards for in-
spection of 2D workspaces. Proc. Conf. On Intelligent Robots and Systems, pp.2843-2848

3. Laurentini A. (1999) Guarding the walls of an art gallery. The Visual Computer, vol.15,
pp.265-278

4. O'Rourke J.(1987) Art gallery theorems and algorithms. Oxford University Press, New
York

5. Shermer T.(1992) Recent results in art galleries. IEEE Proc. Vol. 80, pp.1384-1399
6. Nemhauser G., Wolsey L. (1988) Integer and Combinatorial Optimization. John Wiley&

Sons
7. Danner T., Kavraki L.E. (2000) Randomized planning for short inspection paths. Proceed-

ings. ICRA '00, vol. 2, pp. 971 – 976
8. Gigus Z, Canny J, Seidel R (1991) Efficiently computing and representing aspect graphs of

polyhedral objects. IEEE Trans Patt Anal Machine Intell 13:542–551
9. Preparata F, Shamos M (1985) Computational geometry: an introduction. Springer, Berlin,

Heidelberg, New York
10. Baase S (1988) Computer algorithms. Addison-Wesley, New York
11. Talluri R., Aggarwal J.K.(1996) Mobile robot self-location using model-image feature

correspondence. IEEE Trans. On Robotics and Automation, 12(1), pp.63-77
12. Simsarian K.T., Olson T. J., Nandhakumar N. (1996) View-invariant regions and mobile

robot self-localization, IEEE Trans. Robot. and Automat., vol. 12(5) , pp. 810-816
13. Nemhauser, Wolsey L. (1988), Integer and Combinatorial Optimization. John Wiley

pag.466
14. K. Tarabanis, R.Y.Tsai, and Anil Kaul, (1996) Computing occlusion-free viewpoints. IEEE

Trans. Pattern Analysis and Machine Intelligence, 18(3).pp.279-292

	1 Introduction
	2 The Positioning Algorithm
	2.1 Visibility Lines
	2.2 The Partitioning Algorithm

	3 Conclusions
	References

