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Abstract. Locating the minimum number of sensors able to see at the same 
time the entire surface of an object is an important practical problem. Most 
work presented in this area is restricted to 2D objects. In this paper we present a 
sensor location algorithms with the following properties. In principle, the algo-
rithm could be extended to 3D objects. The solution given by the algorithm 
converges toward the optimal solution  when increasing the resolution of the 
object. Limitations due to real sensors can be easily taken into account. 

1   Introduction 

Sensor planning is an important research area in computer vision. It consists of auto-
matically computing sensor positions or trajectories given a task to perform, the sen-
sor features and a model of the environment [1]. Sensor panning problems require 
considering a number of constraints, first of all the visibility constraint. Although in 
general the problem addressed is 3D, in some cases it can be restricted to 2D [2,7,11]. 
This is for instance the case of buildings, which can be modeled as objects obtained 
by extrusion. Placing sensors able to see entirely a 2D environment is similar, but not 
equal, to the popular Art Gallery Problem [4, 5], referring to the surveillance, or 
“covering” of polygonal areas with or without polygonal holes. The difference is that 
we are interested in observing only the boundary of the object. In addition, the task of 
our sensors could be to observe the exterior boundary of a set of general polygons 
(this problem is known as the fortress problem for a single polygon). Then, our 2D 
visibility problem can be called the internal or external edge covering problem. At 
present, no finite exact algorithm exists able to locate a minimum unrestricted set of 
guards (sensors) in a given polygon. In addition, no approximate algorithm with 
guaranteed approximation has been found. A detailed analysis of the edge covering 
problem compared with the classic Art Gallery problem is reported in [3]. Among 
other results, it is shown that in general a minimal set of guards for the Art Gallery 
problem is not minimal for the interior edge covering, and that also the edge covering 
problem is NP-hard. However, edge covering admits a restriction which makes prac-
tical sense and allows to construct a finite algorithm which supplies a minimum set of 
viewpoints able to cover internal or external  polygonal boundaries. The restriction is 
that each edge must be observed entirely by at least one guard. It allows finding one 
or more sets of regions where a minimal set of viewpoints can be independently lo-
cated. Observe that this idea is related with the practical requirement of observing a 
feature in its entirety [14]. In addition the solution provided by the algorithm asymp-
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totically converges to the optimal solution of the unrestricted problem if the edges are 
subdivided into shorter segments. Finally, the algorithm can easily take into account 
several other constraints. 

2   The Positioning Algorithm 

Here we briefly present the essentials of the 2D sensor-positioning algorithm. The 
steps of the algorithm are as follows. 

1. Divide the space into a partition Π of maximal regions such that the same set of 
edges is completely visible from all points of a region.  

2. Find the dominant zones (a zone Z of Π is dominant if no other zone Z* exists 
which covers the edges of Z plus some other).  

3. Select the minimum number of dominant zones able to cover all the faces. 

The idea of partition Π has also been proposed, in restricted cases, in [11] and 
[12]. Step 1), and 2) of the algorithm, as shown in the paper, can be performed in 
polynomial time. Step 3) is an instance of the well known set covering problem, 
which in the worst case is exponential. However, covering the edges using the domi-
nant zone only usually substantially reduces the computation complexity. In addition, 
in many cases several dominant zones are also essentials, that is cover some edges 
not covered by any other dominant zone, and must be selected. Finally, polynomial 
selection algorithms exist with guaranteed performance (see [13]).  

In the following paragraph we will detail the steps of the algorithm. The environ-
ment is assumed to consist of simple polygons. Partition Π is built by means of a 
particular set of lines, called the active visibility lines. Each resulting region will be 
associated with the list of the edges that are completely visible from that zone. This 
set can be built traversing the partition graph from an initial region whose set of visi-
ble edges is known. Observe that interior inspection is similar, with a polygon enclos-
ing the workspace and defining the outer border.  

2.1   Visibility Lines 

A visibility line (VL) relative to an edge divides the space into areas where the edge is 
completely visible and areas where it is partially or totally hidden. The VLs relative 
to an edge start at one of its vertices and lye in the half plane opposite to the inner 
side of the object, as respect to the edge. The angle between this line and the edge is 
in the range [0,π]. Also, each of this lines has a positive side, which is the side closer 
to the originating edge. Examples can be seen in Fig. 1, where the arrows mark the 
positive side of the VLs. 

 

Fig. 1. VLs corresponding to the boundaries (a and b) of an edge 
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Each VL can have an active and an inactive part. Only the active VLs will be the 
effective boundary of the region of complete visibility of the edge they are related to. 
Active VLs can be found in two cases:  

1. when the angle with its originating edge is π and the line does not enter the object 
in the proximity of the originating vertex (Fig. 2(a))  

2. when the line is passing through another vertex of the object and, in the 
neighbourhood of this vertex, the inner side of the object lies on the negative side 
of the line (Fig. 2(b)). The inactive part of the VL is the segment connecting the 
originating and the intersecting vertices, while the active part is the remaining part 
of the VL  

In both cases, any active VL stops if it intersects the object somewhere else (see for 
instance Fig. 2(a)).  

 

Fig. 2. (a) active VL making an angle of π 
with edge e. (b) VLs related to edge e; the 
active part of each line is bold. The arrows 
mark the positive side of the active VLs 

Fig. 3. Extra conditions to identifiy active 
VLs. (a) active VL intersecting an inactive 
VL. (b) two active VLs intersecting. The 
dashed lines represent inactive VLs 

Two other conditions must be checked to identify an active VL:  

1. if an active VL relative to an extreme of an edge intersect the inactive part of a 
VL relative to the other extreme of the same edge, then the second active VL is 
indeed inactive (e.g. L1 in Fig. 3(a) is inactive)  

2. if the active parts of two VL relative to the two extremes of the same edge inter-
sect somewhere, then they both stop at the intersection point (e.g. L1 and L2 seg-
ments in Fig. 3(b) are not active) 

We can associate to each active VL an operator ^, where ^j means that the line is the 
boundary between a region where edge j is hidden and a region where the edge j is 
visible. The operator has also a direction, which points at the area where the edge is 
visible. In Fig. 4, we can see an example, where the operator ^ is applied to the VLs 
related to edges 5 and 8. 

 

Fig. 4. Some active VLs (thick lines) and associated operators ^ 
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2.2   The Partitioning Algorithm 

Given the definition of active VL and operator ^, we can outline our partitioning 
algorithm: 

1. found all the active VLs and the associate operator ^ 
2. intersect all the active VLs and subdivide the plane in regions 
3. select one region and compute the set of visibile edges V(e1,…,en) 

for that zone 
4. visit all the regions and compute their set of visible edges with 

the following rules: 
a. when crossing a boundary between R1 and R2 in the direction of 

the operator ^, the operand (j) is added to the set of visible 
edges of R2 

b. when crossing a boundary between R1 and R2 in the opposite di-
rection of the operator ^, the operand (j) is removed from the 
set of visible edges of R2 

An example of how the algorithm works is shown in Fig. 5, where the starting region 
has been marked with a different color. Note that several active VLs can be overlap-
ping (or, in other words, we can have single VLs with multiple operators ^ associ-
ated). The dominant zones are highlighted by boxing their list of visible edges. The 
dominant zone in the upper left corner of the figure is also essential, and therefore it 
must be selected in the solution. It immediately comes that also the zone in the lower 
right corner must be selected to cover edges 6 and 7. The algorithm has been imple-
mented, and some examples are shown in Fig. 6. For each example, the partition Π is 
shown, and the dominant regions that have been selected to cover all the edges are 
highlighted. In table 1 the number of objects, edges, regions of the partition and sen-
sors placed for each case are summarized. 

To find the active VLs, O(n2) pair of vertices must be considered. Checking if a 
line intersects the polygon at one the vertices can be done in constant time. For each 
edge, checking the extra conditions and finding the active segment requires intersect-
ing each line with any other and sorting the intersections. Overall O(n2) VLs can be 
obtained in O(n3logn) time. A classic algorithm can create the partition Π in O(n4) 
time. The partition can also be constructed by a plane sweep algorithm in O(p log p) 
time, where p is the number of vertices of the partition (regions and edges also are 
O(p)) [8]. The total time for computing partition Π is O(n3logn + p log p). Computing 
the visible edges of the starting region takes O(n2) time [9]. The time required for 
traversing the partition is O(p) [10]. The overall time bound of step 1 is O(n3logn + p 
log p+p). To find d dominant zones, we must compare the sets of visible edges of 
each region. This process can be shortened if we observe that a necessary condition 
for a region to be dominant is that all the positive crossing directions of the edges of  
the region lead to the interior of the region (except for the edges of the objects). 
Given c candidate found with this rule, d dominant regions can be found in O(nc2) 
time [3]. Steps 1 and 2 of the algorithm requires O(n3logn + p log p + p + nc2) time. 
Step 3 requires, in the worst case, exponential time. However, an interesting alterna-
tive could be using a greedy heuristic, which selects the region covering the largest 
number of uncovered edges each time, requiring polynomial time. 
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Fig. 5. Example of region labeling. The starting region is marked with a different color. The 
dominant zone are the one whose visible edges list is surrounded by a box 

 

 

Fig. 6. Various examples showing several objects, the corresponding VLs and space partition, 
the dominant zones selected (drawn with a different background); for each zone, the cross 
represent a possible placement of a sensor 

3   Conclusions 

In this paper a method for positioning a minimum number of sensors into a polygonal 
environment has been presented for some sample cases. The approach has been im-
plemented and results have been presented. Future work will be focused on extending 
the algorithm to 3D, maintaining the general idea of the 2D approach, that is: comput-
ing a partition Π of the viewing space of maximal regions Zi, finding the dominant 
zones and selecting the minimum number of dominant zones able to cover all the 
faces. The idea is to find a suitable definition for active visibility surfaces, equivalent 
to the active VLs for the 2D case, in order to subdivide the space into regions where 
the same set of surfaces is completely visible. 
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Table 1. Total number of objects, edges, Active VLs, regions and sensors needed to cover all 
the edges of the objects of the examples of Fig. 6 

Objects Edges Active VLs Regions Sensors 
1 10 17 23 3 
2 14 33 68 3 
3 18 61 168 3 
4 22 80 275 4 
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